organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Tri­methyl­sil­yl)methane­sulfonamide

aDepartment of Chemistry & Biology, Ryerson University, Toronto, Ontario, Canada M5B 2K3, and bDepartment of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: amcwilli@ryerson.ca

(Received 29 November 2010; accepted 1 December 2010; online 11 December 2010)

There are two mol­ecules in the asymmetric unit of the title compound, C4H13NO2SSi. In the crystal, mol­ecules are linked via inter­molecular N—H⋯O hydrogen bonds, forming chains along [001]. The crystal studied was an inversion twin, the refined ratio of twin domains being 0.61 (9):0.39 (9).

Related literature

For the original synthesis of the title compound, see: Roy (1993[Roy, A. K. (1993). J. Am. Chem. Soc. 114, 2598-2603.]). For the synthetic application of the title compound, see: Roy et al. (1993[Roy, A. K., Burns, G. T., Lie, G. C. & Grigoras, S. (1993). J. Am. Chem. Soc. 114, 2604-2612.]). For related structures, see: Ni et al. (1995[Ni, Y., Lough, A. J., Rheingold, A. L. & Manners, I. (1995). Angew. Chem. Int. Ed. Engl. 34, 998-1001.]); Chunechom et al. (1998[Chunechom, V., Vidal, T. E., Adams, H. & Turner, M. L. (1998). Angew. Chem. Int. Ed. 37, 1928-1930.]).

[Scheme 1]

Experimental

Crystal data
  • C4H13NO2SSi

  • Mr = 167.30

  • Monoclinic, P 21

  • a = 8.2827 (4) Å

  • b = 10.9513 (5) Å

  • c = 9.6201 (3) Å

  • β = 92.536 (2)°

  • V = 871.75 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 150 K

  • 0.32 × 0.25 × 0.24 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.830, Tmax = 0.931

  • 6920 measured reflections

  • 4894 independent reflections

  • 4195 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.094

  • S = 1.05

  • 4894 reflections

  • 170 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.49 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1787 Friedel pairs

  • Flack parameter: 0.39 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1NB⋯O2A 0.81 (2) 2.11 (2) 2.917 (3) 173 (3)
N1A—H1NA⋯O2Bi 0.81 (2) 2.12 (2) 2.925 (3) 177 (3)
Symmetry code: (i) x, y, z+1.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-trimethylsilylmethylsulfonamide, a key intermediate in the synthesis of polyoxothiazenes (Roy et al., 1993) and polythionylphosphazenes (Chunechom et al., 1998), was prepared via the reaction of methanesulfonyl chloride and hexamethyldisilazane (Roy, 1993). The asymmetric unit of the title compound, which contains two independent molecules, is shown in Fig. 1. The S—N bond distances in each molecule are intermediate between a typical S—N single bond (1.74 Å) and a typical S=N double bond (1.54 Å), (Ni et al., 1995) suggesting the presence of some π-bonding between the sulfur and nitrogen atoms. The S—N—Si bond angles of 127.83 (14)° and 128.59 (14)Å are larger than might be expected, in terms of hybridization priciples, for either a tetrahedral or trigonal planar geometry about the nitrogen atom. In the crystal structure, molecules are linked via intermolecular N—H···O hydrogen bonds to form one-dimensional chains along [001] (Fig. 2).

Related literature top

For the original synthesis of the title compound, see: Roy (1993). For the synthetic application of the title compound, see: Roy et al. (1993). For related structures, see: Ni et al. (1995); Chunechom et al. (1998).

Experimental top

The title compound was prepared via addition of methanesulfonyl chloride (7 ml, 102.5 mmol) to a three-necked round-bottom flask equipped with a magnetic stirring bar, gas inlet, reflux condenser and a rubber septa under an inert N2 atmosphere. Hexamethyldisilazane (20 ml, 103.1 mmol) was added drop wise over 10 minutes with stirring at ambient temperatures. The flask was then placed into an oil bath and the reaction mixture heated to 363–373 K to initiate the reaction. The temperature of the oil bath was increased to between 388–393 K and the reaction mixture refluxed at this temperature for 2 h. The reaction mixture was allowed to cool to room temperature and the reaction by-product (Me3SiCl) was removed in vacuo. The resulting crude white powder was recrystallized from a CH2Cl2/Hexane mixture producing colourless crystals. (Yield = 15.6 g, 91%).

Refinement top

Hydrogen atoms were placed in calculated positions with C—H distances ranging from 0.98 Å and included in the refinement in a riding-model approximation with Uiso(H) = 1.5Ueq(C). The positional parameters of the H atoms bonded to N atoms were refined independently and with Uiso(H) = 1.5Ueq(N). The N—H distances were constrained to be the same in each molecule [0.81 (2) Å] using the SADI command in SHELXL (Sheldrick, 2008).

Structure description top

N-trimethylsilylmethylsulfonamide, a key intermediate in the synthesis of polyoxothiazenes (Roy et al., 1993) and polythionylphosphazenes (Chunechom et al., 1998), was prepared via the reaction of methanesulfonyl chloride and hexamethyldisilazane (Roy, 1993). The asymmetric unit of the title compound, which contains two independent molecules, is shown in Fig. 1. The S—N bond distances in each molecule are intermediate between a typical S—N single bond (1.74 Å) and a typical S=N double bond (1.54 Å), (Ni et al., 1995) suggesting the presence of some π-bonding between the sulfur and nitrogen atoms. The S—N—Si bond angles of 127.83 (14)° and 128.59 (14)Å are larger than might be expected, in terms of hybridization priciples, for either a tetrahedral or trigonal planar geometry about the nitrogen atom. In the crystal structure, molecules are linked via intermolecular N—H···O hydrogen bonds to form one-dimensional chains along [001] (Fig. 2).

For the original synthesis of the title compound, see: Roy (1993). For the synthetic application of the title compound, see: Roy et al. (1993). For related structures, see: Ni et al. (1995); Chunechom et al. (1998).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of title compound showing 30% probability ellipsoids. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Part of the crystal structure showing hydrogen bonds as dashed lines.
N-(Trimethylsilyl)methanesulfonamide top
Crystal data top
C4H13NO2SSiF(000) = 360
Mr = 167.30Dx = 1.275 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6920 reflections
a = 8.2827 (4) Åθ = 2.8–32.0°
b = 10.9513 (5) ŵ = 0.45 mm1
c = 9.6201 (3) ÅT = 150 K
β = 92.536 (2)°Block, colourless
V = 871.75 (6) Å30.32 × 0.25 × 0.24 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4894 independent reflections
Radiation source: fine-focus sealed tube4195 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 9 pixels mm-1θmax = 32.0°, θmin = 2.8°
φ scans and ω scans with κ offsetsh = 1212
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
k = 1416
Tmin = 0.830, Tmax = 0.931l = 1214
6920 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0218P)2 + 0.660P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4894 reflectionsΔρmax = 0.41 e Å3
170 parametersΔρmin = 0.49 e Å3
2 restraintsAbsolute structure: Flack (1983), 1787 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.39 (9)
Crystal data top
C4H13NO2SSiV = 871.75 (6) Å3
Mr = 167.30Z = 4
Monoclinic, P21Mo Kα radiation
a = 8.2827 (4) ŵ = 0.45 mm1
b = 10.9513 (5) ÅT = 150 K
c = 9.6201 (3) Å0.32 × 0.25 × 0.24 mm
β = 92.536 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4894 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
4195 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.931Rint = 0.030
6920 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094Δρmax = 0.41 e Å3
S = 1.05Δρmin = 0.49 e Å3
4894 reflectionsAbsolute structure: Flack (1983), 1787 Friedel pairs
170 parametersAbsolute structure parameter: 0.39 (9)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.84555 (7)0.27915 (6)0.95708 (6)0.02134 (13)
Si1A0.55749 (8)0.11459 (7)0.99573 (7)0.02169 (14)
O1A0.8724 (3)0.40683 (18)0.9815 (2)0.0303 (4)
O2A0.8188 (2)0.2381 (2)0.81562 (18)0.0308 (4)
N1A0.6945 (3)0.2334 (2)1.0411 (2)0.0228 (4)
H1NA0.693 (4)0.265 (3)1.117 (2)0.027*
C1A1.0156 (4)0.2012 (3)1.0271 (3)0.0329 (6)
H1AA1.11150.22640.97830.049*
H1AB0.99940.11311.01580.049*
H1AC1.03070.22071.12620.049*
C2A0.6695 (4)0.0301 (3)0.9698 (3)0.0326 (6)
H2AA0.73280.05051.05520.049*
H2AB0.74230.02010.89300.049*
H2AC0.59260.09600.94760.049*
C3A0.4308 (3)0.1074 (3)1.1496 (3)0.0296 (6)
H3AA0.37370.18511.15950.044*
H3AB0.49970.09221.23320.044*
H3AC0.35200.04111.13740.044*
C4A0.4362 (4)0.1526 (3)0.8351 (3)0.0322 (6)
H4AA0.37710.22880.84900.048*
H4AB0.35930.08660.81360.048*
H4AC0.50820.16260.75770.048*
S1B0.65985 (7)0.31234 (6)0.45178 (6)0.02162 (13)
Si1B0.94662 (8)0.47963 (7)0.51424 (7)0.02164 (14)
O1B0.6327 (3)0.18445 (19)0.4738 (2)0.0310 (5)
O2B0.6801 (2)0.3547 (2)0.31117 (19)0.0307 (4)
N1B0.8160 (3)0.3552 (2)0.5432 (2)0.0223 (4)
H1NB0.820 (3)0.317 (3)0.615 (2)0.027*
C1B0.4928 (4)0.3904 (3)0.5154 (3)0.0340 (7)
H1BA0.39470.36680.46130.051*
H1BB0.50960.47870.50680.051*
H1BC0.48110.36940.61340.051*
C2B0.8316 (4)0.6243 (3)0.5137 (3)0.0329 (6)
H2BA0.77750.63270.60180.049*
H2BB0.75060.62390.43630.049*
H2BC0.90570.69300.50270.049*
C3B1.0911 (3)0.4706 (3)0.6667 (3)0.0309 (6)
H3BA1.03260.48050.75230.046*
H3BB1.17190.53550.66070.046*
H3BC1.14510.39100.66770.046*
C4B1.0488 (3)0.4616 (3)0.3477 (3)0.0304 (6)
H4BA0.96860.46710.26990.046*
H4BB1.10230.38180.34600.046*
H4BC1.12940.52640.33920.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0233 (3)0.0193 (3)0.0216 (3)0.0012 (2)0.0028 (2)0.0028 (2)
Si1A0.0216 (3)0.0221 (4)0.0213 (3)0.0027 (3)0.0008 (2)0.0005 (3)
O1A0.0340 (11)0.0163 (10)0.0406 (11)0.0031 (8)0.0019 (9)0.0038 (9)
O2A0.0417 (11)0.0324 (11)0.0187 (8)0.0058 (9)0.0065 (7)0.0011 (8)
N1A0.0264 (10)0.0239 (12)0.0184 (10)0.0044 (9)0.0032 (8)0.0033 (9)
C1A0.0266 (13)0.0273 (16)0.0448 (17)0.0039 (11)0.0010 (12)0.0066 (13)
C2A0.0354 (15)0.0216 (15)0.0409 (15)0.0002 (11)0.0039 (12)0.0032 (13)
C3A0.0254 (12)0.0378 (16)0.0258 (12)0.0083 (11)0.0038 (9)0.0004 (12)
C4A0.0308 (14)0.0392 (18)0.0258 (13)0.0014 (11)0.0066 (10)0.0018 (12)
S1B0.0240 (3)0.0198 (3)0.0211 (3)0.0010 (2)0.0015 (2)0.0029 (2)
Si1B0.0230 (3)0.0216 (4)0.0205 (3)0.0035 (3)0.0030 (2)0.0007 (3)
O1B0.0349 (11)0.0190 (11)0.0387 (11)0.0052 (8)0.0021 (8)0.0036 (9)
O2B0.0388 (11)0.0333 (11)0.0200 (8)0.0036 (8)0.0005 (7)0.0021 (8)
N1B0.0258 (10)0.0209 (11)0.0201 (10)0.0035 (8)0.0007 (8)0.0041 (9)
C1B0.0244 (13)0.0339 (18)0.0443 (17)0.0034 (11)0.0060 (11)0.0082 (14)
C2B0.0368 (15)0.0209 (14)0.0415 (16)0.0004 (12)0.0057 (12)0.0003 (13)
C3B0.0277 (13)0.0395 (17)0.0253 (12)0.0071 (12)0.0015 (10)0.0003 (13)
C4B0.0321 (14)0.0340 (17)0.0260 (13)0.0037 (11)0.0106 (10)0.0026 (12)
Geometric parameters (Å, º) top
S1A—O1A1.434 (2)S1B—O1B1.436 (2)
S1A—O2A1.4410 (19)S1B—O2B1.4469 (19)
S1A—N1A1.600 (2)S1B—N1B1.602 (2)
S1A—C1A1.755 (3)S1B—C1B1.759 (3)
Si1A—N1A1.768 (2)Si1B—N1B1.769 (2)
Si1A—C4A1.853 (3)Si1B—C2B1.849 (3)
Si1A—C3A1.853 (3)Si1B—C3B1.854 (3)
Si1A—C2A1.859 (3)Si1B—C4B1.855 (3)
N1A—H1NA0.81 (2)N1B—H1NB0.81 (2)
C1A—H1AA0.9800C1B—H1BA0.9800
C1A—H1AB0.9800C1B—H1BB0.9800
C1A—H1AC0.9800C1B—H1BC0.9800
C2A—H2AA0.9800C2B—H2BA0.9800
C2A—H2AB0.9800C2B—H2BB0.9800
C2A—H2AC0.9800C2B—H2BC0.9800
C3A—H3AA0.9800C3B—H3BA0.9800
C3A—H3AB0.9800C3B—H3BB0.9800
C3A—H3AC0.9800C3B—H3BC0.9800
C4A—H4AA0.9800C4B—H4BA0.9800
C4A—H4AB0.9800C4B—H4BB0.9800
C4A—H4AC0.9800C4B—H4BC0.9800
O1A—S1A—O2A118.36 (12)O1B—S1B—O2B118.44 (12)
O1A—S1A—N1A110.00 (13)O1B—S1B—N1B109.44 (12)
O2A—S1A—N1A106.77 (12)O2B—S1B—N1B107.15 (12)
O1A—S1A—C1A107.19 (15)O1B—S1B—C1B106.99 (15)
O2A—S1A—C1A107.34 (15)O2B—S1B—C1B107.15 (15)
N1A—S1A—C1A106.61 (14)N1B—S1B—C1B107.15 (14)
N1A—Si1A—C4A111.04 (13)N1B—Si1B—C2B110.00 (13)
N1A—Si1A—C3A102.36 (12)N1B—Si1B—C3B102.23 (12)
C4A—Si1A—C3A111.74 (14)C2B—Si1B—C3B111.25 (15)
N1A—Si1A—C2A109.97 (13)N1B—Si1B—C4B111.06 (13)
C4A—Si1A—C2A109.58 (15)C2B—Si1B—C4B110.09 (15)
C3A—Si1A—C2A111.98 (15)C3B—Si1B—C4B112.00 (13)
S1A—N1A—Si1A127.83 (14)S1B—N1B—Si1B128.59 (14)
S1A—N1A—H1NA112 (2)S1B—N1B—H1NB109 (2)
Si1A—N1A—H1NA120 (2)Si1B—N1B—H1NB122 (2)
S1A—C1A—H1AA109.5S1B—C1B—H1BA109.5
S1A—C1A—H1AB109.5S1B—C1B—H1BB109.5
H1AA—C1A—H1AB109.5H1BA—C1B—H1BB109.5
S1A—C1A—H1AC109.5S1B—C1B—H1BC109.5
H1AA—C1A—H1AC109.5H1BA—C1B—H1BC109.5
H1AB—C1A—H1AC109.5H1BB—C1B—H1BC109.5
Si1A—C2A—H2AA109.5Si1B—C2B—H2BA109.5
Si1A—C2A—H2AB109.5Si1B—C2B—H2BB109.5
H2AA—C2A—H2AB109.5H2BA—C2B—H2BB109.5
Si1A—C2A—H2AC109.5Si1B—C2B—H2BC109.5
H2AA—C2A—H2AC109.5H2BA—C2B—H2BC109.5
H2AB—C2A—H2AC109.5H2BB—C2B—H2BC109.5
Si1A—C3A—H3AA109.5Si1B—C3B—H3BA109.5
Si1A—C3A—H3AB109.5Si1B—C3B—H3BB109.5
H3AA—C3A—H3AB109.5H3BA—C3B—H3BB109.5
Si1A—C3A—H3AC109.5Si1B—C3B—H3BC109.5
H3AA—C3A—H3AC109.5H3BA—C3B—H3BC109.5
H3AB—C3A—H3AC109.5H3BB—C3B—H3BC109.5
Si1A—C4A—H4AA109.5Si1B—C4B—H4BA109.5
Si1A—C4A—H4AB109.5Si1B—C4B—H4BB109.5
H4AA—C4A—H4AB109.5H4BA—C4B—H4BB109.5
Si1A—C4A—H4AC109.5Si1B—C4B—H4BC109.5
H4AA—C4A—H4AC109.5H4BA—C4B—H4BC109.5
H4AB—C4A—H4AC109.5H4BB—C4B—H4BC109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1NB···O2A0.81 (2)2.11 (2)2.917 (3)173 (3)
N1A—H1NA···O2Bi0.81 (2)2.12 (2)2.925 (3)177 (3)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC4H13NO2SSi
Mr167.30
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)8.2827 (4), 10.9513 (5), 9.6201 (3)
β (°) 92.536 (2)
V3)871.75 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.32 × 0.25 × 0.24
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing 1995)
Tmin, Tmax0.830, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
6920, 4894, 4195
Rint0.030
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 1.05
No. of reflections4894
No. of parameters170
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.49
Absolute structureFlack (1983), 1787 Friedel pairs
Absolute structure parameter0.39 (9)

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1NB···O2A0.81 (2)2.11 (2)2.917 (3)173 (3)
N1A—H1NA···O2Bi0.81 (2)2.12 (2)2.925 (3)177 (3)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

AM would like to thank Ryerson University's Faculty of Engineering, Architecture and Science for funding.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChunechom, V., Vidal, T. E., Adams, H. & Turner, M. L. (1998). Angew. Chem. Int. Ed. 37, 1928–1930.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNi, Y., Lough, A. J., Rheingold, A. L. & Manners, I. (1995). Angew. Chem. Int. Ed. Engl. 34, 998–1001.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRoy, A. K. (1993). J. Am. Chem. Soc. 114, 2598–2603.  CrossRef Web of Science Google Scholar
First citationRoy, A. K., Burns, G. T., Lie, G. C. & Grigoras, S. (1993). J. Am. Chem. Soc. 114, 2604–2612.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds