metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

fac-{2-[Bis(2-amino­eth­yl)amino]­ethanaminium}tri­chloridorhodium(III) chloride hemihydrate

aFachrichtung Chemie, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany
*Correspondence e-mail: hegetschweiler@mx.uni-saarland.de

(Received 1 December 2010; accepted 10 December 2010; online 18 December 2010)

The crystal structure of the title compound, [Rh(C6H19N4)Cl3]Cl·0.5H2O, is isotypic with the previously reported Ru analogue. The structure contains two crystallographically independent [Rh(Htren)Cl3]+ cations with a facial tridentate coordination of the monoprotonated tren ligand [tren = tris­(2-amino­eth­yl)amine], leading to an overall distorted octahedral coordination environment around the Rh(III) atom. In one of the two cations, the ethyl­ene groups of the two chelate rings as well as the non-coordinating ethyl­ammonium group are disordered over two sets of sites [0.579 (3):0.421 (3) occupancy ratio]. A series of N—H⋯Cl and O—H⋯Cl hydrogen bonds stabilizes the structure.

Related literature

The preparation of the title compound has been described by Hyvärinen et al. (2009[Hyvärinen, M., Vaara, J., Goldammer, A., Kutzky, B., Hegetschweiler, K., Kaupp, M. & Straka, M. (2009). J. Am. Chem. Soc. 131, 11909-11918.]) and the crystal structure of the isotypic RuIII complex has been reported by Sakai et al. (1996[Sakai, K., Yamada, Y. & Tsubomura, T. (1996). Inorg. Chem. 35, 3163-3172.]). Disorder phenomena, caused by a superposition of differently folded chelate rings of the tren ligand have been observed by Düpre et al. (1999[Düpre, Y., Bartscherer, E., Sander, J., Huch, V. & Hegetschweiler, K. (1999). Z. Kristallogr. New Cryst. Struct. 214, 407-409.]). Hypodentate coordination of polyamine ligands has been discussed by Blackman (2005[Blackman, A. G. (2005). C. R. Chim. 8, 107-119.]) and Neis et al. (2010[Neis, C., Petry, D., Demangeon, A., Morgenstern, B., Kuppert, D., Huppert, J., Stucky, S. & Hegetschweiler, K. (2010). Inorg. Chem. 49, 10092-10107.]). For disorder phenomena, see: Hirshfeld (1976[Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C6H19N4)Cl3]Cl·0.5H2O

  • Mr = 400.97

  • Monoclinic, P 21 /c

  • a = 13.8022 (6) Å

  • b = 14.1954 (5) Å

  • c = 13.6208 (5) Å

  • β = 91.196 (1)°

  • V = 2668.11 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.06 mm−1

  • T = 100 K

  • 0.15 × 0.05 × 0.03 mm

Data collection
  • Bruker X8 APEX KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.747, Tmax = 0.941

  • 56384 measured reflections

  • 13775 independent reflections

  • 13026 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.065

  • S = 1.18

  • 13775 reflections

  • 328 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.79 e Å−3

  • Δρmin = −1.89 e Å−3

Table 1
Selected bond lengths (Å)

Rh2—N6 2.0389 (12)
Rh2—N5 2.0510 (12)
Rh2—N7 2.0964 (12)
Rh2—Cl4 2.3522 (3)
Rh2—Cl6 2.3731 (3)
Rh2—Cl5 2.3735 (3)
Rh1—N2 2.0402 (11)
Rh1—N3 2.0420 (11)
Rh1—N1 2.0820 (11)
Rh1—Cl1 2.3626 (3)
Rh1—Cl3 2.3652 (3)
Rh1—Cl2 2.3718 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯Cl7i 0.92 2.42 3.2560 (13) 150
N3—H3A⋯Cl4i 0.92 2.47 3.3279 (12) 155
N2—H2B⋯Cl7i 0.92 2.34 3.1744 (12) 151
N5—H5D⋯Cl8 0.92 2.45 3.3452 (13) 166
N4—H4A⋯Cl8ii 0.91 2.26 3.1322 (13) 161
N5—H5C⋯Cl4iii 0.92 2.75 3.5319 (12) 143
N6—H6D⋯Cl1iv 0.92 2.62 3.4354 (13) 148
N4—H4C⋯Cl6v 0.91 2.35 3.1729 (13) 150
N81—H81B⋯Cl7vi 0.91 2.24 3.109 (14) 159
O1W—H1WA⋯Cl7vii 0.86 2.25 3.0797 (15) 163
N2—H2A⋯Cl1viii 0.92 2.62 3.4348 (12) 148
N6—H6C⋯Cl8 0.92 2.36 3.2199 (13) 156
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x+1, -y+1, -z; (vii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (viii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound has recently been obtained as a byproduct in the synthesis of [RhCl2(tren)]+. Based on the slightly longer wave lengths of the d-d transitions, a partial coordination of the tren ligand was assigned to [RhCl3(Htren)]+. Considering a step by step binding of the nitrogen donors to a mononuclear aqua-chlorido-RhIII precursor, such an intermediate with three coordinated amino groups could either have a meridional or a facial geometry. The two forms cannot be distinguished by NMR spectroscopy, because both diastereomers exhibit Cs symmetry for the averaged solution structure.

The crystal structure analysis confirmed tridentate binding for the Htren+ ligand and exhibited a facial geometry for the coordinated diethylenetriamine unit (Fig. 1). Partial metal binding ("hypodentate coordination") of polyamine ligands is well known. Hypodentate coordination can either be caused by the specific steric requirements of the ligand or by slow ligand substitution. The observation, that vigorous conditions in the synthetic procedure resulted in an exclusive formation of [RhCl2(tren)]+ indicates that the incompletely coordinated ligand of the title compound is due to kinetic rather than thermodynamic reasons. [RhCl3(Htren)]+ should thus be regarded as an intermediate, trapped on its way to [RhCl2(tren)]+.

The structure of the title compound is isotypic with the previously reported Ru analogue. The asymmetric unit contains two crystallographically independent [RhCl3(Htren)]+ cations, two crystallographically independent chloride anions and one water molecule. The entire structure is stabilized by a three dimensional network of hydrogen bonds (Table 2). Notably, one of the hydrogen atoms of the water molecule (H1WB) has no acceptor: its nearest neighbors are the hydrogen atoms of an ethylenediamine group. Two coordinated chloride ions (Cl2 and Cl3) already exhibit O···Cl separations of 3.675 and 3.784 Å. The molecular structure of one of the cations closely approaches Cs symmetry with the two chelate rings having a λ and δ conformation. The second cation exhibited some disorder for the five membered Rh—N—C—C—N rings and the non coordinating ethylammonium group. This disorder could be resolved and has been refined as a superposition of two distinct conformers. Within one particular form, the same type of conformation (i.e. λ/λ or δ/δ) was observed for the two chelate rings.

In comparison to the isotypic Ru complex, the M—N and M—Cl bonds of the title compound are, as expected, slightly shorter. In both congeners, the M—N bonds of the tertiary nitrogen atoms were slightly longer. In addition, a trans influence (push-pull mechanism) has found to be operative (Table 1). However, for the Ru congener, these effects were - if at all - barely significant. This is now different for the title compound, where the accuracy of the structure has been increased by almost one order of magnitude.

Related literature top

The preparation of the title compound has been described by Hyvärinen et al. (2009) and the crystal structure of the isotypic RuIII complex has been reported by Sakai et al. (1996). Disorder phenomena, caused by a superposition of differently folded chelate rings of the tren ligand have been observed by Düpre et al. (1999). Hypodentate coordination of polyamine ligands has been discussed by Blackman (2005) and Neis et al. (2010). For disorder phenomena, see: Hirshfeld (1976).

Experimental top

Orange crystals of the title compound were grown from aqueous 1 mol/L HCl. 1H-NMR (D2O): δ (p.p.m.) = 3.06 (2H), 3.20 (4H), 3.35 (2H), 3.60 (2H), 3.91 (2H), 5.52 (broad, 2NH), 5.62 (broad, 2NH). 13C-NMR (D2O): δ (p.p.m.)= 35.1, 46.1, 59.6, 62.2. UV/Vis (H2O) λmax (nm) = 396, 313.

Refinement top

In the second cation (Rh2), the ethylene groups of both chelate rings as well as the non-coordinating ethylammonium group are disordered, and were considered as a major and minor component with an occupancy of 57.9 (3) % and 42.1 (3) %, respectively. The partially occupied positions of all non hydrogen atoms (major component: C7, C9, C11, C13, C15, C17, N81; minor compounent: C8, C10, C12, C14, C16, C18, N82) could be refined anisotropically. C7 and C8, C11 and C12, N81 and N82 were each refined with equal displacement parameters. However, the disorder obviously generated some inequality of the displacement parameters for neighboring atoms such as N7 and C9 or C14 (Hirshfeld, 1976). H atoms bonded to the water O atom were located in an electron density map and refined with distance restraints of O—H = 0.84 (2) Å, and with Uiso(H) = 1.2Ueq(O). Other H atoms bonded to C- and N-atoms were positioned geometrically and refined using a riding model with free rotation about the C—NH3 bond, with C—H = 0.99 Å, N—H = 0.91 (NH3 groups) or 0.92 Å (NH2 groups), and Uiso(H) = 1.2 or 1.5 (NH3 groups) of Ueq of the pivot atom.

Structure description top

The title compound has recently been obtained as a byproduct in the synthesis of [RhCl2(tren)]+. Based on the slightly longer wave lengths of the d-d transitions, a partial coordination of the tren ligand was assigned to [RhCl3(Htren)]+. Considering a step by step binding of the nitrogen donors to a mononuclear aqua-chlorido-RhIII precursor, such an intermediate with three coordinated amino groups could either have a meridional or a facial geometry. The two forms cannot be distinguished by NMR spectroscopy, because both diastereomers exhibit Cs symmetry for the averaged solution structure.

The crystal structure analysis confirmed tridentate binding for the Htren+ ligand and exhibited a facial geometry for the coordinated diethylenetriamine unit (Fig. 1). Partial metal binding ("hypodentate coordination") of polyamine ligands is well known. Hypodentate coordination can either be caused by the specific steric requirements of the ligand or by slow ligand substitution. The observation, that vigorous conditions in the synthetic procedure resulted in an exclusive formation of [RhCl2(tren)]+ indicates that the incompletely coordinated ligand of the title compound is due to kinetic rather than thermodynamic reasons. [RhCl3(Htren)]+ should thus be regarded as an intermediate, trapped on its way to [RhCl2(tren)]+.

The structure of the title compound is isotypic with the previously reported Ru analogue. The asymmetric unit contains two crystallographically independent [RhCl3(Htren)]+ cations, two crystallographically independent chloride anions and one water molecule. The entire structure is stabilized by a three dimensional network of hydrogen bonds (Table 2). Notably, one of the hydrogen atoms of the water molecule (H1WB) has no acceptor: its nearest neighbors are the hydrogen atoms of an ethylenediamine group. Two coordinated chloride ions (Cl2 and Cl3) already exhibit O···Cl separations of 3.675 and 3.784 Å. The molecular structure of one of the cations closely approaches Cs symmetry with the two chelate rings having a λ and δ conformation. The second cation exhibited some disorder for the five membered Rh—N—C—C—N rings and the non coordinating ethylammonium group. This disorder could be resolved and has been refined as a superposition of two distinct conformers. Within one particular form, the same type of conformation (i.e. λ/λ or δ/δ) was observed for the two chelate rings.

In comparison to the isotypic Ru complex, the M—N and M—Cl bonds of the title compound are, as expected, slightly shorter. In both congeners, the M—N bonds of the tertiary nitrogen atoms were slightly longer. In addition, a trans influence (push-pull mechanism) has found to be operative (Table 1). However, for the Ru congener, these effects were - if at all - barely significant. This is now different for the title compound, where the accuracy of the structure has been increased by almost one order of magnitude.

The preparation of the title compound has been described by Hyvärinen et al. (2009) and the crystal structure of the isotypic RuIII complex has been reported by Sakai et al. (1996). Disorder phenomena, caused by a superposition of differently folded chelate rings of the tren ligand have been observed by Düpre et al. (1999). Hypodentate coordination of polyamine ligands has been discussed by Blackman (2005) and Neis et al. (2010). For disorder phenomena, see: Hirshfeld (1976).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. a) The [Rh1Cl3(Htren)]+ cation together with the water molecule; b) the disordered [Rh2Cl3(Htren)]+ cation together with the two chloride counter ions. Displacement ellipsoids are drawn at the 30% probability level.
fac-{2-[Bis(2-aminoethyl)amino]ethanaminium}trichloridorhodium(III) chloride hemihydrate top
Crystal data top
[Rh(C6H19N4)Cl3]Cl·0.5H2OF(000) = 1608
Mr = 400.97Dx = 1.996 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.8022 (6) ÅCell parameters from 9299 reflections
b = 14.1954 (5) Åθ = 3.2–39.4°
c = 13.6208 (5) ŵ = 2.06 mm1
β = 91.196 (1)°T = 100 K
V = 2668.11 (18) Å3Prism, orange
Z = 80.15 × 0.05 × 0.03 mm
Data collection top
Bruker X8 APEX KappaCCD
diffractometer
13775 independent reflections
Radiation source: fine-focus sealed tube13026 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
phi and ω scansθmax = 37.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 2323
Tmin = 0.747, Tmax = 0.941k = 2424
56384 measured reflectionsl = 2218
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0142P)2 + 3.4613P]
where P = (Fo2 + 2Fc2)/3
13775 reflections(Δ/σ)max = 0.001
328 parametersΔρmax = 1.79 e Å3
2 restraintsΔρmin = 1.89 e Å3
Crystal data top
[Rh(C6H19N4)Cl3]Cl·0.5H2OV = 2668.11 (18) Å3
Mr = 400.97Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.8022 (6) ŵ = 2.06 mm1
b = 14.1954 (5) ÅT = 100 K
c = 13.6208 (5) Å0.15 × 0.05 × 0.03 mm
β = 91.196 (1)°
Data collection top
Bruker X8 APEX KappaCCD
diffractometer
13775 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
13026 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.941Rint = 0.036
56384 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0252 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.18Δρmax = 1.79 e Å3
13775 reflectionsΔρmin = 1.89 e Å3
328 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh20.456131 (7)0.457663 (7)0.295722 (7)0.00764 (2)
Cl40.35083 (2)0.54510 (2)0.39418 (2)0.01355 (5)
Cl50.41181 (3)0.55130 (2)0.15758 (3)0.01525 (6)
Cl60.58495 (2)0.55887 (2)0.34534 (3)0.01457 (5)
N50.49273 (8)0.37552 (8)0.41469 (9)0.01239 (18)
H5C0.50650.41250.46870.015*
H5D0.44260.33550.42950.015*
N60.34500 (9)0.37247 (9)0.25038 (9)0.01339 (18)
H6C0.31990.34330.30450.016*
H6D0.29680.40940.22300.016*
N70.54171 (10)0.36156 (9)0.21917 (10)0.0158 (2)
N810.7151 (7)0.4973 (11)0.0537 (10)0.0137 (10)0.579 (3)
H81A0.71100.55030.01620.021*0.579 (3)
H81B0.72680.44670.01460.021*0.579 (3)
H81C0.76430.50360.09880.021*0.579 (3)
C110.5795 (8)0.3211 (6)0.3865 (7)0.0144 (8)0.579 (3)
H11A0.59090.26880.43350.017*0.579 (3)
H11B0.63730.36240.38780.017*0.579 (3)
C70.3707 (4)0.3016 (5)0.1806 (5)0.0133 (6)0.579 (3)
H7A0.32020.29800.12800.016*0.579 (3)
H7B0.37440.23950.21350.016*0.579 (3)
C90.46844 (17)0.32497 (16)0.13587 (17)0.0126 (4)0.579 (3)
H9A0.45970.37410.08480.015*0.579 (3)
H9B0.49530.26810.10440.015*0.579 (3)
C130.56229 (18)0.28239 (16)0.28408 (18)0.0134 (4)0.579 (3)
H13A0.62050.24820.26210.016*0.579 (3)
H13B0.50690.23810.28350.016*0.579 (3)
C150.62883 (18)0.39463 (17)0.1702 (2)0.0119 (4)0.579 (3)
H15A0.65250.34280.12850.014*0.579 (3)
H15B0.67930.40660.22130.014*0.579 (3)
C170.61978 (18)0.48254 (17)0.1066 (2)0.0123 (4)0.579 (3)
H17A0.60570.53790.14810.015*0.579 (3)
H17B0.56600.47490.05810.015*0.579 (3)
N820.7010 (11)0.5007 (16)0.0506 (15)0.0137 (10)0.421 (3)
H82A0.75440.46350.04560.021*0.421 (3)
H82B0.71890.56230.04820.021*0.421 (3)
H82C0.65890.48790.00010.021*0.421 (3)
C120.5738 (11)0.3072 (9)0.3985 (10)0.0144 (8)0.421 (3)
H12A0.54790.24220.39500.017*0.421 (3)
H12B0.62110.31050.45410.017*0.421 (3)
C80.3877 (6)0.3096 (7)0.1675 (7)0.0133 (6)0.421 (3)
H8A0.34510.25450.15520.016*0.421 (3)
H8B0.39170.34620.10580.016*0.421 (3)
C100.4876 (2)0.2769 (2)0.2001 (3)0.0139 (6)0.421 (3)
H10A0.48410.23790.26010.017*0.421 (3)
H10B0.51820.23940.14780.017*0.421 (3)
C140.6233 (2)0.3313 (2)0.3038 (2)0.0136 (5)0.421 (3)
H14A0.66060.27620.28100.016*0.421 (3)
H14B0.66920.38400.31520.016*0.421 (3)
C160.5993 (3)0.3907 (2)0.1350 (3)0.0132 (5)0.421 (3)
H16A0.55510.39490.07700.020*0.421 (3)
H16B0.64630.33980.12170.020*0.421 (3)
C180.6550 (3)0.4822 (2)0.1422 (3)0.0135 (6)0.421 (3)
H18A0.61030.53430.15780.020*0.421 (3)
H18B0.70450.47790.19570.020*0.421 (3)
Rh10.050193 (6)0.022538 (6)0.294250 (7)0.00769 (2)
Cl10.14238 (2)0.08013 (2)0.39188 (2)0.01218 (5)
Cl20.08326 (2)0.07112 (2)0.15330 (2)0.01352 (5)
Cl30.09065 (2)0.06574 (2)0.33366 (3)0.01344 (5)
N10.02397 (8)0.12427 (8)0.21533 (9)0.01062 (16)
N20.01835 (8)0.10429 (8)0.41382 (9)0.01167 (17)
H2B0.07390.11510.44820.014*
H2A0.02490.07300.45450.014*
N30.17010 (8)0.10130 (8)0.26043 (9)0.01160 (17)
H3A0.21020.06790.21840.014*
H3B0.20360.11330.31680.014*
N40.22326 (9)0.09829 (9)0.02885 (9)0.01396 (19)
H4A0.25490.13960.01030.017*
H4B0.18810.05750.00910.017*
H4C0.26720.06560.06620.017*
C50.09455 (9)0.08094 (9)0.14742 (10)0.01189 (19)
H5A0.05830.04270.09830.014*
H5B0.13720.03770.18560.014*
C10.07923 (11)0.18286 (10)0.28988 (11)0.0156 (2)
H1A0.09270.24550.26140.019*
H1B0.14210.15220.30520.019*
C30.05095 (10)0.17878 (10)0.15695 (11)0.0154 (2)
H3C0.06610.14480.09500.018*
H3D0.02430.24130.13980.018*
C40.14309 (10)0.19188 (10)0.21365 (12)0.0155 (2)
H4D0.13310.24080.26470.019*
H4E0.19600.21290.16860.019*
C20.02394 (11)0.19537 (10)0.38390 (11)0.0162 (2)
H2C0.06820.21890.43650.019*
H2D0.02830.24230.37360.019*
C60.15742 (12)0.15079 (10)0.09370 (12)0.0185 (3)
H6A0.11620.19410.05410.022*
H6B0.19570.18870.14160.022*
O1W0.16704 (14)0.59698 (11)0.57048 (15)0.0440 (5)
H1WA0.18800.64960.54800.053*
H1WB0.12400.60500.61500.053*
Cl70.21905 (2)0.69611 (2)0.02866 (3)0.01468 (5)
Cl80.30749 (3)0.22405 (2)0.42426 (3)0.01559 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh20.00869 (4)0.00589 (4)0.00829 (4)0.00005 (2)0.00082 (3)0.00014 (2)
Cl40.01259 (11)0.01427 (12)0.01383 (13)0.00339 (9)0.00147 (9)0.00073 (9)
Cl50.01943 (14)0.01270 (12)0.01342 (13)0.00283 (10)0.00451 (10)0.00451 (9)
Cl60.01406 (12)0.01173 (12)0.01772 (14)0.00389 (9)0.00425 (10)0.00080 (10)
N50.0131 (4)0.0113 (4)0.0128 (5)0.0018 (3)0.0008 (3)0.0020 (3)
N60.0156 (5)0.0122 (4)0.0123 (5)0.0047 (4)0.0014 (3)0.0008 (3)
N70.0212 (5)0.0079 (4)0.0188 (5)0.0005 (4)0.0093 (4)0.0007 (4)
N810.008 (3)0.0135 (11)0.0201 (10)0.002 (2)0.0063 (18)0.0006 (8)
C110.0156 (13)0.010 (2)0.017 (2)0.0036 (15)0.0036 (14)0.0029 (14)
C70.015 (2)0.0123 (13)0.0129 (18)0.0029 (13)0.0009 (12)0.0023 (11)
C90.0148 (9)0.0105 (8)0.0126 (9)0.0014 (6)0.0004 (7)0.0029 (6)
C130.0163 (9)0.0082 (8)0.0157 (9)0.0034 (7)0.0010 (7)0.0024 (7)
C150.0104 (9)0.0115 (9)0.0140 (10)0.0025 (7)0.0020 (8)0.0018 (7)
C170.0097 (8)0.0128 (9)0.0144 (10)0.0011 (6)0.0019 (8)0.0032 (7)
N820.008 (3)0.0135 (11)0.0201 (10)0.002 (2)0.0063 (18)0.0006 (8)
C120.0156 (13)0.010 (2)0.017 (2)0.0036 (15)0.0036 (14)0.0029 (14)
C80.015 (2)0.0123 (13)0.0129 (18)0.0029 (13)0.0009 (12)0.0023 (11)
C100.0157 (12)0.0090 (11)0.0170 (13)0.0014 (9)0.0004 (10)0.0027 (9)
C140.0126 (11)0.0119 (12)0.0161 (13)0.0042 (9)0.0012 (9)0.0003 (9)
C160.0155 (14)0.0123 (12)0.0118 (14)0.0002 (10)0.0027 (11)0.0015 (10)
C180.0141 (13)0.0136 (13)0.0129 (13)0.0024 (10)0.0019 (11)0.0018 (10)
Rh10.00765 (4)0.00523 (4)0.01013 (4)0.00032 (2)0.00141 (3)0.00011 (2)
Cl10.01169 (11)0.01046 (11)0.01437 (12)0.00173 (9)0.00012 (9)0.00220 (9)
Cl20.01728 (13)0.00891 (11)0.01422 (13)0.00154 (9)0.00346 (10)0.00250 (9)
Cl30.01081 (11)0.01042 (11)0.01899 (14)0.00193 (9)0.00234 (9)0.00180 (10)
N10.0113 (4)0.0078 (4)0.0128 (4)0.0003 (3)0.0010 (3)0.0000 (3)
N20.0125 (4)0.0100 (4)0.0125 (4)0.0010 (3)0.0008 (3)0.0010 (3)
N30.0106 (4)0.0095 (4)0.0146 (5)0.0004 (3)0.0017 (3)0.0008 (3)
N40.0116 (4)0.0160 (5)0.0143 (5)0.0001 (4)0.0015 (3)0.0005 (4)
C50.0125 (5)0.0092 (4)0.0141 (5)0.0001 (4)0.0016 (4)0.0001 (4)
C10.0175 (5)0.0130 (5)0.0163 (6)0.0067 (4)0.0022 (4)0.0040 (4)
C30.0162 (5)0.0126 (5)0.0174 (6)0.0032 (4)0.0019 (4)0.0050 (4)
C40.0149 (5)0.0109 (5)0.0208 (6)0.0039 (4)0.0019 (4)0.0040 (4)
C20.0211 (6)0.0117 (5)0.0159 (6)0.0053 (4)0.0022 (4)0.0041 (4)
C60.0210 (6)0.0113 (5)0.0235 (7)0.0002 (4)0.0103 (5)0.0014 (5)
O1W0.0534 (10)0.0139 (6)0.0662 (12)0.0023 (6)0.0344 (9)0.0031 (7)
Cl70.01501 (12)0.01145 (12)0.01767 (14)0.00112 (9)0.00213 (10)0.00116 (10)
Cl80.02018 (14)0.01051 (12)0.01618 (13)0.00098 (10)0.00267 (10)0.00115 (10)
Geometric parameters (Å, º) top
Rh2—N62.0389 (12)C8—H8A0.9900
Rh2—N52.0510 (12)C8—H8B0.9900
Rh2—N72.0964 (12)C10—H10A0.9900
Rh2—Cl42.3522 (3)C10—H10B0.9900
Rh2—Cl62.3731 (3)C14—H14A0.9900
Rh2—Cl52.3735 (3)C14—H14B0.9900
N5—C111.482 (12)C16—C181.511 (5)
N5—C121.501 (17)C16—H16A0.9900
N5—H5C0.9200C16—H16B0.9900
N5—H5D0.9200C18—H18A0.9900
N6—C71.434 (7)C18—H18B0.9900
N6—C81.564 (10)Rh1—N22.0402 (11)
N6—H6C0.9200Rh1—N32.0420 (11)
N6—H6D0.9200Rh1—N12.0820 (11)
N7—C101.435 (3)Rh1—Cl12.3626 (3)
N7—C131.454 (3)Rh1—Cl32.3652 (3)
N7—C151.465 (3)Rh1—Cl22.3718 (3)
N7—C161.468 (4)N1—C51.4901 (18)
N7—C91.591 (3)N1—C31.5054 (18)
N7—C141.652 (3)N1—C11.5074 (18)
N81—C171.527 (13)N2—C21.4793 (18)
N81—H81A0.9100N2—H2B0.9200
N81—H81B0.9100N2—H2A0.9200
N81—H81C0.9100N3—C41.4860 (18)
C11—C131.514 (11)N3—H3A0.9200
C11—H11A0.9900N3—H3B0.9200
C11—H11B0.9900N4—C61.4816 (19)
C7—C91.529 (5)N4—H4A0.9100
C7—H7A0.9900N4—H4B0.9100
C7—H7B0.9900N4—H4C0.9100
C9—H9A0.9900C5—C61.516 (2)
C9—H9B0.9900C5—H5A0.9900
C13—H13A0.9900C5—H5B0.9900
C13—H13B0.9900C1—C21.515 (2)
C15—C171.522 (3)C1—H1A0.9900
C15—H15A0.9900C1—H1B0.9900
C15—H15B0.9900C3—C41.513 (2)
C17—H17A0.9900C3—H3C0.9900
C17—H17B0.9900C3—H3D0.9900
N82—C181.44 (2)C4—H4D0.9900
N82—H82A0.9100C4—H4E0.9900
N82—H82B0.9100C2—H2C0.9900
N82—H82C0.9100C2—H2D0.9900
C12—C141.511 (13)C6—H6A0.9900
C12—H12A0.9900C6—H6B0.9900
C12—H12B0.9900O1W—H1WA0.8603
C8—C101.513 (11)O1W—H1WB0.8650
N6—Rh2—N594.21 (5)N6—C8—H8B110.0
N6—Rh2—N783.77 (5)H8A—C8—H8B108.4
N5—Rh2—N783.74 (5)N7—C10—C8105.3 (4)
N6—Rh2—Cl490.90 (4)N7—C10—H10A110.7
N5—Rh2—Cl489.68 (3)C8—C10—H10A110.7
N7—Rh2—Cl4171.19 (3)N7—C10—H10B110.7
N6—Rh2—Cl6178.74 (4)C8—C10—H10B110.7
N5—Rh2—Cl687.05 (3)H10A—C10—H10B108.8
N7—Rh2—Cl696.26 (4)C12—C14—N7109.9 (6)
Cl4—Rh2—Cl689.216 (13)C12—C14—H14A109.7
N6—Rh2—Cl584.96 (4)N7—C14—H14A109.7
N5—Rh2—Cl5179.17 (4)C12—C14—H14B109.7
N7—Rh2—Cl596.24 (4)N7—C14—H14B109.7
Cl4—Rh2—Cl590.250 (13)H14A—C14—H14B108.2
Cl6—Rh2—Cl593.777 (12)N7—C16—C18118.3 (3)
C11—N5—Rh2106.2 (3)N7—C16—H16A107.7
C12—N5—Rh2115.1 (5)C18—C16—H16A107.7
C11—N5—H5C110.5N7—C16—H16B107.7
C12—N5—H5C110.1C18—C16—H16B107.7
Rh2—N5—H5C110.5H16A—C16—H16B107.1
C11—N5—H5D110.5N82—C18—C16109.5 (9)
C12—N5—H5D101.5N82—C18—H18A109.8
Rh2—N5—H5D110.5C16—C18—H18A109.8
H5C—N5—H5D108.7N82—C18—H18B109.8
C7—N6—Rh2115.0 (2)C16—C18—H18B109.8
C8—N6—Rh2105.4 (3)H18A—C18—H18B108.2
C7—N6—H6C108.5N2—Rh1—N391.65 (5)
C8—N6—H6C118.4N2—Rh1—N185.27 (5)
Rh2—N6—H6C108.5N3—Rh1—N184.76 (5)
C7—N6—H6D108.5N2—Rh1—Cl190.64 (3)
C8—N6—H6D108.2N3—Rh1—Cl191.22 (3)
Rh2—N6—H6D108.5N1—Rh1—Cl1174.17 (3)
H6C—N6—H6D107.5N2—Rh1—Cl387.58 (3)
C13—N7—C15111.90 (16)N3—Rh1—Cl3178.79 (3)
C10—N7—C16112.5 (2)N1—Rh1—Cl394.25 (3)
C13—N7—C9107.12 (15)Cl1—Rh1—Cl389.722 (12)
C15—N7—C9107.18 (17)N2—Rh1—Cl2178.45 (3)
C10—N7—C14104.7 (2)N3—Rh1—Cl289.02 (3)
C16—N7—C14104.2 (2)N1—Rh1—Cl293.40 (3)
C10—N7—Rh2109.80 (15)Cl1—Rh1—Cl290.746 (12)
C13—N7—Rh2107.78 (12)Cl3—Rh1—Cl291.723 (12)
C15—N7—Rh2119.63 (12)C5—N1—C3109.57 (11)
C16—N7—Rh2121.67 (15)C5—N1—C1108.53 (10)
C9—N7—Rh2102.17 (11)C3—N1—C1113.87 (11)
C14—N7—Rh2101.84 (13)C5—N1—Rh1111.65 (8)
C17—N81—H81A109.5C3—N1—Rh1106.83 (8)
C17—N81—H81B109.5C1—N1—Rh1106.39 (8)
H81A—N81—H81B109.5C2—N2—Rh1110.91 (9)
C17—N81—H81C109.5C2—N2—H2B109.5
H81A—N81—H81C109.5Rh1—N2—H2B109.5
H81B—N81—H81C109.5C2—N2—H2A109.5
N5—C11—C13108.4 (6)Rh1—N2—H2A109.5
N5—C11—H11A110.0H2B—N2—H2A108.0
C13—C11—H11A110.0C4—N3—Rh1111.17 (8)
N5—C11—H11B110.0C4—N3—H3A109.4
C13—C11—H11B110.0Rh1—N3—H3A109.4
H11A—C11—H11B108.4C4—N3—H3B109.4
N6—C7—C9110.1 (4)Rh1—N3—H3B109.4
N6—C7—H7A109.6H3A—N3—H3B108.0
C9—C7—H7A109.6C6—N4—H4A109.5
N6—C7—H7B109.6C6—N4—H4B109.5
C9—C7—H7B109.6H4A—N4—H4B109.5
H7A—C7—H7B108.1C6—N4—H4C109.5
C7—C9—N7109.9 (3)H4A—N4—H4C109.5
C7—C9—H9A109.7H4B—N4—H4C109.5
N7—C9—H9A109.7N1—C5—C6114.70 (11)
C7—C9—H9B109.7N1—C5—H5A108.6
N7—C9—H9B109.7C6—C5—H5A108.6
H9A—C9—H9B108.2N1—C5—H5B108.6
N7—C13—C11107.7 (3)C6—C5—H5B108.6
N7—C13—H13A110.2H5A—C5—H5B107.6
C11—C13—H13A110.2N1—C1—C2112.17 (11)
N7—C13—H13B110.2N1—C1—H1A109.2
C11—C13—H13B110.2C2—C1—H1A109.2
H13A—C13—H13B108.5N1—C1—H1B109.2
N7—C15—C17117.61 (19)C2—C1—H1B109.2
N7—C15—H15A107.9H1A—C1—H1B107.9
C17—C15—H15A107.9N1—C3—C4111.65 (11)
N7—C15—H15B107.9N1—C3—H3C109.3
C17—C15—H15B107.9C4—C3—H3C109.3
H15A—C15—H15B107.2N1—C3—H3D109.3
C15—C17—N81108.6 (6)C4—C3—H3D109.3
C15—C17—H17A110.0H3C—C3—H3D108.0
N81—C17—H17A110.0N3—C4—C3109.49 (11)
C15—C17—H17B110.0N3—C4—H4D109.8
N81—C17—H17B110.0C3—C4—H4D109.8
H17A—C17—H17B108.3N3—C4—H4E109.8
C18—N82—H82A109.5C3—C4—H4E109.8
C18—N82—H82B109.5H4D—C4—H4E108.2
H82A—N82—H82B109.5N2—C2—C1109.82 (11)
C18—N82—H82C109.5N2—C2—H2C109.7
H82A—N82—H82C109.5C1—C2—H2C109.7
H82B—N82—H82C109.5N2—C2—H2D109.7
N5—C12—C14109.3 (7)C1—C2—H2D109.7
N5—C12—H12A109.8H2C—C2—H2D108.2
C14—C12—H12A109.8N4—C6—C5108.85 (12)
N5—C12—H12B109.8N4—C6—H6A109.9
C14—C12—H12B109.8C5—C6—H6A109.9
H12A—C12—H12B108.3N4—C6—H6B109.9
C10—C8—N6108.5 (7)C5—C6—H6B109.9
C10—C8—H8A110.0H6A—C6—H6B108.3
N6—C8—H8A110.0H1WA—O1W—H1WB112.1
C10—C8—H8B110.0
N6—Rh2—N5—C11102.0 (4)Rh2—N7—C15—C1747.5 (3)
N7—Rh2—N5—C1118.7 (4)N7—C15—C17—N81173.4 (6)
Cl4—Rh2—N5—C11167.1 (4)Rh2—N5—C12—C1412.4 (11)
Cl6—Rh2—N5—C1177.9 (4)Rh2—N6—C8—C1043.2 (5)
N6—Rh2—N5—C1296.3 (6)C16—N7—C10—C895.7 (4)
N7—Rh2—N5—C1213.1 (6)C9—N7—C10—C843.9 (4)
Cl4—Rh2—N5—C12172.8 (6)C14—N7—C10—C8151.7 (4)
Cl6—Rh2—N5—C1283.5 (6)Rh2—N7—C10—C843.1 (4)
N5—Rh2—N6—C792.1 (3)N6—C8—C10—N757.6 (5)
N7—Rh2—N6—C78.9 (3)N5—C12—C14—N740.2 (10)
Cl4—Rh2—N6—C7178.1 (3)C10—N7—C14—C1266.4 (6)
Cl5—Rh2—N6—C787.9 (3)C16—N7—C14—C12175.3 (6)
N5—Rh2—N6—C898.1 (4)Rh2—N7—C14—C1247.9 (6)
N7—Rh2—N6—C814.9 (4)C10—N7—C16—C18176.1 (3)
Cl4—Rh2—N6—C8172.1 (4)C14—N7—C16—C1871.1 (4)
Cl5—Rh2—N6—C881.9 (4)Rh2—N7—C16—C1842.8 (4)
N6—Rh2—N7—C1015.86 (17)N7—C16—C18—N82176.3 (8)
N5—Rh2—N7—C1079.09 (17)N2—Rh1—N1—C5132.69 (9)
Cl6—Rh2—N7—C10165.41 (16)N3—Rh1—N1—C5135.22 (9)
Cl5—Rh2—N7—C10100.08 (16)Cl3—Rh1—N1—C545.47 (8)
N6—Rh2—N7—C1383.64 (13)Cl2—Rh1—N1—C546.51 (8)
N5—Rh2—N7—C1311.31 (13)N2—Rh1—N1—C3107.53 (9)
Cl6—Rh2—N7—C1397.63 (12)N3—Rh1—N1—C315.44 (9)
Cl5—Rh2—N7—C13167.86 (12)Cl3—Rh1—N1—C3165.25 (8)
N6—Rh2—N7—C15147.09 (17)Cl2—Rh1—N1—C373.27 (8)
N5—Rh2—N7—C15117.96 (17)N2—Rh1—N1—C114.44 (9)
Cl6—Rh2—N7—C1531.64 (16)N3—Rh1—N1—C1106.54 (9)
Cl5—Rh2—N7—C1562.87 (16)Cl3—Rh1—N1—C172.77 (8)
N6—Rh2—N7—C16118.5 (2)Cl2—Rh1—N1—C1164.76 (8)
N5—Rh2—N7—C16146.5 (2)N3—Rh1—N2—C275.84 (10)
Cl6—Rh2—N7—C1660.2 (2)N1—Rh1—N2—C28.76 (9)
Cl5—Rh2—N7—C1634.3 (2)Cl1—Rh1—N2—C2167.08 (9)
N6—Rh2—N7—C929.04 (11)Cl3—Rh1—N2—C2103.23 (9)
N5—Rh2—N7—C9123.98 (11)N2—Rh1—N3—C476.85 (10)
Cl6—Rh2—N7—C9149.69 (10)N1—Rh1—N3—C48.24 (9)
Cl5—Rh2—N7—C955.18 (10)Cl1—Rh1—N3—C4167.53 (9)
N6—Rh2—N7—C14126.39 (14)Cl2—Rh1—N3—C4101.75 (9)
N5—Rh2—N7—C1431.44 (14)C3—N1—C5—C666.79 (15)
Cl6—Rh2—N7—C1454.89 (13)C1—N1—C5—C658.10 (15)
Cl5—Rh2—N7—C14149.40 (13)Rh1—N1—C5—C6175.06 (10)
Rh2—N5—C11—C1345.3 (4)C5—N1—C1—C2155.76 (12)
Rh2—N6—C7—C915.9 (5)C3—N1—C1—C281.92 (15)
N6—C7—C9—N741.9 (5)Rh1—N1—C1—C235.48 (14)
C13—N7—C9—C767.3 (3)C5—N1—C3—C4157.88 (12)
C15—N7—C9—C7172.5 (3)C1—N1—C3—C480.38 (15)
Rh2—N7—C9—C745.9 (3)Rh1—N1—C3—C436.77 (13)
C15—N7—C13—C1194.9 (5)Rh1—N3—C4—C330.36 (14)
C9—N7—C13—C11147.9 (4)N1—C3—C4—N345.09 (16)
Rh2—N7—C13—C1138.6 (4)Rh1—N2—C2—C130.32 (14)
N5—C11—C13—N757.2 (4)N1—C1—C2—N244.48 (17)
C13—N7—C15—C17174.9 (2)N1—C5—C6—N4179.70 (12)
C9—N7—C15—C1767.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl7i0.922.423.2560 (13)150
N3—H3A···Cl4i0.922.473.3279 (12)155
N2—H2B···Cl7i0.922.343.1744 (12)151
N5—H5D···Cl80.922.453.3452 (13)166
N4—H4A···Cl8ii0.912.263.1322 (13)161
N5—H5C···Cl4iii0.922.753.5319 (12)143
N6—H6D···Cl1iv0.922.623.4354 (13)148
N4—H4C···Cl6v0.912.353.1729 (13)150
N81—H81B···Cl7vi0.912.243.109 (14)159
O1W—H1WA···Cl7vii0.862.253.0797 (15)163
N2—H2A···Cl1viii0.922.623.4348 (12)148
N6—H6C···Cl80.922.363.2199 (13)156
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x+1, y+1, z; (vii) x, y+3/2, z+1/2; (viii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Rh(C6H19N4)Cl3]Cl·0.5H2O
Mr400.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.8022 (6), 14.1954 (5), 13.6208 (5)
β (°) 91.196 (1)
V3)2668.11 (18)
Z8
Radiation typeMo Kα
µ (mm1)2.06
Crystal size (mm)0.15 × 0.05 × 0.03
Data collection
DiffractometerBruker X8 APEX KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2010)
Tmin, Tmax0.747, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
56384, 13775, 13026
Rint0.036
(sin θ/λ)max1)0.857
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 1.18
No. of reflections13775
No. of parameters328
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.79, 1.89

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Rh2—N62.0389 (12)Rh1—N22.0402 (11)
Rh2—N52.0510 (12)Rh1—N32.0420 (11)
Rh2—N72.0964 (12)Rh1—N12.0820 (11)
Rh2—Cl42.3522 (3)Rh1—Cl12.3626 (3)
Rh2—Cl62.3731 (3)Rh1—Cl32.3652 (3)
Rh2—Cl52.3735 (3)Rh1—Cl22.3718 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl7i0.922.423.2560 (13)150.4
N3—H3A···Cl4i0.922.473.3279 (12)155.4
N2—H2B···Cl7i0.922.343.1744 (12)151.2
N5—H5D···Cl80.922.453.3452 (13)165.6
N4—H4A···Cl8ii0.912.263.1322 (13)161.0
N5—H5C···Cl4iii0.922.753.5319 (12)143.1
N6—H6D···Cl1iv0.922.623.4354 (13)147.8
N4—H4C···Cl6v0.912.353.1729 (13)150.2
N81—H81B···Cl7vi0.912.243.109 (14)158.5
O1W—H1WA···Cl7vii0.862.253.0797 (15)162.6
N2—H2A···Cl1viii0.922.623.4348 (12)147.7
N6—H6C···Cl80.922.363.2199 (13)155.7
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x+1, y+1, z; (vii) x, y+3/2, z+1/2; (viii) x, y, z+1.
 

Acknowledgements

We thank Dr Volker Huch (Universität des Saarlandes) for the data collection.

References

First citationBlackman, A. G. (2005). C. R. Chim. 8, 107–119.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDüpre, Y., Bartscherer, E., Sander, J., Huch, V. & Hegetschweiler, K. (1999). Z. Kristallogr. New Cryst. Struct. 214, 407–409.  Google Scholar
First citationHirshfeld, F. L. (1976). Acta Cryst. A32, 239–244.  CrossRef IUCr Journals Web of Science Google Scholar
First citationHyvärinen, M., Vaara, J., Goldammer, A., Kutzky, B., Hegetschweiler, K., Kaupp, M. & Straka, M. (2009). J. Am. Chem. Soc. 131, 11909–11918.  Web of Science PubMed Google Scholar
First citationNeis, C., Petry, D., Demangeon, A., Morgenstern, B., Kuppert, D., Huppert, J., Stucky, S. & Hegetschweiler, K. (2010). Inorg. Chem. 49, 10092–10107.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSakai, K., Yamada, Y. & Tsubomura, T. (1996). Inorg. Chem. 35, 3163–3172.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds