metal-organic compounds
Dibromidobis(1-ethyl-2,6-dimethylpyridinium-4-olate-κO)zinc(II)
aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Physics, Bharathidasan University, Tiruchirappalli 620 024, India
*Correspondence e-mail: mnpsy2004@yahoo.com
In the bioactive title compound, [ZnBr2(C9H13NO)2], the ZnII atom is coordinated in a distorted tetrahedral arrangement by two Br− anions and the O atoms of two zwitterionic organic ligands. The pyridinium rings are almost planar [maximum deviations = 0.004 (4) and 0.003 (4) Å]. The ethyl groups are approximately perpendicular to the corresponding pyridinium ring planes [N—C—C—C = 88.8 (4)° in each ligand]. The packing of the molecules is controlled by π–π interactions, with centroid–centroid distances of 3.625 (3) and 3.711 (2) Å, forming chains approximately parallel to (102). The crystal studied was non-merohedrally twinned (twin relationship between the domains 1 0 0, 0 1 0, −0.4672 −0.1864 −1 and batch scale factor of 7.39%).
Related literature
For general background to pyridinium compounds and their applications, see: Darensbourg et al. (2003); Dhanuskodi et al. (2006); Glavcheva et al. (2004); Lakshmanaperumal et al. (2002, 2004); Usman et al. (2000, 2001); Mootz & Wusson (1981). For their biological activity, see: Akkurt et al. (2005). For related structures, see: Thenmozhi et al. (2010); Mootz & Wusson (1981); Sundar et al. (2004). For the preparation of the ligand, see: Garratt (1963).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810052190/sj5050sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810052190/sj5050Isup2.hkl
The complex was prepared by the reaction of ZnBr2 with 1-ethyl-2, 6-dimethyl -4(1H) pyridinone trihydrate (EDMP.3H2O) in a 1:2 molar ratio in aqueous medium. The starting material EDMP.3H2O had been prepared by the reported synthetic method (Garratt et al., 1963). The salts were further purified by the repeated recrystallization in triple distilled water. The solubility test of the salts were carried out by mass
in the temperature range 30°-55°C and water is the suitable solvent for the growth of good quality crystals. Single crystals of (EDMP)2ZnBr2 were harvested after a typical growth period of 15 days from the saturated aqueous solution at 30°C by the slow evaporation of the solvent.H atoms were positioned geometrically (C-H = 0.93-0.97Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. The crystal was non-merohedrally twinned with the twin relationship between the domains 1 0 0, 0 1 0, -0.4672 -0.1864 -1 and the batch scale factor is of 7.39%.
Pyridinium derivatives are found to possess nonlinear optical properties (Lakshmanaperumal et al., 2002, 2004; Usman et al., 2000, 2001). When pyridinium cations are combined with metal halide anions, the refractive indices of the crystals could be tuned due to exchangeability of metal and halogen species within the anions (Glavcheva et al., 2004). Halide anions have been reported to improve the physicochemical stability of 1-ethyl-2, 6-dimethyl-4-(1H)- pyridinones (Dhanuskodi et al., 2006). Reactions of zinc halides with pyridines lead to a variety of complexes involving zinc centers and were shown to be catalytically active (Darensbourg et al., 2003). Pyridinium derivatives also exhibit antibacterial and antifungal activities (Akkurt et al., 2005). As a part of our interest in the bioactivity of pyridinium complexes, we report here the
of the title compound, Fig. 1.The bromidozinc complex is similar to the related chlorido complex, bis(1-ethyl-2,6-dimethylpyridinium-4-oxide-κO)dichloridozinc(II) (Thenmozhi et al., 2010). The pyridinium rings are planar and oriented at an angle of 34.4 (2)° to one another. The ZnII atom is coordinated in a distorted tetrahedral arrangement by two halide ions and two zwitterionic pyridinium oxide ligands. The pyridinium rings assume a substantial degree of quinoidal character, which is reflected in the variation of bond lengths (Sundar et al., 2004). The ethyl groups attached at N1 and N11 are approximately perpendicular to pyridinium ring, which can be observed from the torsion angles [C8-C7-N1-C2 = -88.5 (6)°; C18-C17-N11-C12 = 87.6 (5)°]. The methyl substituents at C2, C6, C12 and C16 are nearly coplanar with the corresponding pyridinium rings, which is evident from the torsion angles [C9-C2-N1-C6 = 178.0 (4)°; C10-C6-N1-C2 = -178.4 (4)°; C19-C12-N11-C16 = 179.9 (4)°; C20-C16-N11-C12 = -178.2 (4)°]. Due to protonation of N1 and N11 atoms of the pyridinium rings, the C2-N1-C6 and C12-N11-C16 angles [Table 1] are widened in comparison with the literature value (Mootz & Wusson, 1981). The sum of the bond angles around the protonated nitrogen atoms N1[359.8°] and N11[360.0°] of both the pyridinium rings is in accordance with sp2 character.
The packing of the molecules is reinforced by π-π intermolecular interactions. [Cg1···Cg1(2-x, 1-y, -z) = 3.625 (3)Å; where Cg1 is the centroid of the (N1-C6) ring] and [Cg2···Cg2(1-x, 1-y, 1-z) = 3.711 (2)Å; where Cg2 is the centroid of the (N11-C16) ring]. The π–π interactions generate infinite continuous chains approximately parallel to (102), Fig.2.
For general background to pyridinium compounds and their applications, see: Darensbourg et al. (2003); Dhanuskodi et al. (2006); Glavcheva et al. (2004); Lakshmanaperumal et al. (2002, 2004); Usman et al. (2000, 2001); Mootz et al. (1981). For their biological activity, see: Akkurt et al. (2005). For related structures, see: Thenmozhi et al. (2010); Mootz & Wusson (1981); Sundar et al. (2004). For the preparation of the ligand, see: Garratt (1963).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. A perspective view of the molecule with displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. Crystal packing of the title compound with all H atoms omitted for clarity. |
[ZnBr2(C9H13NO)2] | Z = 2 |
Mr = 527.60 | F(000) = 528 |
Triclinic, P1 | Dx = 1.705 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.462 (1) Å | Cell parameters from 16553 reflections |
b = 8.518 (1) Å | θ = 1.4–25.0° |
c = 14.418 (3) Å | µ = 5.10 mm−1 |
α = 93.131 (6)° | T = 293 K |
β = 97.871 (7)° | Block, colourless |
γ = 90.210 (8)° | 0.12 × 0.11 × 0.11 mm |
V = 1027.9 (2) Å3 |
Bruker Kappa APEXII area-detector diffractometer | 16553 independent reflections |
Radiation source: fine-focus sealed tube | 13614 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.000 |
ω and φ scans | θmax = 25.0°, θmin = 1.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | h = −10→10 |
Tmin = 0.580, Tmax = 0.604 | k = −10→10 |
16553 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.189 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0512P)2 + 13.5867P] where P = (Fo2 + 2Fc2)/3 |
16553 reflections | (Δ/σ)max < 0.001 |
233 parameters | Δρmax = 1.20 e Å−3 |
0 restraints | Δρmin = −0.95 e Å−3 |
[ZnBr2(C9H13NO)2] | γ = 90.210 (8)° |
Mr = 527.60 | V = 1027.9 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.462 (1) Å | Mo Kα radiation |
b = 8.518 (1) Å | µ = 5.10 mm−1 |
c = 14.418 (3) Å | T = 293 K |
α = 93.131 (6)° | 0.12 × 0.11 × 0.11 mm |
β = 97.871 (7)° |
Bruker Kappa APEXII area-detector diffractometer | 16553 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | 13614 reflections with I > 2σ(I) |
Tmin = 0.580, Tmax = 0.604 | Rint = 0.000 |
16553 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 0 restraints |
wR(F2) = 0.189 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0512P)2 + 13.5867P] where P = (Fo2 + 2Fc2)/3 |
16553 reflections | Δρmax = 1.20 e Å−3 |
233 parameters | Δρmin = −0.95 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C2 | 1.2061 (5) | 0.5686 (6) | 0.1164 (3) | 0.0379 (11) | |
C3 | 1.1571 (5) | 0.4291 (5) | 0.1424 (3) | 0.0369 (11) | |
H3 | 1.2321 | 0.3503 | 0.1536 | 0.044* | |
C4 | 0.9992 (5) | 0.3972 (5) | 0.1532 (3) | 0.0350 (10) | |
C5 | 0.8909 (5) | 0.5207 (5) | 0.1318 (3) | 0.0372 (11) | |
H5 | 0.7830 | 0.5052 | 0.1351 | 0.045* | |
C6 | 0.9418 (5) | 0.6608 (6) | 0.1066 (3) | 0.0383 (11) | |
C7 | 1.1564 (7) | 0.8459 (6) | 0.0842 (4) | 0.0565 (15) | |
H7A | 1.0751 | 0.8990 | 0.0437 | 0.068* | |
H7B | 1.2507 | 0.8371 | 0.0530 | 0.068* | |
C8 | 1.1965 (8) | 0.9428 (7) | 0.1766 (5) | 0.080 (2) | |
H8A | 1.1046 | 0.9476 | 0.2089 | 0.120* | |
H8B | 1.2276 | 1.0473 | 0.1642 | 0.120* | |
H8C | 1.2828 | 0.8946 | 0.2149 | 0.120* | |
C9 | 1.3764 (6) | 0.5978 (6) | 0.1057 (4) | 0.0535 (14) | |
H9A | 1.4400 | 0.5118 | 0.1293 | 0.080* | |
H9B | 1.4132 | 0.6935 | 0.1404 | 0.080* | |
H9C | 1.3858 | 0.6069 | 0.0406 | 0.080* | |
C10 | 0.8236 (6) | 0.7901 (7) | 0.0860 (4) | 0.0620 (16) | |
H10A | 0.7186 | 0.7529 | 0.0922 | 0.093* | |
H10B | 0.8256 | 0.8212 | 0.0231 | 0.093* | |
H10C | 0.8513 | 0.8786 | 0.1293 | 0.093* | |
C12 | 0.4359 (5) | 0.6653 (5) | 0.3969 (3) | 0.0337 (10) | |
C13 | 0.5639 (5) | 0.6198 (5) | 0.3569 (3) | 0.0360 (10) | |
H13 | 0.6383 | 0.6954 | 0.3469 | 0.043* | |
C14 | 0.5894 (5) | 0.4615 (5) | 0.3295 (3) | 0.0339 (10) | |
C15 | 0.4688 (5) | 0.3538 (5) | 0.3449 (3) | 0.0331 (10) | |
H15 | 0.4788 | 0.2481 | 0.3273 | 0.040* | |
C16 | 0.3392 (5) | 0.4008 (5) | 0.3848 (3) | 0.0317 (9) | |
C17 | 0.1813 (5) | 0.6083 (6) | 0.4556 (3) | 0.0429 (11) | |
H17A | 0.2108 | 0.6970 | 0.4997 | 0.051* | |
H17B | 0.1447 | 0.5237 | 0.4900 | 0.051* | |
C18 | 0.0477 (6) | 0.6553 (7) | 0.3824 (4) | 0.0587 (15) | |
H18A | 0.0911 | 0.7110 | 0.3353 | 0.088* | |
H18B | −0.0248 | 0.7219 | 0.4114 | 0.088* | |
H18C | −0.0081 | 0.5628 | 0.3538 | 0.088* | |
C19 | 0.4154 (6) | 0.8323 (6) | 0.4274 (4) | 0.0537 (14) | |
H19A | 0.4116 | 0.8405 | 0.4938 | 0.080* | |
H19B | 0.3178 | 0.8707 | 0.3950 | 0.080* | |
H19C | 0.5036 | 0.8937 | 0.4133 | 0.080* | |
C20 | 0.2141 (6) | 0.2841 (6) | 0.3993 (4) | 0.0513 (13) | |
H20A | 0.2376 | 0.1835 | 0.3714 | 0.077* | |
H20B | 0.1118 | 0.3182 | 0.3706 | 0.077* | |
H20C | 0.2124 | 0.2755 | 0.4653 | 0.077* | |
O1 | 0.9580 (4) | 0.2656 (4) | 0.1836 (3) | 0.0475 (9) | |
O2 | 0.7136 (4) | 0.4211 (4) | 0.2935 (2) | 0.0429 (8) | |
Zn1 | 0.75971 (6) | 0.21641 (6) | 0.23222 (4) | 0.03594 (15) | |
Br1 | 0.81438 (7) | 0.03353 (6) | 0.34965 (4) | 0.05785 (18) | |
Br2 | 0.55242 (6) | 0.15373 (7) | 0.10973 (4) | 0.05343 (17) | |
N1 | 1.0984 (4) | 0.6872 (4) | 0.1000 (2) | 0.0371 (9) | |
N11 | 0.3231 (4) | 0.5561 (4) | 0.4125 (2) | 0.0315 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.029 (2) | 0.051 (3) | 0.035 (2) | 0.007 (2) | 0.0074 (19) | 0.008 (2) |
C3 | 0.034 (2) | 0.044 (3) | 0.035 (2) | 0.010 (2) | 0.0085 (19) | 0.011 (2) |
C4 | 0.030 (2) | 0.035 (3) | 0.042 (3) | −0.0005 (19) | 0.0070 (19) | 0.006 (2) |
C5 | 0.026 (2) | 0.047 (3) | 0.038 (3) | 0.005 (2) | 0.0040 (19) | 0.002 (2) |
C6 | 0.034 (2) | 0.042 (3) | 0.039 (3) | 0.014 (2) | 0.003 (2) | 0.008 (2) |
C7 | 0.060 (3) | 0.044 (3) | 0.073 (4) | 0.011 (3) | 0.026 (3) | 0.029 (3) |
C8 | 0.087 (5) | 0.050 (4) | 0.112 (6) | −0.017 (3) | 0.045 (4) | 0.004 (4) |
C9 | 0.039 (3) | 0.055 (3) | 0.072 (4) | 0.007 (2) | 0.023 (3) | 0.021 (3) |
C10 | 0.044 (3) | 0.055 (4) | 0.091 (5) | 0.020 (3) | 0.013 (3) | 0.026 (3) |
C12 | 0.039 (3) | 0.028 (2) | 0.034 (2) | 0.0002 (19) | 0.0043 (19) | 0.0002 (19) |
C13 | 0.036 (2) | 0.029 (2) | 0.044 (3) | −0.0046 (19) | 0.008 (2) | 0.000 (2) |
C14 | 0.033 (2) | 0.033 (2) | 0.035 (2) | −0.0012 (19) | 0.0053 (19) | −0.0052 (19) |
C15 | 0.041 (3) | 0.028 (2) | 0.029 (2) | 0.0029 (19) | 0.0046 (19) | −0.0016 (18) |
C16 | 0.032 (2) | 0.031 (2) | 0.030 (2) | −0.0044 (18) | −0.0020 (18) | −0.0008 (18) |
C17 | 0.038 (3) | 0.048 (3) | 0.044 (3) | 0.004 (2) | 0.013 (2) | −0.004 (2) |
C18 | 0.043 (3) | 0.077 (4) | 0.058 (3) | 0.014 (3) | 0.010 (3) | 0.006 (3) |
C19 | 0.055 (3) | 0.031 (3) | 0.075 (4) | −0.002 (2) | 0.017 (3) | −0.009 (3) |
C20 | 0.049 (3) | 0.038 (3) | 0.071 (4) | −0.013 (2) | 0.023 (3) | −0.001 (3) |
O1 | 0.0378 (18) | 0.040 (2) | 0.070 (2) | 0.0061 (15) | 0.0231 (17) | 0.0082 (17) |
O2 | 0.0421 (19) | 0.0312 (18) | 0.058 (2) | 0.0000 (14) | 0.0203 (16) | −0.0084 (15) |
Zn1 | 0.0333 (3) | 0.0302 (3) | 0.0456 (3) | 0.0014 (2) | 0.0118 (2) | −0.0023 (2) |
Br1 | 0.0676 (4) | 0.0476 (3) | 0.0622 (4) | 0.0091 (3) | 0.0173 (3) | 0.0164 (3) |
Br2 | 0.0441 (3) | 0.0648 (4) | 0.0494 (3) | −0.0022 (2) | 0.0027 (2) | −0.0056 (3) |
N1 | 0.041 (2) | 0.038 (2) | 0.034 (2) | 0.0061 (17) | 0.0099 (17) | 0.0120 (17) |
N11 | 0.0326 (19) | 0.031 (2) | 0.0302 (19) | −0.0020 (15) | 0.0055 (15) | −0.0048 (15) |
C2—C3 | 1.347 (6) | C12—C19 | 1.484 (6) |
C2—N1 | 1.371 (5) | C13—C14 | 1.410 (6) |
C2—C9 | 1.492 (6) | C13—H13 | 0.9300 |
C3—C4 | 1.395 (6) | C14—O2 | 1.275 (5) |
C3—H3 | 0.9300 | C14—C15 | 1.418 (6) |
C4—O1 | 1.289 (5) | C15—C16 | 1.358 (6) |
C4—C5 | 1.417 (6) | C15—H15 | 0.9300 |
C5—C6 | 1.352 (6) | C16—N11 | 1.374 (5) |
C5—H5 | 0.9300 | C16—C20 | 1.493 (6) |
C6—N1 | 1.360 (6) | C17—N11 | 1.483 (5) |
C6—C10 | 1.504 (6) | C17—C18 | 1.508 (7) |
C7—N1 | 1.476 (6) | C17—H17A | 0.9700 |
C7—C8 | 1.525 (9) | C17—H17B | 0.9700 |
C7—H7A | 0.9700 | C18—H18A | 0.9600 |
C7—H7B | 0.9700 | C18—H18B | 0.9600 |
C8—H8A | 0.9600 | C18—H18C | 0.9600 |
C8—H8B | 0.9600 | C19—H19A | 0.9600 |
C8—H8C | 0.9600 | C19—H19B | 0.9600 |
C9—H9A | 0.9600 | C19—H19C | 0.9600 |
C9—H9B | 0.9600 | C20—H20A | 0.9600 |
C9—H9C | 0.9600 | C20—H20B | 0.9600 |
C10—H10A | 0.9600 | C20—H20C | 0.9600 |
C10—H10B | 0.9600 | O1—Zn1 | 1.957 (3) |
C10—H10C | 0.9600 | O2—Zn1 | 1.976 (3) |
C12—C13 | 1.344 (6) | Zn1—Br2 | 2.3501 (8) |
C12—N11 | 1.379 (5) | Zn1—Br1 | 2.3635 (8) |
C3—C2—N1 | 119.8 (4) | O2—C14—C15 | 123.5 (4) |
C3—C2—C9 | 121.2 (4) | C13—C14—C15 | 115.4 (4) |
N1—C2—C9 | 119.0 (4) | C16—C15—C14 | 121.9 (4) |
C2—C3—C4 | 123.0 (4) | C16—C15—H15 | 119.1 |
C2—C3—H3 | 118.5 | C14—C15—H15 | 119.1 |
C4—C3—H3 | 118.5 | C15—C16—N11 | 120.0 (4) |
O1—C4—C3 | 121.4 (4) | C15—C16—C20 | 120.3 (4) |
O1—C4—C5 | 123.3 (4) | N11—C16—C20 | 119.7 (4) |
C3—C4—C5 | 115.3 (4) | N11—C17—C18 | 111.4 (4) |
C6—C5—C4 | 121.1 (4) | N11—C17—H17A | 109.3 |
C6—C5—H5 | 119.4 | C18—C17—H17A | 109.3 |
C4—C5—H5 | 119.4 | N11—C17—H17B | 109.3 |
C5—C6—N1 | 121.1 (4) | C18—C17—H17B | 109.3 |
C5—C6—C10 | 119.5 (4) | H17A—C17—H17B | 108.0 |
N1—C6—C10 | 119.4 (4) | C17—C18—H18A | 109.5 |
N1—C7—C8 | 111.1 (4) | C17—C18—H18B | 109.5 |
N1—C7—H7A | 109.4 | H18A—C18—H18B | 109.5 |
C8—C7—H7A | 109.4 | C17—C18—H18C | 109.5 |
N1—C7—H7B | 109.4 | H18A—C18—H18C | 109.5 |
C8—C7—H7B | 109.4 | H18B—C18—H18C | 109.5 |
H7A—C7—H7B | 108.0 | C12—C19—H19A | 109.5 |
C7—C8—H8A | 109.5 | C12—C19—H19B | 109.5 |
C7—C8—H8B | 109.5 | H19A—C19—H19B | 109.5 |
H8A—C8—H8B | 109.5 | C12—C19—H19C | 109.5 |
C7—C8—H8C | 109.5 | H19A—C19—H19C | 109.5 |
H8A—C8—H8C | 109.5 | H19B—C19—H19C | 109.5 |
H8B—C8—H8C | 109.5 | C16—C20—H20A | 109.5 |
C2—C9—H9A | 109.5 | C16—C20—H20B | 109.5 |
C2—C9—H9B | 109.5 | H20A—C20—H20B | 109.5 |
H9A—C9—H9B | 109.5 | C16—C20—H20C | 109.5 |
C2—C9—H9C | 109.5 | H20A—C20—H20C | 109.5 |
H9A—C9—H9C | 109.5 | H20B—C20—H20C | 109.5 |
H9B—C9—H9C | 109.5 | C4—O1—Zn1 | 127.6 (3) |
C6—C10—H10A | 109.5 | C14—O2—Zn1 | 128.4 (3) |
C6—C10—H10B | 109.5 | O1—Zn1—O2 | 101.12 (13) |
H10A—C10—H10B | 109.5 | O1—Zn1—Br2 | 111.24 (11) |
C6—C10—H10C | 109.5 | O2—Zn1—Br2 | 108.65 (10) |
H10A—C10—H10C | 109.5 | O1—Zn1—Br1 | 108.88 (10) |
H10B—C10—H10C | 109.5 | O2—Zn1—Br1 | 108.20 (10) |
C13—C12—N11 | 120.3 (4) | Br2—Zn1—Br1 | 117.46 (3) |
C13—C12—C19 | 120.9 (4) | C6—N1—C2 | 119.7 (4) |
N11—C12—C19 | 118.8 (4) | C6—N1—C7 | 120.7 (4) |
C12—C13—C14 | 122.4 (4) | C2—N1—C7 | 119.4 (4) |
C12—C13—H13 | 118.8 | C16—N11—C12 | 120.0 (3) |
C14—C13—H13 | 118.8 | C16—N11—C17 | 120.3 (4) |
O2—C14—C13 | 121.1 (4) | C12—N11—C17 | 119.7 (4) |
N1—C2—C3—C4 | 0.5 (7) | C14—O2—Zn1—O1 | 172.7 (4) |
C9—C2—C3—C4 | 179.9 (5) | C14—O2—Zn1—Br2 | 55.6 (4) |
C2—C3—C4—O1 | −175.8 (5) | C14—O2—Zn1—Br1 | −72.9 (4) |
C2—C3—C4—C5 | 2.1 (7) | C5—C6—N1—C2 | 2.1 (7) |
O1—C4—C5—C6 | 175.2 (5) | C10—C6—N1—C2 | −178.3 (5) |
C3—C4—C5—C6 | −2.7 (7) | C5—C6—N1—C7 | −172.2 (5) |
C4—C5—C6—N1 | 0.7 (7) | C10—C6—N1—C7 | 7.4 (7) |
C4—C5—C6—C10 | −178.9 (5) | C3—C2—N1—C6 | −2.6 (7) |
N11—C12—C13—C14 | −0.2 (7) | C9—C2—N1—C6 | 177.9 (4) |
C19—C12—C13—C14 | 178.2 (5) | C3—C2—N1—C7 | 171.7 (5) |
C12—C13—C14—O2 | −178.5 (4) | C9—C2—N1—C7 | −7.7 (7) |
C12—C13—C14—C15 | 1.5 (7) | C8—C7—N1—C6 | 85.7 (6) |
O2—C14—C15—C16 | 179.0 (4) | C8—C7—N1—C2 | −88.6 (5) |
C13—C14—C15—C16 | −1.0 (6) | C15—C16—N11—C12 | 2.2 (6) |
C14—C15—C16—N11 | −0.8 (6) | C20—C16—N11—C12 | −178.2 (4) |
C14—C15—C16—C20 | 179.6 (4) | C15—C16—N11—C17 | 179.7 (4) |
C3—C4—O1—Zn1 | 164.0 (3) | C20—C16—N11—C17 | −0.8 (6) |
C5—C4—O1—Zn1 | −13.8 (7) | C13—C12—N11—C16 | −1.8 (6) |
C13—C14—O2—Zn1 | −169.5 (3) | C19—C12—N11—C16 | 179.9 (4) |
C15—C14—O2—Zn1 | 10.5 (6) | C13—C12—N11—C17 | −179.2 (4) |
C4—O1—Zn1—O2 | −33.4 (4) | C19—C12—N11—C17 | 2.5 (6) |
C4—O1—Zn1—Br2 | 81.8 (4) | C18—C17—N11—C16 | −89.8 (5) |
C4—O1—Zn1—Br1 | −147.2 (4) | C18—C17—N11—C12 | 87.6 (5) |
Experimental details
Crystal data | |
Chemical formula | [ZnBr2(C9H13NO)2] |
Mr | 527.60 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.462 (1), 8.518 (1), 14.418 (3) |
α, β, γ (°) | 93.131 (6), 97.871 (7), 90.210 (8) |
V (Å3) | 1027.9 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 5.10 |
Crystal size (mm) | 0.12 × 0.11 × 0.11 |
Data collection | |
Diffractometer | Bruker Kappa APEXII area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2001) |
Tmin, Tmax | 0.580, 0.604 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16553, 16553, 13614 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.189, 1.06 |
No. of reflections | 16553 |
No. of parameters | 233 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0512P)2 + 13.5867P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.20, −0.95 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Acknowledgements
MT and AP thank the UGC for financial support in the form of a Research Fellowship in Science for Meritorious Students.
References
Akkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o776–o778. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Darensbourg, D. J., Lewis, S. J., Rodgers, J. L. & Yarbrough, J. C. (2003). Inorg. Chem. 42, 581–589. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dhanuskodi, S., Manivannan, S. & Kirschbaum, K. (2006). Spectrochim. Acta Part A, 64, 504–511. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Garratt, S. (1963). J. Org. Chem. 28, 1886–1888. CrossRef CAS Web of Science Google Scholar
Glavcheva, Z., Umezawa, H., Okada, S. & Nakanishi, H. (2004). Mater. Lett. 58, 2466–2471. CrossRef CAS Google Scholar
Lakshmanaperumal, C. K., Arulchakkaravarthi, A., Balamurugan, N., Santhanaraghavan, P. & Ramasamy, P. (2004). J. Cryst. Growth. 265, 260– 265. Web of Science CrossRef CAS Google Scholar
Lakshmanaperumal, C. K., Arulchakkaravarthi, A., Rajesh, N. P., Santhana Raghavan, P., Huang, Y. C., Ichimura, M. & Ramasamy, P. (2002). J. Cryst. Growth. 240, 212–217. CAS Google Scholar
Mootz, D. & Wusson, H.-G. (1981). J. Chem. Phys. 75, 1517-1522. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sundar, T. V., Parthasarathi, V., Sarkunam, K., Nallu, M., Walfort, B. & Lang, H. (2004). Acta Cryst. C60, o464–o466. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Thenmozhi, M., Philominal, A., Dhanuskodi, S. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, m1448. Web of Science CSD CrossRef IUCr Journals Google Scholar
Usman, A., Kosuge, H., Okada, S., Oikawa, H. & Nakanishi, H. (2001). Jpn J. Appl. Phys. 40, 4213–4216. Google Scholar
Usman, A., Okada, S., Oikawa, H. & Nakanishi, H. (2000). Chem. Mater. 12, 1162–1170. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridinium derivatives are found to possess nonlinear optical properties (Lakshmanaperumal et al., 2002, 2004; Usman et al., 2000, 2001). When pyridinium cations are combined with metal halide anions, the refractive indices of the crystals could be tuned due to exchangeability of metal and halogen species within the anions (Glavcheva et al., 2004). Halide anions have been reported to improve the physicochemical stability of 1-ethyl-2, 6-dimethyl-4-(1H)- pyridinones (Dhanuskodi et al., 2006). Reactions of zinc halides with pyridines lead to a variety of complexes involving zinc centers and were shown to be catalytically active (Darensbourg et al., 2003). Pyridinium derivatives also exhibit antibacterial and antifungal activities (Akkurt et al., 2005). As a part of our interest in the bioactivity of pyridinium complexes, we report here the crystal structure of the title compound, Fig. 1.
The bromidozinc complex is similar to the related chlorido complex, bis(1-ethyl-2,6-dimethylpyridinium-4-oxide-κO)dichloridozinc(II) (Thenmozhi et al., 2010). The pyridinium rings are planar and oriented at an angle of 34.4 (2)° to one another. The ZnII atom is coordinated in a distorted tetrahedral arrangement by two halide ions and two zwitterionic pyridinium oxide ligands. The pyridinium rings assume a substantial degree of quinoidal character, which is reflected in the variation of bond lengths (Sundar et al., 2004). The ethyl groups attached at N1 and N11 are approximately perpendicular to pyridinium ring, which can be observed from the torsion angles [C8-C7-N1-C2 = -88.5 (6)°; C18-C17-N11-C12 = 87.6 (5)°]. The methyl substituents at C2, C6, C12 and C16 are nearly coplanar with the corresponding pyridinium rings, which is evident from the torsion angles [C9-C2-N1-C6 = 178.0 (4)°; C10-C6-N1-C2 = -178.4 (4)°; C19-C12-N11-C16 = 179.9 (4)°; C20-C16-N11-C12 = -178.2 (4)°]. Due to protonation of N1 and N11 atoms of the pyridinium rings, the C2-N1-C6 and C12-N11-C16 angles [Table 1] are widened in comparison with the literature value (Mootz & Wusson, 1981). The sum of the bond angles around the protonated nitrogen atoms N1[359.8°] and N11[360.0°] of both the pyridinium rings is in accordance with sp2 character.
The packing of the molecules is reinforced by π-π intermolecular interactions. [Cg1···Cg1(2-x, 1-y, -z) = 3.625 (3)Å; where Cg1 is the centroid of the (N1-C6) ring] and [Cg2···Cg2(1-x, 1-y, 1-z) = 3.711 (2)Å; where Cg2 is the centroid of the (N11-C16) ring]. The π–π interactions generate infinite continuous chains approximately parallel to (102), Fig.2.