metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromidobis(1-ethyl-2,6-di­methyl­pyridinium-4-olate-κO)zinc(II)

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Physics, Bharathidasan University, Tiruchirappalli 620 024, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 22 October 2010; accepted 13 December 2010; online 18 December 2010)

In the bioactive title compound, [ZnBr2(C9H13NO)2], the ZnII atom is coordinated in a distorted tetra­hedral arrangement by two Br anions and the O atoms of two zwitterionic organic ligands. The pyridinium rings are almost planar [maximum deviations = 0.004 (4) and 0.003 (4) Å]. The ethyl groups are approximately perpendicular to the corresponding pyridinium ring planes [N—C—C—C = 88.8 (4)° in each ligand]. The packing of the mol­ecules is controlled by ππ inter­actions, with centroid–centroid distances of 3.625 (3) and 3.711 (2) Å, forming chains approximately parallel to (102). The crystal studied was non-merohedrally twinned (twin relationship between the domains 1 0 0, 0 1 0, −0.4672 −0.1864 −1 and batch scale factor of 7.39%).

Related literature

For general background to pyridinium compounds and their applications, see: Darensbourg et al. (2003[Darensbourg, D. J., Lewis, S. J., Rodgers, J. L. & Yarbrough, J. C. (2003). Inorg. Chem. 42, 581-589.]); Dhanuskodi et al. (2006[Dhanuskodi, S., Manivannan, S. & Kirschbaum, K. (2006). Spectrochim. Acta Part A, 64, 504-511.]); Glavcheva et al. (2004[Glavcheva, Z., Umezawa, H., Okada, S. & Nakanishi, H. (2004). Mater. Lett. 58, 2466-2471.]); Lakshmanaperumal et al. (2002[Lakshmanaperumal, C. K., Arulchakkaravarthi, A., Rajesh, N. P., Santhana Raghavan, P., Huang, Y. C., Ichimura, M. & Ramasamy, P. (2002). J. Cryst. Growth. 240, 212-217.], 2004[Lakshmanaperumal, C. K., Arulchakkaravarthi, A., Balamurugan, N., Santhanaraghavan, P. & Ramasamy, P. (2004). J. Cryst. Growth. 265, 260- 265.]); Usman et al. (2000[Usman, A., Okada, S., Oikawa, H. & Nakanishi, H. (2000). Chem. Mater. 12, 1162-1170.], 2001[Usman, A., Kosuge, H., Okada, S., Oikawa, H. & Nakanishi, H. (2001). Jpn J. Appl. Phys. 40, 4213-4216.]); Mootz & Wusson (1981[Mootz, D. & Wusson, H.-G. (1981). J. Chem. Phys. 75, 1517-1522.]). For their biological activity, see: Akkurt et al. (2005[Akkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o776-o778.]). For related structures, see: Thenmozhi et al. (2010[Thenmozhi, M., Philominal, A., Dhanuskodi, S. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, m1448.]); Mootz & Wusson (1981[Mootz, D. & Wusson, H.-G. (1981). J. Chem. Phys. 75, 1517-1522.]); Sundar et al. (2004[Sundar, T. V., Parthasarathi, V., Sarkunam, K., Nallu, M., Walfort, B. & Lang, H. (2004). Acta Cryst. C60, o464-o466.]). For the preparation of the ligand, see: Garratt (1963[Garratt, S. (1963). J. Org. Chem. 28, 1886-1888.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C9H13NO)2]

  • Mr = 527.60

  • Triclinic, [P \overline 1]

  • a = 8.462 (1) Å

  • b = 8.518 (1) Å

  • c = 14.418 (3) Å

  • α = 93.131 (6)°

  • β = 97.871 (7)°

  • γ = 90.210 (8)°

  • V = 1027.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.10 mm−1

  • T = 293 K

  • 0.12 × 0.11 × 0.11 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.580, Tmax = 0.604

  • 16553 measured reflections

  • 16553 independent reflections

  • 13614 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.189

  • S = 1.06

  • 16553 reflections

  • 233 parameters

  • H-atom parameters constrained

  • Δρmax = 1.20 e Å−3

  • Δρmin = −0.95 e Å−3

Table 1
Selected bond lengths (Å)

O1—Zn1 1.957 (3)
O2—Zn1 1.976 (3)
Zn1—Br2 2.3501 (8)
Zn1—Br1 2.3635 (8)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridinium derivatives are found to possess nonlinear optical properties (Lakshmanaperumal et al., 2002, 2004; Usman et al., 2000, 2001). When pyridinium cations are combined with metal halide anions, the refractive indices of the crystals could be tuned due to exchangeability of metal and halogen species within the anions (Glavcheva et al., 2004). Halide anions have been reported to improve the physicochemical stability of 1-ethyl-2, 6-dimethyl-4-(1H)- pyridinones (Dhanuskodi et al., 2006). Reactions of zinc halides with pyridines lead to a variety of complexes involving zinc centers and were shown to be catalytically active (Darensbourg et al., 2003). Pyridinium derivatives also exhibit antibacterial and antifungal activities (Akkurt et al., 2005). As a part of our interest in the bioactivity of pyridinium complexes, we report here the crystal structure of the title compound, Fig. 1.

The bromidozinc complex is similar to the related chlorido complex, bis(1-ethyl-2,6-dimethylpyridinium-4-oxide-κO)dichloridozinc(II) (Thenmozhi et al., 2010). The pyridinium rings are planar and oriented at an angle of 34.4 (2)° to one another. The ZnII atom is coordinated in a distorted tetrahedral arrangement by two halide ions and two zwitterionic pyridinium oxide ligands. The pyridinium rings assume a substantial degree of quinoidal character, which is reflected in the variation of bond lengths (Sundar et al., 2004). The ethyl groups attached at N1 and N11 are approximately perpendicular to pyridinium ring, which can be observed from the torsion angles [C8-C7-N1-C2 = -88.5 (6)°; C18-C17-N11-C12 = 87.6 (5)°]. The methyl substituents at C2, C6, C12 and C16 are nearly coplanar with the corresponding pyridinium rings, which is evident from the torsion angles [C9-C2-N1-C6 = 178.0 (4)°; C10-C6-N1-C2 = -178.4 (4)°; C19-C12-N11-C16 = 179.9 (4)°; C20-C16-N11-C12 = -178.2 (4)°]. Due to protonation of N1 and N11 atoms of the pyridinium rings, the C2-N1-C6 and C12-N11-C16 angles [Table 1] are widened in comparison with the literature value (Mootz & Wusson, 1981). The sum of the bond angles around the protonated nitrogen atoms N1[359.8°] and N11[360.0°] of both the pyridinium rings is in accordance with sp2 character.

The packing of the molecules is reinforced by π-π intermolecular interactions. [Cg1···Cg1(2-x, 1-y, -z) = 3.625 (3)Å; where Cg1 is the centroid of the (N1-C6) ring] and [Cg2···Cg2(1-x, 1-y, 1-z) = 3.711 (2)Å; where Cg2 is the centroid of the (N11-C16) ring]. The ππ interactions generate infinite continuous chains approximately parallel to (102), Fig.2.

Related literature top

For general background to pyridinium compounds and their applications, see: Darensbourg et al. (2003); Dhanuskodi et al. (2006); Glavcheva et al. (2004); Lakshmanaperumal et al. (2002, 2004); Usman et al. (2000, 2001); Mootz et al. (1981). For their biological activity, see: Akkurt et al. (2005). For related structures, see: Thenmozhi et al. (2010); Mootz & Wusson (1981); Sundar et al. (2004). For the preparation of the ligand, see: Garratt (1963).

Experimental top

The complex was prepared by the reaction of ZnBr2 with 1-ethyl-2, 6-dimethyl -4(1H) pyridinone trihydrate (EDMP.3H2O) in a 1:2 molar ratio in aqueous medium. The starting material EDMP.3H2O had been prepared by the reported synthetic method (Garratt et al., 1963). The salts were further purified by the repeated recrystallization in triple distilled water. The solubility test of the salts were carried out by mass gravimetric method in the temperature range 30°-55°C and water is the suitable solvent for the growth of good quality crystals. Single crystals of (EDMP)2ZnBr2 were harvested after a typical growth period of 15 days from the saturated aqueous solution at 30°C by the slow evaporation of the solvent.

Refinement top

H atoms were positioned geometrically (C-H = 0.93-0.97Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. The crystal was non-merohedrally twinned with the twin relationship between the domains 1 0 0, 0 1 0, -0.4672 -0.1864 -1 and the batch scale factor is of 7.39%.

Structure description top

Pyridinium derivatives are found to possess nonlinear optical properties (Lakshmanaperumal et al., 2002, 2004; Usman et al., 2000, 2001). When pyridinium cations are combined with metal halide anions, the refractive indices of the crystals could be tuned due to exchangeability of metal and halogen species within the anions (Glavcheva et al., 2004). Halide anions have been reported to improve the physicochemical stability of 1-ethyl-2, 6-dimethyl-4-(1H)- pyridinones (Dhanuskodi et al., 2006). Reactions of zinc halides with pyridines lead to a variety of complexes involving zinc centers and were shown to be catalytically active (Darensbourg et al., 2003). Pyridinium derivatives also exhibit antibacterial and antifungal activities (Akkurt et al., 2005). As a part of our interest in the bioactivity of pyridinium complexes, we report here the crystal structure of the title compound, Fig. 1.

The bromidozinc complex is similar to the related chlorido complex, bis(1-ethyl-2,6-dimethylpyridinium-4-oxide-κO)dichloridozinc(II) (Thenmozhi et al., 2010). The pyridinium rings are planar and oriented at an angle of 34.4 (2)° to one another. The ZnII atom is coordinated in a distorted tetrahedral arrangement by two halide ions and two zwitterionic pyridinium oxide ligands. The pyridinium rings assume a substantial degree of quinoidal character, which is reflected in the variation of bond lengths (Sundar et al., 2004). The ethyl groups attached at N1 and N11 are approximately perpendicular to pyridinium ring, which can be observed from the torsion angles [C8-C7-N1-C2 = -88.5 (6)°; C18-C17-N11-C12 = 87.6 (5)°]. The methyl substituents at C2, C6, C12 and C16 are nearly coplanar with the corresponding pyridinium rings, which is evident from the torsion angles [C9-C2-N1-C6 = 178.0 (4)°; C10-C6-N1-C2 = -178.4 (4)°; C19-C12-N11-C16 = 179.9 (4)°; C20-C16-N11-C12 = -178.2 (4)°]. Due to protonation of N1 and N11 atoms of the pyridinium rings, the C2-N1-C6 and C12-N11-C16 angles [Table 1] are widened in comparison with the literature value (Mootz & Wusson, 1981). The sum of the bond angles around the protonated nitrogen atoms N1[359.8°] and N11[360.0°] of both the pyridinium rings is in accordance with sp2 character.

The packing of the molecules is reinforced by π-π intermolecular interactions. [Cg1···Cg1(2-x, 1-y, -z) = 3.625 (3)Å; where Cg1 is the centroid of the (N1-C6) ring] and [Cg2···Cg2(1-x, 1-y, 1-z) = 3.711 (2)Å; where Cg2 is the centroid of the (N11-C16) ring]. The ππ interactions generate infinite continuous chains approximately parallel to (102), Fig.2.

For general background to pyridinium compounds and their applications, see: Darensbourg et al. (2003); Dhanuskodi et al. (2006); Glavcheva et al. (2004); Lakshmanaperumal et al. (2002, 2004); Usman et al. (2000, 2001); Mootz et al. (1981). For their biological activity, see: Akkurt et al. (2005). For related structures, see: Thenmozhi et al. (2010); Mootz & Wusson (1981); Sundar et al. (2004). For the preparation of the ligand, see: Garratt (1963).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A perspective view of the molecule with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound with all H atoms omitted for clarity.
Dibromidobis(1-ethyl-2,6-dimethylpyridinium-4-olate-κO)zinc(II) top
Crystal data top
[ZnBr2(C9H13NO)2]Z = 2
Mr = 527.60F(000) = 528
Triclinic, P1Dx = 1.705 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.462 (1) ÅCell parameters from 16553 reflections
b = 8.518 (1) Åθ = 1.4–25.0°
c = 14.418 (3) ŵ = 5.10 mm1
α = 93.131 (6)°T = 293 K
β = 97.871 (7)°Block, colourless
γ = 90.210 (8)°0.12 × 0.11 × 0.11 mm
V = 1027.9 (2) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
16553 independent reflections
Radiation source: fine-focus sealed tube13614 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω and φ scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1010
Tmin = 0.580, Tmax = 0.604k = 1010
16553 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0512P)2 + 13.5867P]
where P = (Fo2 + 2Fc2)/3
16553 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = 0.95 e Å3
Crystal data top
[ZnBr2(C9H13NO)2]γ = 90.210 (8)°
Mr = 527.60V = 1027.9 (2) Å3
Triclinic, P1Z = 2
a = 8.462 (1) ÅMo Kα radiation
b = 8.518 (1) ŵ = 5.10 mm1
c = 14.418 (3) ÅT = 293 K
α = 93.131 (6)°0.12 × 0.11 × 0.11 mm
β = 97.871 (7)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
16553 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
13614 reflections with I > 2σ(I)
Tmin = 0.580, Tmax = 0.604Rint = 0.000
16553 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0512P)2 + 13.5867P]
where P = (Fo2 + 2Fc2)/3
16553 reflectionsΔρmax = 1.20 e Å3
233 parametersΔρmin = 0.95 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C21.2061 (5)0.5686 (6)0.1164 (3)0.0379 (11)
C31.1571 (5)0.4291 (5)0.1424 (3)0.0369 (11)
H31.23210.35030.15360.044*
C40.9992 (5)0.3972 (5)0.1532 (3)0.0350 (10)
C50.8909 (5)0.5207 (5)0.1318 (3)0.0372 (11)
H50.78300.50520.13510.045*
C60.9418 (5)0.6608 (6)0.1066 (3)0.0383 (11)
C71.1564 (7)0.8459 (6)0.0842 (4)0.0565 (15)
H7A1.07510.89900.04370.068*
H7B1.25070.83710.05300.068*
C81.1965 (8)0.9428 (7)0.1766 (5)0.080 (2)
H8A1.10460.94760.20890.120*
H8B1.22761.04730.16420.120*
H8C1.28280.89460.21490.120*
C91.3764 (6)0.5978 (6)0.1057 (4)0.0535 (14)
H9A1.44000.51180.12930.080*
H9B1.41320.69350.14040.080*
H9C1.38580.60690.04060.080*
C100.8236 (6)0.7901 (7)0.0860 (4)0.0620 (16)
H10A0.71860.75290.09220.093*
H10B0.82560.82120.02310.093*
H10C0.85130.87860.12930.093*
C120.4359 (5)0.6653 (5)0.3969 (3)0.0337 (10)
C130.5639 (5)0.6198 (5)0.3569 (3)0.0360 (10)
H130.63830.69540.34690.043*
C140.5894 (5)0.4615 (5)0.3295 (3)0.0339 (10)
C150.4688 (5)0.3538 (5)0.3449 (3)0.0331 (10)
H150.47880.24810.32730.040*
C160.3392 (5)0.4008 (5)0.3848 (3)0.0317 (9)
C170.1813 (5)0.6083 (6)0.4556 (3)0.0429 (11)
H17A0.21080.69700.49970.051*
H17B0.14470.52370.49000.051*
C180.0477 (6)0.6553 (7)0.3824 (4)0.0587 (15)
H18A0.09110.71100.33530.088*
H18B0.02480.72190.41140.088*
H18C0.00810.56280.35380.088*
C190.4154 (6)0.8323 (6)0.4274 (4)0.0537 (14)
H19A0.41160.84050.49380.080*
H19B0.31780.87070.39500.080*
H19C0.50360.89370.41330.080*
C200.2141 (6)0.2841 (6)0.3993 (4)0.0513 (13)
H20A0.23760.18350.37140.077*
H20B0.11180.31820.37060.077*
H20C0.21240.27550.46530.077*
O10.9580 (4)0.2656 (4)0.1836 (3)0.0475 (9)
O20.7136 (4)0.4211 (4)0.2935 (2)0.0429 (8)
Zn10.75971 (6)0.21641 (6)0.23222 (4)0.03594 (15)
Br10.81438 (7)0.03353 (6)0.34965 (4)0.05785 (18)
Br20.55242 (6)0.15373 (7)0.10973 (4)0.05343 (17)
N11.0984 (4)0.6872 (4)0.1000 (2)0.0371 (9)
N110.3231 (4)0.5561 (4)0.4125 (2)0.0315 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.029 (2)0.051 (3)0.035 (2)0.007 (2)0.0074 (19)0.008 (2)
C30.034 (2)0.044 (3)0.035 (2)0.010 (2)0.0085 (19)0.011 (2)
C40.030 (2)0.035 (3)0.042 (3)0.0005 (19)0.0070 (19)0.006 (2)
C50.026 (2)0.047 (3)0.038 (3)0.005 (2)0.0040 (19)0.002 (2)
C60.034 (2)0.042 (3)0.039 (3)0.014 (2)0.003 (2)0.008 (2)
C70.060 (3)0.044 (3)0.073 (4)0.011 (3)0.026 (3)0.029 (3)
C80.087 (5)0.050 (4)0.112 (6)0.017 (3)0.045 (4)0.004 (4)
C90.039 (3)0.055 (3)0.072 (4)0.007 (2)0.023 (3)0.021 (3)
C100.044 (3)0.055 (4)0.091 (5)0.020 (3)0.013 (3)0.026 (3)
C120.039 (3)0.028 (2)0.034 (2)0.0002 (19)0.0043 (19)0.0002 (19)
C130.036 (2)0.029 (2)0.044 (3)0.0046 (19)0.008 (2)0.000 (2)
C140.033 (2)0.033 (2)0.035 (2)0.0012 (19)0.0053 (19)0.0052 (19)
C150.041 (3)0.028 (2)0.029 (2)0.0029 (19)0.0046 (19)0.0016 (18)
C160.032 (2)0.031 (2)0.030 (2)0.0044 (18)0.0020 (18)0.0008 (18)
C170.038 (3)0.048 (3)0.044 (3)0.004 (2)0.013 (2)0.004 (2)
C180.043 (3)0.077 (4)0.058 (3)0.014 (3)0.010 (3)0.006 (3)
C190.055 (3)0.031 (3)0.075 (4)0.002 (2)0.017 (3)0.009 (3)
C200.049 (3)0.038 (3)0.071 (4)0.013 (2)0.023 (3)0.001 (3)
O10.0378 (18)0.040 (2)0.070 (2)0.0061 (15)0.0231 (17)0.0082 (17)
O20.0421 (19)0.0312 (18)0.058 (2)0.0000 (14)0.0203 (16)0.0084 (15)
Zn10.0333 (3)0.0302 (3)0.0456 (3)0.0014 (2)0.0118 (2)0.0023 (2)
Br10.0676 (4)0.0476 (3)0.0622 (4)0.0091 (3)0.0173 (3)0.0164 (3)
Br20.0441 (3)0.0648 (4)0.0494 (3)0.0022 (2)0.0027 (2)0.0056 (3)
N10.041 (2)0.038 (2)0.034 (2)0.0061 (17)0.0099 (17)0.0120 (17)
N110.0326 (19)0.031 (2)0.0302 (19)0.0020 (15)0.0055 (15)0.0048 (15)
Geometric parameters (Å, º) top
C2—C31.347 (6)C12—C191.484 (6)
C2—N11.371 (5)C13—C141.410 (6)
C2—C91.492 (6)C13—H130.9300
C3—C41.395 (6)C14—O21.275 (5)
C3—H30.9300C14—C151.418 (6)
C4—O11.289 (5)C15—C161.358 (6)
C4—C51.417 (6)C15—H150.9300
C5—C61.352 (6)C16—N111.374 (5)
C5—H50.9300C16—C201.493 (6)
C6—N11.360 (6)C17—N111.483 (5)
C6—C101.504 (6)C17—C181.508 (7)
C7—N11.476 (6)C17—H17A0.9700
C7—C81.525 (9)C17—H17B0.9700
C7—H7A0.9700C18—H18A0.9600
C7—H7B0.9700C18—H18B0.9600
C8—H8A0.9600C18—H18C0.9600
C8—H8B0.9600C19—H19A0.9600
C8—H8C0.9600C19—H19B0.9600
C9—H9A0.9600C19—H19C0.9600
C9—H9B0.9600C20—H20A0.9600
C9—H9C0.9600C20—H20B0.9600
C10—H10A0.9600C20—H20C0.9600
C10—H10B0.9600O1—Zn11.957 (3)
C10—H10C0.9600O2—Zn11.976 (3)
C12—C131.344 (6)Zn1—Br22.3501 (8)
C12—N111.379 (5)Zn1—Br12.3635 (8)
C3—C2—N1119.8 (4)O2—C14—C15123.5 (4)
C3—C2—C9121.2 (4)C13—C14—C15115.4 (4)
N1—C2—C9119.0 (4)C16—C15—C14121.9 (4)
C2—C3—C4123.0 (4)C16—C15—H15119.1
C2—C3—H3118.5C14—C15—H15119.1
C4—C3—H3118.5C15—C16—N11120.0 (4)
O1—C4—C3121.4 (4)C15—C16—C20120.3 (4)
O1—C4—C5123.3 (4)N11—C16—C20119.7 (4)
C3—C4—C5115.3 (4)N11—C17—C18111.4 (4)
C6—C5—C4121.1 (4)N11—C17—H17A109.3
C6—C5—H5119.4C18—C17—H17A109.3
C4—C5—H5119.4N11—C17—H17B109.3
C5—C6—N1121.1 (4)C18—C17—H17B109.3
C5—C6—C10119.5 (4)H17A—C17—H17B108.0
N1—C6—C10119.4 (4)C17—C18—H18A109.5
N1—C7—C8111.1 (4)C17—C18—H18B109.5
N1—C7—H7A109.4H18A—C18—H18B109.5
C8—C7—H7A109.4C17—C18—H18C109.5
N1—C7—H7B109.4H18A—C18—H18C109.5
C8—C7—H7B109.4H18B—C18—H18C109.5
H7A—C7—H7B108.0C12—C19—H19A109.5
C7—C8—H8A109.5C12—C19—H19B109.5
C7—C8—H8B109.5H19A—C19—H19B109.5
H8A—C8—H8B109.5C12—C19—H19C109.5
C7—C8—H8C109.5H19A—C19—H19C109.5
H8A—C8—H8C109.5H19B—C19—H19C109.5
H8B—C8—H8C109.5C16—C20—H20A109.5
C2—C9—H9A109.5C16—C20—H20B109.5
C2—C9—H9B109.5H20A—C20—H20B109.5
H9A—C9—H9B109.5C16—C20—H20C109.5
C2—C9—H9C109.5H20A—C20—H20C109.5
H9A—C9—H9C109.5H20B—C20—H20C109.5
H9B—C9—H9C109.5C4—O1—Zn1127.6 (3)
C6—C10—H10A109.5C14—O2—Zn1128.4 (3)
C6—C10—H10B109.5O1—Zn1—O2101.12 (13)
H10A—C10—H10B109.5O1—Zn1—Br2111.24 (11)
C6—C10—H10C109.5O2—Zn1—Br2108.65 (10)
H10A—C10—H10C109.5O1—Zn1—Br1108.88 (10)
H10B—C10—H10C109.5O2—Zn1—Br1108.20 (10)
C13—C12—N11120.3 (4)Br2—Zn1—Br1117.46 (3)
C13—C12—C19120.9 (4)C6—N1—C2119.7 (4)
N11—C12—C19118.8 (4)C6—N1—C7120.7 (4)
C12—C13—C14122.4 (4)C2—N1—C7119.4 (4)
C12—C13—H13118.8C16—N11—C12120.0 (3)
C14—C13—H13118.8C16—N11—C17120.3 (4)
O2—C14—C13121.1 (4)C12—N11—C17119.7 (4)
N1—C2—C3—C40.5 (7)C14—O2—Zn1—O1172.7 (4)
C9—C2—C3—C4179.9 (5)C14—O2—Zn1—Br255.6 (4)
C2—C3—C4—O1175.8 (5)C14—O2—Zn1—Br172.9 (4)
C2—C3—C4—C52.1 (7)C5—C6—N1—C22.1 (7)
O1—C4—C5—C6175.2 (5)C10—C6—N1—C2178.3 (5)
C3—C4—C5—C62.7 (7)C5—C6—N1—C7172.2 (5)
C4—C5—C6—N10.7 (7)C10—C6—N1—C77.4 (7)
C4—C5—C6—C10178.9 (5)C3—C2—N1—C62.6 (7)
N11—C12—C13—C140.2 (7)C9—C2—N1—C6177.9 (4)
C19—C12—C13—C14178.2 (5)C3—C2—N1—C7171.7 (5)
C12—C13—C14—O2178.5 (4)C9—C2—N1—C77.7 (7)
C12—C13—C14—C151.5 (7)C8—C7—N1—C685.7 (6)
O2—C14—C15—C16179.0 (4)C8—C7—N1—C288.6 (5)
C13—C14—C15—C161.0 (6)C15—C16—N11—C122.2 (6)
C14—C15—C16—N110.8 (6)C20—C16—N11—C12178.2 (4)
C14—C15—C16—C20179.6 (4)C15—C16—N11—C17179.7 (4)
C3—C4—O1—Zn1164.0 (3)C20—C16—N11—C170.8 (6)
C5—C4—O1—Zn113.8 (7)C13—C12—N11—C161.8 (6)
C13—C14—O2—Zn1169.5 (3)C19—C12—N11—C16179.9 (4)
C15—C14—O2—Zn110.5 (6)C13—C12—N11—C17179.2 (4)
C4—O1—Zn1—O233.4 (4)C19—C12—N11—C172.5 (6)
C4—O1—Zn1—Br281.8 (4)C18—C17—N11—C1689.8 (5)
C4—O1—Zn1—Br1147.2 (4)C18—C17—N11—C1287.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O20.932.573.093 (5)116

Experimental details

Crystal data
Chemical formula[ZnBr2(C9H13NO)2]
Mr527.60
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.462 (1), 8.518 (1), 14.418 (3)
α, β, γ (°)93.131 (6), 97.871 (7), 90.210 (8)
V3)1027.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)5.10
Crystal size (mm)0.12 × 0.11 × 0.11
Data collection
DiffractometerBruker Kappa APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.580, 0.604
No. of measured, independent and
observed [I > 2σ(I)] reflections
16553, 16553, 13614
Rint0.000
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.189, 1.06
No. of reflections16553
No. of parameters233
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0512P)2 + 13.5867P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.20, 0.95

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
O1—Zn11.957 (3)Zn1—Br22.3501 (8)
O2—Zn11.976 (3)Zn1—Br12.3635 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O20.932.573.093 (5)115.9
 

Acknowledgements

MT and AP thank the UGC for financial support in the form of a Research Fellowship in Science for Meritorious Students.

References

First citationAkkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o776–o778.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDarensbourg, D. J., Lewis, S. J., Rodgers, J. L. & Yarbrough, J. C. (2003). Inorg. Chem. 42, 581–589.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDhanuskodi, S., Manivannan, S. & Kirschbaum, K. (2006). Spectrochim. Acta Part A, 64, 504–511.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGarratt, S. (1963). J. Org. Chem. 28, 1886–1888.  CrossRef CAS Web of Science Google Scholar
First citationGlavcheva, Z., Umezawa, H., Okada, S. & Nakanishi, H. (2004). Mater. Lett. 58, 2466–2471.  CrossRef CAS Google Scholar
First citationLakshmanaperumal, C. K., Arulchakkaravarthi, A., Balamurugan, N., Santhanaraghavan, P. & Ramasamy, P. (2004). J. Cryst. Growth. 265, 260– 265.  Web of Science CrossRef CAS Google Scholar
First citationLakshmanaperumal, C. K., Arulchakkaravarthi, A., Rajesh, N. P., Santhana Raghavan, P., Huang, Y. C., Ichimura, M. & Ramasamy, P. (2002). J. Cryst. Growth. 240, 212–217.  CAS Google Scholar
First citationMootz, D. & Wusson, H.-G. (1981). J. Chem. Phys. 75, 1517-1522.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundar, T. V., Parthasarathi, V., Sarkunam, K., Nallu, M., Walfort, B. & Lang, H. (2004). Acta Cryst. C60, o464–o466.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationThenmozhi, M., Philominal, A., Dhanuskodi, S. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, m1448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUsman, A., Kosuge, H., Okada, S., Oikawa, H. & Nakanishi, H. (2001). Jpn J. Appl. Phys. 40, 4213–4216.  Google Scholar
First citationUsman, A., Okada, S., Oikawa, H. & Nakanishi, H. (2000). Chem. Mater. 12, 1162–1170.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds