organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[4-(Acetamido)­benzene­sulfonamido]­benzoic acid

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 9 November 2010; accepted 20 November 2010; online 4 December 2010)

In the title compound, C15H14N2O5S, the dihedral angle between the aromatic rings is 63.20 (11) Å. The crystal structure displays classical inter­molecular O—H⋯O hydrogen bonding typical for carb­oxy­lic acids, forming centrosymmetric dimers. These dimers are further connected by N—H⋯O and C—H⋯O hydrogen bonds to form an extended network.

Related literature

For the synthesis of related compounds, see: Khan et al. (2009[Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.]); Arshad et al. (2008[Arshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283-o2284.]). For the biological activity of sulfonamides, see: Esteve & Bidal (2002[Esteve, C. & Bidal, B. (2002). Tetrahedron Lett. 43, 1019-1021.]); Hanson et al. (1999[Hanson, P. R., Probst, D. A., Robinson, R. E. & Yau, M. (1999). Tetrahedron Lett. 40, 4761-4763.]); Lee & Lee (2002[Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167-169.]); Moree et al. (1991[Moree, W. J., Van der Marel, G. A. & Liskamp, R. M. (1991). Tetrahedron Lett. 32, 409-411.]); Ozbek et al. (2007[Ozbek, N., Katirciog lu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105-5109.]); Parari et al. (2008[Parari, M. K., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett. 18, 776-781.]); Ratish et al. (2009[Ratish, G. I., Javed, K., Ahmad, S., Bano, S., Alam, M. S., Pillai, K. K., Singh, S. & Bagchi, V. (2009). Bioorg. Med. Chem. Lett. 19, 255-258.]); Rough et al. (1998[Rough, W. R., Gwaltney, S. L., Cheng, J., Scheidt, K. A., McKerrow, J. H. & Hansell, E. (1998). J. Am. Chem. Soc. 120, 10994-10995.]); Selnam et al. (2001[Selnam, P., Chandramohan, M., Clercq, E. D., Witvrouw, M. & Pannecouque, C. (2001). Eur. J. Pharm. Sci. 14, 313-316.]); Soledade et al. (2006[Soledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958-4979.]); Xiao & Timberlake (2000[Xiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem. 37, 773-777.]). For related structures, see: Gowda et al. (2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.],b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.],c[Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.]); Haider et al. (2009[Haider, Z., Khan, I. U., Zia-ur-Rehman, M. & Arshad, M. N. (2009). Acta Cryst. E65, o3053.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O5S

  • Mr = 334.34

  • Triclinic, [P \overline 1]

  • a = 7.9829 (3) Å

  • b = 8.4143 (3) Å

  • c = 12.6554 (5) Å

  • α = 70.888 (2)°

  • β = 81.553 (2)°

  • γ = 77.104 (2)°

  • V = 780.44 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.24 × 0.18 × 0.14 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 13620 measured reflections

  • 3835 independent reflections

  • 2928 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.150

  • S = 1.02

  • 3835 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H7⋯O4i 0.88 1.74 2.617 (4) 170
N1—H1⋯O16ii 0.86 2.31 2.860 (2) 122
N3—H3⋯O1iii 0.86 2.13 2.974 (2) 165
C11—H11⋯O2iv 0.93 2.59 3.379 (3) 143
Symmetry codes: (i) -x-1, -y+2, -z+1; (ii) -x, -y+2, -z; (iii) x, y+1, z; (iv) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Sulfonamides are well known in literature for their potential as biologically active compounds (Hanson et al., 1999; Moree et al.,1991; Rough et al., 1998). These have been reported to display anti-hypertensive, anti-convulsant, herbicidal and anti-malarial activities (Esteve & Bidal, 2002; Soledade et al., 2006; Xiao & Timberlake, 2000; Lee & Lee, 2002). In addition the sulfonamide unit has been found in a number of compounds possessing anti-HIV (Selnam et al.,2001), anti-inflammatory (Ratish et al., 2009) and anti-microbial (Ozbek et al., 2007; Parari et al., 2008) activities.

In continuation of our work regarding the synthesis of various sulfur containing heterocycles (Arshad et al., 2008; Khan et al., 2009), the structure of 3-({[4-(acetylamino)phenyl]sulfonyl}amino)benzoic acid (I) has been determined. Bond lengths and bond angles of the title molecule (Fig 1) are similar to those in related compounds (Gowda et al., 2007a,b,c; Haider et al., 2009) and are within normal ranges (Allen et al., 1987). In the crystal structure, each molecule is linked to an adjacent one through classical O5—H7···O4 intermolecular hydrogen bonds forming centrosymmetric dimers typical of carboxylic acids, Table 1. These dimers are further connected by N—H···O and C—H···O hydrogen bonds to form an extended network, Fig 2.

Related literature top

For the synthesis of related compounds, see: Khan et al. (2009); Arshad et al. (2008). For the biological activity of sulfonamides, see: Esteve & Bidal (2002); Hanson et al. (1999); Lee & Lee (2002); Moree et al. (1991); Ozbek et al. (2007); Parari et al. (2008); Ratish et al. (2009); Rough et al. (1998); Selnam et al. (2001); Soledade et al. (2006); Xiao & Timberlake (2000). For related structures, see: Gowda et al. (2007a,b,c); Haider et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

To an aqueous solution (10.0 ml) of 4-amino benzoic acid (1.0 g; 7.3 mmoles) maintained at pH 9 with aqueous sodium bicarbonate solution, 4-(acetylamino)benzenesulfonyl chloride (2.21 g, 9.48 mmol) was added. Contents were stirred at room temperature until the complete consumption of the sulfonyl chloride (as indicated by TLC). The pH of the reaction mixture was changed to 1 using hydrochloric acid (1 M) and the precipitate obtained was filtered, washed with water and dried. The resulting solid was recrystallized from methanol to get suitable crystals.

Refinement top

All hydrogen atoms were identified in the difference map. Those bonded to O, C and N were fixed in ideal positions and treated as riding on their parent atoms. The following distances were used: methyl C—H 0.98Å; aromatic C—H 0.95Å; N—H 0.86 Å.

Structure description top

Sulfonamides are well known in literature for their potential as biologically active compounds (Hanson et al., 1999; Moree et al.,1991; Rough et al., 1998). These have been reported to display anti-hypertensive, anti-convulsant, herbicidal and anti-malarial activities (Esteve & Bidal, 2002; Soledade et al., 2006; Xiao & Timberlake, 2000; Lee & Lee, 2002). In addition the sulfonamide unit has been found in a number of compounds possessing anti-HIV (Selnam et al.,2001), anti-inflammatory (Ratish et al., 2009) and anti-microbial (Ozbek et al., 2007; Parari et al., 2008) activities.

In continuation of our work regarding the synthesis of various sulfur containing heterocycles (Arshad et al., 2008; Khan et al., 2009), the structure of 3-({[4-(acetylamino)phenyl]sulfonyl}amino)benzoic acid (I) has been determined. Bond lengths and bond angles of the title molecule (Fig 1) are similar to those in related compounds (Gowda et al., 2007a,b,c; Haider et al., 2009) and are within normal ranges (Allen et al., 1987). In the crystal structure, each molecule is linked to an adjacent one through classical O5—H7···O4 intermolecular hydrogen bonds forming centrosymmetric dimers typical of carboxylic acids, Table 1. These dimers are further connected by N—H···O and C—H···O hydrogen bonds to form an extended network, Fig 2.

For the synthesis of related compounds, see: Khan et al. (2009); Arshad et al. (2008). For the biological activity of sulfonamides, see: Esteve & Bidal (2002); Hanson et al. (1999); Lee & Lee (2002); Moree et al. (1991); Ozbek et al. (2007); Parari et al. (2008); Ratish et al. (2009); Rough et al. (1998); Selnam et al. (2001); Soledade et al. (2006); Xiao & Timberlake (2000). For related structures, see: Gowda et al. (2007a,b,c); Haider et al. (2009). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the three-dimensional crystal packing showing hydrogen-bonded interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
3-[4-(Acetamido)benzenesulfonamido]benzoic acid top
Crystal data top
C15H14N2O5SZ = 2
Mr = 334.34F(000) = 348
Triclinic, P1Dx = 1.423 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9829 (3) ÅCell parameters from 5086 reflections
b = 8.4143 (3) Åθ = 2.6–27.5°
c = 12.6554 (5) ŵ = 0.23 mm1
α = 70.888 (2)°T = 296 K
β = 81.553 (2)°Needles, dark brown
γ = 77.104 (2)°0.24 × 0.18 × 0.14 mm
V = 780.44 (5) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2928 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 28.3°, θmin = 2.7°
φ and ω scansh = 910
13620 measured reflectionsk = 1011
3835 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0733P)2 + 0.3675P]
where P = (Fo2 + 2Fc2)/3
3835 reflections(Δ/σ)max = 0.034
210 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C15H14N2O5Sγ = 77.104 (2)°
Mr = 334.34V = 780.44 (5) Å3
Triclinic, P1Z = 2
a = 7.9829 (3) ÅMo Kα radiation
b = 8.4143 (3) ŵ = 0.23 mm1
c = 12.6554 (5) ÅT = 296 K
α = 70.888 (2)°0.24 × 0.18 × 0.14 mm
β = 81.553 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2928 reflections with I > 2σ(I)
13620 measured reflectionsRint = 0.032
3835 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.02Δρmax = 0.49 e Å3
3835 reflectionsΔρmin = 0.47 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36529 (6)0.60917 (7)0.20813 (4)0.03843 (18)
N10.1928 (2)0.5659 (2)0.28924 (14)0.0397 (4)
H10.13460.49960.27750.048*
O20.50673 (18)0.5656 (2)0.27558 (14)0.0503 (4)
O10.3732 (2)0.5277 (2)0.12378 (13)0.0489 (4)
C40.2682 (3)1.1815 (3)0.03783 (17)0.0380 (5)
C10.3286 (2)0.8313 (3)0.14368 (17)0.0373 (4)
N30.2462 (2)1.3587 (2)0.01344 (14)0.0424 (4)
H30.29641.41270.01580.051*
O160.0723 (2)1.3984 (2)0.14922 (15)0.0601 (5)
C70.1369 (3)0.6366 (3)0.37967 (17)0.0370 (4)
O50.3233 (3)0.9184 (3)0.57458 (17)0.0786 (7)
C140.1564 (3)1.4568 (3)0.10295 (18)0.0421 (5)
O40.3591 (3)0.9200 (4)0.40422 (19)0.0954 (9)
C90.0886 (3)0.7910 (3)0.47573 (18)0.0437 (5)
C120.2427 (3)0.6086 (3)0.46374 (19)0.0511 (6)
H120.35350.54470.46100.061*
C80.0291 (3)0.7287 (3)0.38531 (18)0.0411 (5)
H80.10070.74900.32880.049*
C100.0194 (3)0.7651 (3)0.5583 (2)0.0530 (6)
H100.01940.80830.61820.064*
C110.1851 (3)0.6745 (4)0.5510 (2)0.0593 (7)
H110.25860.65800.60580.071*
C150.1669 (3)1.6414 (3)0.1392 (2)0.0518 (6)
H15A0.09891.70180.20190.078*
H15B0.28471.65410.16080.078*
H15C0.12371.68770.07840.078*
C60.2468 (5)0.9002 (4)0.0475 (3)0.0854 (11)
H60.21020.82810.01720.102*
C50.2170 (5)1.0723 (4)0.0058 (3)0.0823 (11)
H50.16181.11570.07200.099*
C130.2682 (3)0.8827 (4)0.4850 (2)0.0570 (7)
C20.3792 (5)0.9385 (4)0.1877 (2)0.0757 (10)
H20.43570.89400.25330.091*
C30.3476 (5)1.1122 (4)0.1358 (2)0.0760 (10)
H40.38071.18410.16790.091*
H70.42960.97790.57300.30 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0298 (3)0.0460 (3)0.0443 (3)0.0019 (2)0.0027 (2)0.0237 (2)
N10.0351 (9)0.0448 (10)0.0441 (10)0.0086 (7)0.0023 (7)0.0196 (8)
O20.0323 (8)0.0616 (10)0.0597 (10)0.0010 (7)0.0102 (7)0.0257 (8)
O10.0472 (9)0.0552 (10)0.0543 (9)0.0056 (7)0.0007 (7)0.0346 (8)
C40.0325 (10)0.0502 (12)0.0366 (10)0.0100 (9)0.0007 (8)0.0199 (9)
C10.0319 (9)0.0462 (12)0.0393 (11)0.0091 (8)0.0007 (8)0.0208 (9)
N30.0442 (10)0.0486 (11)0.0414 (10)0.0124 (8)0.0087 (8)0.0185 (8)
O160.0570 (10)0.0703 (12)0.0606 (11)0.0117 (9)0.0257 (8)0.0210 (9)
C70.0352 (10)0.0405 (11)0.0341 (10)0.0052 (8)0.0019 (8)0.0112 (9)
O50.0565 (11)0.1177 (18)0.0653 (12)0.0201 (11)0.0089 (9)0.0554 (12)
C140.0339 (10)0.0570 (13)0.0385 (11)0.0055 (9)0.0001 (8)0.0221 (10)
O40.0579 (12)0.156 (2)0.0790 (14)0.0398 (13)0.0287 (11)0.0740 (15)
C90.0404 (11)0.0497 (13)0.0409 (12)0.0025 (9)0.0047 (9)0.0169 (10)
C120.0372 (11)0.0699 (16)0.0423 (12)0.0038 (11)0.0099 (9)0.0182 (11)
C80.0372 (10)0.0485 (12)0.0376 (11)0.0019 (9)0.0089 (8)0.0146 (9)
C100.0522 (13)0.0692 (16)0.0402 (12)0.0033 (12)0.0059 (10)0.0244 (12)
C110.0489 (13)0.089 (2)0.0423 (13)0.0005 (13)0.0159 (10)0.0255 (13)
C150.0544 (14)0.0541 (14)0.0452 (13)0.0014 (11)0.0027 (10)0.0190 (11)
C60.130 (3)0.0517 (16)0.096 (2)0.0114 (17)0.075 (2)0.0271 (15)
C50.129 (3)0.0534 (16)0.080 (2)0.0076 (17)0.071 (2)0.0206 (14)
C130.0486 (13)0.0706 (17)0.0553 (15)0.0080 (12)0.0088 (11)0.0347 (13)
C20.128 (3)0.0570 (16)0.0561 (16)0.0268 (17)0.0497 (17)0.0113 (13)
C30.129 (3)0.0529 (15)0.0634 (17)0.0294 (17)0.0507 (18)0.0142 (13)
Geometric parameters (Å, º) top
S1—O21.4252 (15)O4—C131.255 (3)
S1—O11.4331 (15)C9—C101.383 (3)
S1—N11.6264 (17)C9—C81.390 (3)
S1—C11.753 (2)C9—C131.477 (3)
N1—C71.428 (2)C12—C111.369 (3)
N1—H10.8600C12—H120.9300
C4—C31.368 (3)C8—H80.9300
C4—C51.372 (3)C10—C111.378 (4)
C4—N31.399 (3)C10—H100.9300
C1—C21.359 (3)C11—H110.9300
C1—C61.359 (3)C15—H15A0.9600
N3—C141.357 (3)C15—H15B0.9600
N3—H30.8600C15—H15C0.9600
O16—C141.219 (3)C6—C51.365 (4)
C7—C81.383 (3)C6—H60.9300
C7—C121.383 (3)C5—H50.9300
O5—C131.260 (3)C2—C31.374 (4)
O5—H70.8831C2—H20.9300
C14—C151.487 (3)C3—H40.9300
O2—S1—O1119.27 (9)C7—C8—C9119.82 (19)
O2—S1—N1108.91 (9)C7—C8—H8120.1
O1—S1—N1105.07 (9)C9—C8—H8120.1
O2—S1—C1107.95 (10)C11—C10—C9119.4 (2)
O1—S1—C1108.32 (10)C11—C10—H10120.3
N1—S1—C1106.68 (9)C9—C10—H10120.3
C7—N1—S1120.87 (14)C12—C11—C10120.6 (2)
C7—N1—H1119.6C12—C11—H11119.7
S1—N1—H1119.6C10—C11—H11119.7
C3—C4—C5117.9 (2)C14—C15—H15A109.5
C3—C4—N3118.54 (19)C14—C15—H15B109.5
C5—C4—N3123.5 (2)H15A—C15—H15B109.5
C2—C1—C6118.4 (2)C14—C15—H15C109.5
C2—C1—S1121.67 (18)H15A—C15—H15C109.5
C6—C1—S1119.95 (17)H15B—C15—H15C109.5
C14—N3—C4128.83 (18)C1—C6—C5121.8 (2)
C14—N3—H3115.6C1—C6—H6119.1
C4—N3—H3115.6C5—C6—H6119.1
C8—C7—C12119.55 (19)C6—C5—C4120.2 (2)
C8—C7—N1119.05 (18)C6—C5—H5119.9
C12—C7—N1121.34 (19)C4—C5—H5119.9
C13—O5—H7113.2O4—C13—O5123.1 (2)
O16—C14—N3122.6 (2)O4—C13—C9118.9 (2)
O16—C14—C15122.7 (2)O5—C13—C9118.0 (2)
N3—C14—C15114.73 (19)C1—C2—C3120.4 (2)
C10—C9—C8120.1 (2)C1—C2—H2119.8
C10—C9—C13119.8 (2)C3—C2—H2119.8
C8—C9—C13120.1 (2)C4—C3—C2121.2 (2)
C11—C12—C7120.4 (2)C4—C3—H4119.4
C11—C12—H12119.8C2—C3—H4119.4
C7—C12—H12119.8
O2—S1—N1—C755.28 (18)C13—C9—C8—C7177.2 (2)
O1—S1—N1—C7175.87 (15)C8—C9—C10—C111.1 (4)
C1—S1—N1—C760.99 (17)C13—C9—C10—C11177.9 (3)
O2—S1—C1—C223.6 (3)C7—C12—C11—C102.0 (4)
O1—S1—C1—C2154.0 (2)C9—C10—C11—C120.8 (4)
N1—S1—C1—C293.4 (2)C2—C1—C6—C50.8 (5)
O2—S1—C1—C6156.7 (2)S1—C1—C6—C5179.4 (3)
O1—S1—C1—C626.3 (3)C1—C6—C5—C40.7 (6)
N1—S1—C1—C686.4 (3)C3—C4—C5—C60.6 (5)
C3—C4—N3—C14172.3 (3)N3—C4—C5—C6178.3 (3)
C5—C4—N3—C148.9 (4)C10—C9—C13—O4173.0 (3)
S1—N1—C7—C8124.75 (19)C8—C9—C13—O48.0 (4)
S1—N1—C7—C1257.9 (3)C10—C9—C13—O57.6 (4)
C4—N3—C14—O163.6 (3)C8—C9—C13—O5171.4 (3)
C4—N3—C14—C15177.18 (19)C6—C1—C2—C30.2 (5)
C8—C7—C12—C111.3 (4)S1—C1—C2—C3179.5 (3)
N1—C7—C12—C11178.6 (2)C5—C4—C3—C21.6 (5)
C12—C7—C8—C90.6 (3)N3—C4—C3—C2177.3 (3)
N1—C7—C8—C9176.8 (2)C1—C2—C3—C41.5 (5)
C10—C9—C8—C71.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H7···O4i0.881.742.617 (4)170
N1—H1···O16ii0.862.312.860 (2)122
N3—H3···O1iii0.862.132.974 (2)165
C11—H11···O2iv0.932.593.379 (3)143
Symmetry codes: (i) x1, y+2, z+1; (ii) x, y+2, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H14N2O5S
Mr334.34
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.9829 (3), 8.4143 (3), 12.6554 (5)
α, β, γ (°)70.888 (2), 81.553 (2), 77.104 (2)
V3)780.44 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.24 × 0.18 × 0.14
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13620, 3835, 2928
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.150, 1.02
No. of reflections3835
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.47

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H7···O4i0.881.742.617 (4)170
N1—H1···O16ii0.862.312.860 (2)122
N3—H3···O1iii0.862.132.974 (2)165
C11—H11···O2iv0.932.593.379 (3)143
Symmetry codes: (i) x1, y+2, z+1; (ii) x, y+2, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283–o2284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEsteve, C. & Bidal, B. (2002). Tetrahedron Lett. 43, 1019–1021.  Web of Science CrossRef CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaider, Z., Khan, I. U., Zia-ur-Rehman, M. & Arshad, M. N. (2009). Acta Cryst. E65, o3053.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHanson, P. R., Probst, D. A., Robinson, R. E. & Yau, M. (1999). Tetrahedron Lett. 40, 4761–4763.  Web of Science CrossRef CAS Google Scholar
First citationKhan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167–169.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoree, W. J., Van der Marel, G. A. & Liskamp, R. M. (1991). Tetrahedron Lett. 32, 409–411.  CrossRef CAS Web of Science Google Scholar
First citationOzbek, N., Katirciog lu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105–5109.  Web of Science CrossRef PubMed Google Scholar
First citationParari, M. K., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett. 18, 776–781.  PubMed Google Scholar
First citationRatish, G. I., Javed, K., Ahmad, S., Bano, S., Alam, M. S., Pillai, K. K., Singh, S. & Bagchi, V. (2009). Bioorg. Med. Chem. Lett. 19, 255–258.  Web of Science PubMed Google Scholar
First citationRough, W. R., Gwaltney, S. L., Cheng, J., Scheidt, K. A., McKerrow, J. H. & Hansell, E. (1998). J. Am. Chem. Soc. 120, 10994–10995.  Google Scholar
First citationSelnam, P., Chandramohan, M., Clercq, E. D., Witvrouw, M. & Pannecouque, C. (2001). Eur. J. Pharm. Sci. 14, 313–316.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958–4979.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem. 37, 773–777.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds