metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua-μ3-4-nitro­phthalato-copper(II)]

aSchool of Environment and Chemical Engineering and Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China
*Correspondence e-mail: guomlin@yahoo.com

(Received 17 November 2010; accepted 29 November 2010; online 4 December 2010)

In the title complex, [Cu(C8H3NO6)(H2O)2]n, the two carboxyl­ate groups of the 4-nitro­phthalate dianion ligands have monodentate and 1,3-bridging bonding modes, respectively. The Cu atom shows an approximate square-pyramidal coordination as it is bonded to O atoms from the carboxyl­ate groups of three 4-nitro­phthalate ligands and two O atoms of the non-equivalent coordinated water mol­ecules. Other Cu atoms in the coordination polymer are connected into a two-dimensional layer in the ab plane. The layers are aggregated to a three-dimensional structure through inter­layer hydrogen bonding involving an O atom of a nitro group. The whole three-dimensional structure is further maintained and stabilized by intra­layer hydrogen bonds between the O atoms of the carboxyl­ate groups and the coordinated water mol­ecules.

Related literature

For τ value calculations in a square-pyramidal environment, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). For related structures, see: Baca et al. (2003[Baca, S. G., Simonov, Y. A., Gdaniec, M., Gerbeleu, N., Filippova, I. G. & Timco, G. A. (2003). Inorg. Chem. Commun. 6, 685-689.], 2004[Baca, S. G., Filippova, I. G., Gherco, O. A., Gdaniec, M., Simonov, Y. A., Gerbeleu, N. V., Franz, P., Basler, R. & Decurtins, S. (2004). Inorg. Chim. Acta, 357, 3419-3429.]); Biagini Cingi et al. (1978[Biagini Cingi, M., Manotti Lanfredi, A. M., Tiripicchio, A. & Tiripicchio Camellini, M. (1978). Acta Cryst. B34, 134-137.]); Fu et al. (2006[Fu, X.-C., Wang, X.-Y., Li, M.-T., Wang, C.-G. & Deng, X.-T. (2006). Acta Cryst. C62, m343-m345.]); Guo & Guo (2007[Guo, M.-L. & Guo, C.-H. (2007). Acta Cryst. C63, m595-m597.]); Ma et al. (2004[Ma, C.-B., Wang, W.-G., Zhang, X.-F., Chen, C.-N., Liu, Q.-T., Zhu, H.-P., Liao, D.-Z. & Li, L.-C. (2004). Eur. J. Inorg. Chem. pp. 3522-3532.]); Wang et al. (2009[Wang, F.-Q., Lu, F.-L., Wei, B. & Zhao, Y.-N. (2009). Acta Cryst. C65, m42-m44.]); Yang et al. (2003[Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). Acta Cryst. E59, m507-m509.]). For hydrogen bonds, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Brown (1976[Brown, I. D. (1976). Acta Cryst. A32, 24-31.]). For a comparison of Cu—O distances, see: Pasan et al. (2007[Pasan, J., Sanchiz, J., Lloret, F., Julvec, M. & Ruiz-Perez, C. (2007). CrystEngComm, 9, 478-487.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H3NO6)(H2O)2]

  • Mr = 308.69

  • Orthorhombic, P b c a

  • a = 14.208 (3) Å

  • b = 6.5159 (13) Å

  • c = 21.722 (4) Å

  • V = 2011.0 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.21 mm−1

  • T = 133 K

  • 0.14 × 0.06 × 0.04 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.850, Tmax = 0.917

  • 11779 measured reflections

  • 1974 independent reflections

  • 1609 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.144

  • S = 1.07

  • 1974 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O4i 1.917 (3)
Cu1—O1 1.945 (3)
Cu1—O8 1.991 (3)
Cu1—O7 1.991 (4)
Cu1—O3ii 2.263 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O2iii 0.85 2.19 2.862 (5) 136
O7—H7A⋯O3i 0.85 2.30 2.858 (5) 123
O7—H7B⋯O6iv 0.85 2.15 2.959 (6) 158
O8—H8A⋯O1v 0.85 1.98 2.787 (4) 160
O8—H8B⋯O2ii 0.85 1.85 2.692 (5) 170
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) -x+1, -y, -z+1; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL .

Supporting information


Comment top

Aromatic dicarboxylate ligands such as phthalate (phth) and substituted phthalatehave been used in the construction of polymeric metal complexes because they can act as a bis-monodentate, bis-bidentate and combined modes of coordination to form short bridges via one carboxylato end or long bridges via the benzene ring and lead to a great variety of structures (Biagini Cingi et al., 1978; Guo and Guo, 2007; Wang et al., 2009; Ma et al., 2004; Baca et al., 2003, 2004; Yang et al., 2003; Fu et al., 2006). We have used the 4-nitrophthalate dianion as a ligand, and have obtained the title novel five-coordinate 4-nitrophthalate-copper complex, (I), which forms a three-dimensional supramolecular network through O—H···O hydrogen bonding.

The asymmetric unit in the structure of (I) comprises one Cu atom, one complete 4-nitrophthate dianion and two non-equivalent water molecules, and is shown in Fig. 1 in a symmetry-expanded view, which displays the full coordination of the Cu atom. Selected geometric parameters are given in Table 1.

The Cu atom exhibits an approximate square pyramidal environment (the τ value being 0.171, Addison et al., 1984), with atoms O1, O4i (see Fig. 1 for symmetry codes) of two non-equivalent 4-nitrophthalate dianions and O7 and O8 atoms of coordinated water molecules in a planar arrangement, with the mean Cu–O(eq) bond distance being 1.961 (3) Å, which is comparable to that reported for poly[(µ3-methylmalonato-O,O',O'',O''')-aqua-copper(II)] (Pasan, et al., 2007). The apical position is occupied by O3ii atom [Cu1–O3ii = 2.263 (3) Å]. The Cu atom is shifted by 0.0889 (5) A° toward the apical position. There is an additional weak Cu–O2 contact in (I), with a Cu···O distance of 2.821 (3) Å.

In the present structure, monodentate, bidentate 1,3-bridging bonding and 1,6-bridging bonding modes via the benzene ring are present (Fig. 2). The O1 atom binds in a monodentate fashion, while the O3 and O4 atoms display both monodentate and bidentate 1,3-bridge bonding to link two Cu atoms. The O1 and O3 (or O4) atoms adopt a 1,6-bridging bonding mode via the benzene ring to connect with two other Cu atoms.

The Cu atoms are further interconnected by three O atoms from three 4-nitrophthalate dianions into a two-dimensional layer in the ab plane. The mean planes of the carboxylate groups of O1/C1/O2 and the benzene ring make a dihedral angle of 72.4 (5)°, and the value of a dihedral angle for the carboxylate groups of O3/C8/O4 is 14.5 (5)°; the two C—O bond distances (O1—C1 and O2—C1) of the monodentate carboxylate group are 1.278 (5) and 1.241 (5) Å, respectively, and the two C—O bond distances (O3—C4 and O4—C4) of the 1,3-bridging bonding carboxylate group are 1.253 (5) and 1.266 (6) Å, respectively. These indicate that the mesomeric effect for the 1,3-bridging bonding carboxylate group is somewhat greater than that of the monodentate carboxylate group.

The two water molecules within the coordination sphere of the Cu atom, and the nitro group (O5/N1/O6) in the present structure engage in distinct hydrogen bonding interactions (see Table 2). Within each layer, the non-coordinated O2 atom is involved in forming strong O8—H8B···O2ii (Brown, 1976) and weak O7—H7A···O2v hydrogen bonds. These play an important role in the propagation of the two-dimensional layer structure, due to the formation of different hydrogen bonded ring graph set motifs (Bernstein et al., 1995), such as an S(8), and two 10-membered R22(10) motifs (Fig.3). The neighbouring layers are linked together via weak O7—H7B···O6vi hydrogen bonding interactions. These also result in the aryl rings of the 4-nitrophthalato ligands stacking weakly in an offset fashion along the c direction with centroid to centroid distances in the range 4.55 (4)Å - 4.97 (2)%A. Thus, the three-dimensional connectivity of the structure is achieved.

Related literature top

For τ value calculations in a square-pyramidal environment, see: Addison et al. (1984). For related structures, see: Baca et al. (2003, 2004); Biagini Cingi et al. (1978); Fu et al. (2006); Guo & Guo (2007); Ma et al. (2004); Wang et al. (2009); Yang et al. (2003). For hydrogen bonds, see Bernstein et al. (1995); Brown (1976). For a comparison of Cu—O distances, see: Pasan et al. (2007).

Experimental top

Copper(II) oxide (0.32 g 4 mmol) was added to a stirred solution of 4-nitrophthalic acid (0.53 g, 2.5 mmol) in boiling water (20.0 ml) over a period of 40 min. After filtration, slow evaporation over a period of a week at room temperature provided green needle-like crystals of (I).

Refinement top

All water H atoms were found in difference Fourier maps. However, during refinement, they were fixed at O–H distances of 0.85 Å, with Uiso(H)=1.2 Ueq(O). The H atoms of C–H groups were treated as riding, with C–H = 0.93 Å and Uiso (H) = 1.2 Ueq(C).

Structure description top

Aromatic dicarboxylate ligands such as phthalate (phth) and substituted phthalatehave been used in the construction of polymeric metal complexes because they can act as a bis-monodentate, bis-bidentate and combined modes of coordination to form short bridges via one carboxylato end or long bridges via the benzene ring and lead to a great variety of structures (Biagini Cingi et al., 1978; Guo and Guo, 2007; Wang et al., 2009; Ma et al., 2004; Baca et al., 2003, 2004; Yang et al., 2003; Fu et al., 2006). We have used the 4-nitrophthalate dianion as a ligand, and have obtained the title novel five-coordinate 4-nitrophthalate-copper complex, (I), which forms a three-dimensional supramolecular network through O—H···O hydrogen bonding.

The asymmetric unit in the structure of (I) comprises one Cu atom, one complete 4-nitrophthate dianion and two non-equivalent water molecules, and is shown in Fig. 1 in a symmetry-expanded view, which displays the full coordination of the Cu atom. Selected geometric parameters are given in Table 1.

The Cu atom exhibits an approximate square pyramidal environment (the τ value being 0.171, Addison et al., 1984), with atoms O1, O4i (see Fig. 1 for symmetry codes) of two non-equivalent 4-nitrophthalate dianions and O7 and O8 atoms of coordinated water molecules in a planar arrangement, with the mean Cu–O(eq) bond distance being 1.961 (3) Å, which is comparable to that reported for poly[(µ3-methylmalonato-O,O',O'',O''')-aqua-copper(II)] (Pasan, et al., 2007). The apical position is occupied by O3ii atom [Cu1–O3ii = 2.263 (3) Å]. The Cu atom is shifted by 0.0889 (5) A° toward the apical position. There is an additional weak Cu–O2 contact in (I), with a Cu···O distance of 2.821 (3) Å.

In the present structure, monodentate, bidentate 1,3-bridging bonding and 1,6-bridging bonding modes via the benzene ring are present (Fig. 2). The O1 atom binds in a monodentate fashion, while the O3 and O4 atoms display both monodentate and bidentate 1,3-bridge bonding to link two Cu atoms. The O1 and O3 (or O4) atoms adopt a 1,6-bridging bonding mode via the benzene ring to connect with two other Cu atoms.

The Cu atoms are further interconnected by three O atoms from three 4-nitrophthalate dianions into a two-dimensional layer in the ab plane. The mean planes of the carboxylate groups of O1/C1/O2 and the benzene ring make a dihedral angle of 72.4 (5)°, and the value of a dihedral angle for the carboxylate groups of O3/C8/O4 is 14.5 (5)°; the two C—O bond distances (O1—C1 and O2—C1) of the monodentate carboxylate group are 1.278 (5) and 1.241 (5) Å, respectively, and the two C—O bond distances (O3—C4 and O4—C4) of the 1,3-bridging bonding carboxylate group are 1.253 (5) and 1.266 (6) Å, respectively. These indicate that the mesomeric effect for the 1,3-bridging bonding carboxylate group is somewhat greater than that of the monodentate carboxylate group.

The two water molecules within the coordination sphere of the Cu atom, and the nitro group (O5/N1/O6) in the present structure engage in distinct hydrogen bonding interactions (see Table 2). Within each layer, the non-coordinated O2 atom is involved in forming strong O8—H8B···O2ii (Brown, 1976) and weak O7—H7A···O2v hydrogen bonds. These play an important role in the propagation of the two-dimensional layer structure, due to the formation of different hydrogen bonded ring graph set motifs (Bernstein et al., 1995), such as an S(8), and two 10-membered R22(10) motifs (Fig.3). The neighbouring layers are linked together via weak O7—H7B···O6vi hydrogen bonding interactions. These also result in the aryl rings of the 4-nitrophthalato ligands stacking weakly in an offset fashion along the c direction with centroid to centroid distances in the range 4.55 (4)Å - 4.97 (2)%A. Thus, the three-dimensional connectivity of the structure is achieved.

For τ value calculations in a square-pyramidal environment, see: Addison et al. (1984). For related structures, see: Baca et al. (2003, 2004); Biagini Cingi et al. (1978); Fu et al. (2006); Guo & Guo (2007); Ma et al. (2004); Wang et al. (2009); Yang et al. (2003). For hydrogen bonds, see Bernstein et al. (1995); Brown (1976). For a comparison of Cu—O distances, see: Pasan et al. (2007).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the atom-numbering scheme and coordination polyhedra for the Cu atoms; displacement ellipsoids were drawn at the 30% probability level [Symmetry codes: (i) x - 1/2, y, -z + 1/2; (ii) -x + 1, y - 1/2, -z + 1/2].
[Figure 2] Fig. 2. A view of the packing of (I), viewed down the c axis, showing the two-dimensional layer in the ab plane.
[Figure 3] Fig. 3. Packing diagram for (I), viewed down the b axis, showing the hydrogen bonding interactions as dashed lines.
Poly[diaqua-µ3-4-nitrophthalato-copper(II)] top
Crystal data top
[Cu(C8H3NO6)(H2O)2]F(000) = 1240
Mr = 308.69Dx = 2.039 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3445 reflections
a = 14.208 (3) Åθ = 2.4–26.0°
b = 6.5159 (13) ŵ = 2.21 mm1
c = 21.722 (4) ÅT = 133 K
V = 2011.0 (7) Å3Needle, green
Z = 80.14 × 0.06 × 0.04 mm
Data collection top
Rigaku Saturn
diffractometer
1974 independent reflections
Radiation source: rotating anode1609 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.079
Detector resolution: 26.033 pixels mm-1θmax = 26.1°, θmin = 2.4°
ω scansh = 1715
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 68
Tmin = 0.850, Tmax = 0.917l = 2626
11779 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0713P)2 + 4.9336P]
where P = (Fo2 + 2Fc2)/3
1974 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Cu(C8H3NO6)(H2O)2]V = 2011.0 (7) Å3
Mr = 308.69Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.208 (3) ŵ = 2.21 mm1
b = 6.5159 (13) ÅT = 133 K
c = 21.722 (4) Å0.14 × 0.06 × 0.04 mm
Data collection top
Rigaku Saturn
diffractometer
1974 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1609 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.917Rint = 0.079
11779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.07Δρmax = 0.79 e Å3
1974 reflectionsΔρmin = 0.66 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.35209 (4)0.13735 (8)0.24112 (3)0.0228 (2)
O10.4485 (2)0.1048 (4)0.30394 (14)0.0225 (7)
O20.4281 (2)0.4401 (5)0.31949 (14)0.0268 (7)
O30.6351 (2)0.2964 (5)0.27688 (14)0.0230 (7)
O40.7598 (2)0.1491 (5)0.32317 (15)0.0274 (7)
N10.6821 (4)0.1444 (7)0.5486 (2)0.0398 (11)
O50.7673 (3)0.0995 (8)0.5446 (2)0.0547 (12)
O60.6397 (3)0.1487 (6)0.59882 (18)0.0476 (11)
C10.4654 (3)0.2731 (7)0.33201 (19)0.0226 (9)
C20.5298 (3)0.2557 (6)0.3875 (2)0.0227 (9)
C30.4867 (4)0.2677 (6)0.4447 (2)0.0266 (10)
H30.42260.29640.44700.032*
C40.5373 (4)0.2375 (7)0.4982 (2)0.0295 (11)
H40.50860.24750.53660.035*
C50.6314 (4)0.1923 (7)0.4930 (2)0.0306 (11)
C60.6779 (4)0.1873 (7)0.4368 (2)0.0279 (10)
H6A0.74230.16340.43500.034*
C70.6262 (3)0.2185 (6)0.3836 (2)0.0222 (9)
C80.6772 (3)0.2218 (6)0.3224 (2)0.0221 (9)
O70.2588 (3)0.1002 (5)0.30857 (16)0.0318 (8)
H7A0.20640.07480.29120.038*
H7B0.27640.00510.33280.038*
O80.4457 (2)0.2481 (5)0.18154 (15)0.0295 (8)
H8A0.46720.36420.19210.035*
H8B0.48770.15670.17700.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0185 (4)0.0227 (3)0.0271 (4)0.0010 (2)0.0029 (2)0.00199 (19)
O10.0210 (17)0.0233 (14)0.0230 (14)0.0003 (13)0.0020 (13)0.0017 (11)
O20.0226 (18)0.0240 (16)0.0338 (17)0.0017 (14)0.0012 (14)0.0013 (13)
O30.0189 (17)0.0227 (15)0.0274 (16)0.0001 (13)0.0008 (13)0.0015 (12)
O40.0188 (18)0.0333 (17)0.0301 (17)0.0047 (14)0.0015 (14)0.0047 (13)
N10.037 (3)0.043 (3)0.039 (3)0.006 (2)0.000 (2)0.0008 (18)
O50.035 (3)0.079 (3)0.050 (3)0.007 (2)0.007 (2)0.002 (2)
O60.052 (3)0.060 (3)0.031 (2)0.009 (2)0.0032 (19)0.0028 (17)
C10.018 (2)0.026 (2)0.024 (2)0.0005 (19)0.0035 (18)0.0016 (16)
C20.020 (2)0.0198 (19)0.028 (2)0.0007 (18)0.0003 (18)0.0004 (16)
C30.026 (3)0.024 (2)0.030 (2)0.000 (2)0.001 (2)0.0061 (17)
C40.034 (3)0.028 (2)0.027 (2)0.002 (2)0.001 (2)0.0028 (17)
C50.041 (3)0.025 (2)0.026 (2)0.000 (2)0.007 (2)0.0001 (17)
C60.023 (3)0.029 (2)0.032 (2)0.002 (2)0.001 (2)0.0018 (18)
C70.022 (2)0.019 (2)0.026 (2)0.0009 (18)0.0013 (18)0.0004 (16)
C80.021 (2)0.018 (2)0.027 (2)0.0036 (18)0.0006 (19)0.0007 (16)
O70.0226 (19)0.0408 (19)0.0320 (17)0.0000 (16)0.0039 (15)0.0032 (14)
O80.0263 (19)0.0260 (16)0.0361 (18)0.0035 (15)0.0035 (15)0.0024 (13)
Geometric parameters (Å, º) top
Cu1—O4i1.917 (3)C2—C71.393 (7)
Cu1—O11.945 (3)C3—C41.382 (7)
Cu1—O81.991 (3)C3—H30.9300
Cu1—O71.991 (4)C4—C51.373 (7)
Cu1—O3ii2.263 (3)C4—H40.9300
O1—C11.278 (5)C5—C61.388 (7)
O2—C11.241 (5)C6—C71.385 (7)
O3—C81.253 (5)C6—H6A0.9300
O4—C81.266 (6)C7—C81.514 (6)
N1—O61.246 (6)O7—H7A0.8505
N1—O51.249 (7)O7—H7B0.8505
N1—C51.441 (7)O8—H8A0.8477
C1—C21.517 (6)O8—H8B0.8487
C2—C31.387 (6)
O4i—Cu1—O1175.60 (13)C4—C3—H3119.5
O4i—Cu1—O888.20 (14)C2—C3—H3119.5
O1—Cu1—O891.45 (14)C5—C4—C3117.9 (4)
O4i—Cu1—O794.90 (15)C5—C4—H4121.1
O1—Cu1—O786.53 (14)C3—C4—H4121.1
O8—Cu1—O7165.32 (14)C4—C5—C6122.8 (5)
O4i—Cu1—O3ii88.18 (12)C4—C5—N1117.6 (5)
O1—Cu1—O3ii87.58 (12)C6—C5—N1119.6 (5)
O8—Cu1—O3ii100.93 (12)C7—C6—C5118.6 (5)
O7—Cu1—O3ii93.51 (13)C7—C6—H6A120.7
C1—O1—Cu1112.0 (3)C5—C6—H6A120.7
C8—O3—Cu1iii118.6 (3)C6—C7—C2119.7 (4)
C8—O4—Cu1iv129.7 (3)C6—C7—C8118.8 (4)
O6—N1—O5122.4 (5)C2—C7—C8121.4 (4)
O6—N1—C5119.2 (5)O3—C8—O4126.7 (4)
O5—N1—C5118.4 (5)O3—C8—C7118.0 (4)
O2—C1—O1124.6 (4)O4—C8—C7115.2 (4)
O2—C1—C2119.8 (4)Cu1—O7—H7A106.3
O1—C1—C2115.4 (4)Cu1—O7—H7B110.4
C3—C2—C7119.9 (4)H7A—O7—H7B113.0
C3—C2—C1116.1 (4)Cu1—O8—H8A112.9
C7—C2—C1123.9 (4)Cu1—O8—H8B106.9
C4—C3—C2121.0 (5)H8A—O8—H8B113.8
O8—Cu1—O1—C181.6 (3)O5—N1—C5—C60.1 (7)
O7—Cu1—O1—C183.9 (3)C4—C5—C6—C73.5 (7)
O3ii—Cu1—O1—C1177.6 (3)N1—C5—C6—C7175.2 (4)
Cu1—O1—C1—O22.7 (6)C5—C6—C7—C20.5 (7)
Cu1—O1—C1—C2172.0 (3)C5—C6—C7—C8177.5 (4)
O2—C1—C2—C370.4 (5)C3—C2—C7—C62.0 (6)
O1—C1—C2—C3104.5 (5)C1—C2—C7—C6174.3 (4)
O2—C1—C2—C7113.1 (5)C3—C2—C7—C8174.9 (4)
O1—C1—C2—C772.0 (6)C1—C2—C7—C88.7 (6)
C7—C2—C3—C41.8 (6)Cu1iii—O3—C8—O490.7 (5)
C1—C2—C3—C4174.8 (4)Cu1iii—O3—C8—C788.5 (4)
C2—C3—C4—C51.0 (7)Cu1iv—O4—C8—O33.5 (7)
C3—C4—C5—C63.7 (7)Cu1iv—O4—C8—C7175.7 (3)
C3—C4—C5—N1175.0 (4)C6—C7—C8—O3163.6 (4)
O6—N1—C5—C41.1 (7)C2—C7—C8—O313.3 (6)
O5—N1—C5—C4178.8 (5)C6—C7—C8—O415.7 (6)
O6—N1—C5—C6179.8 (5)C2—C7—C8—O4167.4 (4)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O2v0.852.192.862 (5)136
O7—H7A···O3i0.852.302.858 (5)123
O7—H7B···O6vi0.852.152.959 (6)158
O8—H8A···O1iii0.851.982.787 (4)160
O8—H8B···O2ii0.851.852.692 (5)170
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (v) x+1/2, y1/2, z; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C8H3NO6)(H2O)2]
Mr308.69
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)133
a, b, c (Å)14.208 (3), 6.5159 (13), 21.722 (4)
V3)2011.0 (7)
Z8
Radiation typeMo Kα
µ (mm1)2.21
Crystal size (mm)0.14 × 0.06 × 0.04
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.850, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
11779, 1974, 1609
Rint0.079
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.144, 1.07
No. of reflections1974
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.66

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O4i1.917 (3)O1—C11.278 (5)
Cu1—O11.945 (3)O2—C11.241 (5)
Cu1—O81.991 (3)O3—C81.253 (5)
Cu1—O71.991 (4)O4—C81.266 (6)
Cu1—O3ii2.263 (3)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O2iii0.852.192.862 (5)136
O7—H7A···O3i0.852.302.858 (5)123
O7—H7B···O6iv0.852.152.959 (6)158
O8—H8A···O1v0.851.982.787 (4)160
O8—H8B···O2ii0.851.852.692 (5)170
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1/2, y1/2, z; (iv) x+1, y, z+1; (v) x+1, y+1/2, z+1/2.
 

Acknowledgements

The author thanks Tianjin Polytechnic University for financial support.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBaca, S. G., Filippova, I. G., Gherco, O. A., Gdaniec, M., Simonov, Y. A., Gerbeleu, N. V., Franz, P., Basler, R. & Decurtins, S. (2004). Inorg. Chim. Acta, 357, 3419–3429.  Web of Science CrossRef CAS Google Scholar
First citationBaca, S. G., Simonov, Y. A., Gdaniec, M., Gerbeleu, N., Filippova, I. G. & Timco, G. A. (2003). Inorg. Chem. Commun. 6, 685–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBiagini Cingi, M., Manotti Lanfredi, A. M., Tiripicchio, A. & Tiripicchio Camellini, M. (1978). Acta Cryst. B34, 134–137.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrown, I. D. (1976). Acta Cryst. A32, 24–31.  CrossRef IUCr Journals Web of Science Google Scholar
First citationFu, X.-C., Wang, X.-Y., Li, M.-T., Wang, C.-G. & Deng, X.-T. (2006). Acta Cryst. C62, m343–m345.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGuo, M.-L. & Guo, C.-H. (2007). Acta Cryst. C63, m595–m597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, C.-B., Wang, W.-G., Zhang, X.-F., Chen, C.-N., Liu, Q.-T., Zhu, H.-P., Liao, D.-Z. & Li, L.-C. (2004). Eur. J. Inorg. Chem. pp. 3522–3532.  Web of Science CSD CrossRef Google Scholar
First citationPasan, J., Sanchiz, J., Lloret, F., Julvec, M. & Ruiz-Perez, C. (2007). CrystEngComm, 9, 478–487.  CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, F.-Q., Lu, F.-L., Wei, B. & Zhao, Y.-N. (2009). Acta Cryst. C65, m42–m44.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). Acta Cryst. E59, m507–m509.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds