metal-organic compounds
Poly[tetraaqua-di-μ4-malonato-barium(II)cadmium(II)]
aSchool of Environment and Chemical Engineering and, Key Laboratory of Hollow Fiber Membrane Materials & Membrane Processes, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China
*Correspondence e-mail: guomlin@yahoo.com
In the title complex, [BaCd(C3H2O4)2(H2O)4]n, the BaII atoms, located on crystallographic twofold axes, adopt slightly distorted square-antiprismatic coordination geometries, while the CdII atoms, which lie on crystallographic centres of symmetry, have a distorted octahedral coordination. Each malonate dianion binds two different CdII atoms and two different BaII atoms. This connectivity generates alternating layers along [100] in the structure, with one type containing CdII cations and malonate dianions, while the other is primarily composed of BaII ions and coordinated water molecules. The water molecules also participate in extensive O—H⋯O hydrogen bonding.
Related literature
For structural studies on the malonate dianion with its versatile coordination patterns, see: Delgado et al. (2004). For related structures, see Djeghri et al. (2005); Guo & Guo (2006).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810049780/sj5064sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810049780/sj5064Isup2.hkl
The title complex was prepared under continuous stirring with successive addition of malonic acid (0.43 g, 4 mmol), cadmium(II) chloride (0.37 g, 2 mmol) and Ba(OH)2.8H2O (0.63 g, 2 mmol) to distilled water (40 ml) at room temperature. After filtration, slow evaporation over a period of a week at room temperature provided colorless plate-like crystals of (I).
The H atoms of the water molecule were found in difference Fourier maps and during
were fixed at an O–H distance of 0.85 Å, and with Uiso(H) = 1.2 Ueq(O). The H atoms of C–H groups were placed geometrically and during were treated using a riding model, with C–H = 0.97 Å, and with Uiso(H) = 1.2 Ueq(C).The malonate dianion, with two neighboring carboxylate groups, is a very flexible ligand. Its basic coordination mode is as a chelate via two distal carboxylate oxygen atoms to form a six-membered ring and the coordinating ability of the nonchelating oxygen atoms makes the formation of polymeric networks possible (Djeghri et al., 2005; Guo & Guo, 2006). On the other hand, malonate can also coordinate in monodentate, chelated bidentate and bridging modes to create various molecular architectures (Delgado et al., 2004). Herein, we report the structure of the title heterobimetallic malonate complex, (I). It and the chemically similar complex poly[tetraaqua-di-mu4-malonato-barium(II)zinc(II)] (Guo & Guo, 2006) are isotypic.
The
in the structure of (I) comprises half a BaII cation, half a CdII cation, a complete malonate dianion defined by C1—C3/O1—O4 and two independent water molecules involving O5 and O6. Fig. 1 shows a symmetry-expanded view which displays the full coordination of the Ba2+ and Cd2+ centers. Selected geometric parameters are given in Table 1.The Ba2+ cation, lying on a crystallographic twofold axis, is eight-coordinate, bonded to oxygen atoms of four different malonate groups and four water molecules with Ba—O distances ranging from 2.793 (9) to 2.878 (10) Å. The Ba polyhedra may be described as slightly distorted square antiprisms. They share edges to form chains propagating along c.
The Cd2+ cations, lie on crystallographic centres of symmetry, and have distorted octahedral coordination, with O2 and O3 of two bidentate malonate anions at the equatorial sites and two O1 atoms from two other malonate anions at the apical sites.
Also evident in Fig. 1 is the variability of the coordination modes of the malonate dianion with monodentate (O1), bidentate chelating (O2 and O3) and bridging (O4) bonding modes all present.
The structure as a whole consists of two distinct types of layer, both parallel to (100) and stacked alternately in the direction of a. The first of these (Fig. 2) is composed entirely of CdII ions and malonate dianions and occurs at x = 0 and 1/2. The other type of layer, type 2, alternating with the first and centred on x = 1/4 and 3/4 contains, primarily, the Ba ions and the water molecules. Two forms of connectivity occur within the type 2 layers. First of all O4 atoms on the surfaces of the type 1 layers create chains of edge sharing Ba polyhedra propagating along c and at the same time link the two types of layer and complete the three-dimensional connectivity of the structure. The interlayer connectivity is further enhanced by the hydrogen bonds of the form O5—H5A···O2iv and O6—H6A···O1vi given in Table 2.
For structural studies on the malonate dianion with its versatile coordination patterns, see: Delgado et al. (2004). For related structures, see Djeghri et al. (2005); Guo & Guo (2006).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[BaCd(C3H2O4)2(H2O)4] | F(000) = 992 |
Mr = 525.90 | Dx = 2.770 Mg m−3 |
Orthorhombic, Pccn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ab 2ac | Cell parameters from 3576 reflections |
a = 18.809 (4) Å | θ = 3.1–26.4° |
b = 6.9224 (14) Å | µ = 4.85 mm−1 |
c = 9.6849 (19) Å | T = 294 K |
V = 1261.0 (4) Å3 | Prism, colorless |
Z = 4 | 0.24 × 0.20 × 0.10 mm |
Bruker SMART CCD area-detector diffractometer | 1103 independent reflections |
Radiation source: sealed tube | 978 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.059 |
φ and ω scans | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −22→10 |
Tmin = 0.370, Tmax = 0.662 | k = −8→8 |
5716 measured reflections | l = −10→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.060 | H-atom parameters constrained |
wR(F2) = 0.161 | w = 1/[σ2(Fo2) + (0.0364P)2 + 63.5907P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
1103 reflections | Δρmax = 1.94 e Å−3 |
94 parameters | Δρmin = −1.24 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0147 (13) |
[BaCd(C3H2O4)2(H2O)4] | V = 1261.0 (4) Å3 |
Mr = 525.90 | Z = 4 |
Orthorhombic, Pccn | Mo Kα radiation |
a = 18.809 (4) Å | µ = 4.85 mm−1 |
b = 6.9224 (14) Å | T = 294 K |
c = 9.6849 (19) Å | 0.24 × 0.20 × 0.10 mm |
Bruker SMART CCD area-detector diffractometer | 1103 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 978 reflections with I > 2σ(I) |
Tmin = 0.370, Tmax = 0.662 | Rint = 0.059 |
5716 measured reflections |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.161 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0364P)2 + 63.5907P] where P = (Fo2 + 2Fc2)/3 |
1103 reflections | Δρmax = 1.94 e Å−3 |
94 parameters | Δρmin = −1.24 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ba1 | 0.2500 | 0.2500 | 0.50669 (11) | 0.0320 (5) | |
Cd1 | 0.5000 | 0.5000 | 0.5000 | 0.0320 (6) | |
O1 | 0.5419 (5) | 0.2940 (12) | 0.0939 (9) | 0.030 (2) | |
O2 | 0.5475 (5) | 0.4394 (15) | 0.2939 (10) | 0.035 (2) | |
O3 | 0.4014 (5) | 0.3657 (15) | 0.4162 (9) | 0.034 (2) | |
O4 | 0.3196 (5) | 0.3410 (17) | 0.2530 (9) | 0.035 (2) | |
O5 | 0.3078 (5) | 0.5890 (15) | 0.6370 (11) | 0.041 (3) | |
H5B | 0.2892 | 0.6078 | 0.7177 | 0.061* | |
H5A | 0.3517 | 0.5665 | 0.6370 | 0.061* | |
O6 | 0.3163 (5) | −0.1005 (15) | 0.4378 (11) | 0.041 (2) | |
H6A | 0.3571 | −0.1227 | 0.4039 | 0.062* | |
H6B | 0.3010 | −0.1850 | 0.4966 | 0.062* | |
C1 | 0.5135 (7) | 0.3835 (18) | 0.1916 (14) | 0.029 (3) | |
C2 | 0.4344 (7) | 0.4323 (19) | 0.1784 (13) | 0.028 (3) | |
H2A | 0.4307 | 0.5714 | 0.1686 | 0.033* | |
H2B | 0.4178 | 0.3763 | 0.0924 | 0.033* | |
C3 | 0.3825 (7) | 0.3720 (19) | 0.2905 (15) | 0.030 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.0311 (8) | 0.0367 (8) | 0.0281 (7) | 0.0015 (5) | 0.000 | 0.000 |
Cd1 | 0.0341 (9) | 0.0357 (9) | 0.0261 (8) | −0.0001 (6) | −0.0021 (6) | −0.0004 (6) |
O1 | 0.035 (5) | 0.018 (4) | 0.037 (5) | −0.003 (4) | 0.005 (4) | −0.005 (4) |
O2 | 0.028 (5) | 0.045 (6) | 0.033 (5) | 0.004 (5) | −0.006 (4) | −0.007 (5) |
O3 | 0.031 (5) | 0.046 (6) | 0.026 (5) | −0.009 (4) | −0.002 (4) | 0.003 (4) |
O4 | 0.020 (5) | 0.052 (6) | 0.032 (5) | −0.010 (5) | −0.001 (4) | 0.001 (4) |
O5 | 0.030 (5) | 0.041 (6) | 0.052 (6) | 0.001 (5) | −0.006 (5) | −0.001 (5) |
O6 | 0.031 (5) | 0.044 (6) | 0.049 (6) | 0.004 (5) | 0.011 (5) | 0.006 (5) |
C1 | 0.031 (7) | 0.021 (6) | 0.034 (7) | 0.001 (5) | 0.000 (6) | 0.001 (5) |
C2 | 0.029 (7) | 0.029 (7) | 0.025 (6) | −0.003 (6) | 0.001 (6) | 0.000 (5) |
C3 | 0.032 (7) | 0.023 (7) | 0.036 (7) | 0.001 (6) | −0.002 (6) | −0.003 (6) |
Ba1—O4i | 2.794 (9) | Cd1—O1v | 2.364 (8) |
Ba1—O4ii | 2.794 (9) | Cd1—O1i | 2.364 (8) |
Ba1—O6iii | 2.809 (10) | O1—C1 | 1.252 (16) |
Ba1—O6 | 2.809 (10) | O1—Cd1vi | 2.364 (8) |
Ba1—O4iii | 2.854 (9) | O2—C1 | 1.241 (16) |
Ba1—O4 | 2.854 (9) | O3—C3 | 1.269 (17) |
Ba1—O5 | 2.877 (10) | O4—C3 | 1.255 (16) |
Ba1—O5iii | 2.877 (10) | O4—Ba1vii | 2.794 (9) |
Ba1—O3iii | 3.086 (9) | O5—H5B | 0.8658 |
Ba1—O3 | 3.086 (9) | O5—H5A | 0.8410 |
Ba1—C3iii | 3.363 (14) | O6—H6A | 0.8479 |
Ba1—C3 | 3.363 (14) | O6—H6B | 0.8659 |
Cd1—O2iv | 2.227 (10) | C1—C2 | 1.531 (18) |
Cd1—O2 | 2.227 (10) | C2—C3 | 1.518 (19) |
Cd1—O3iv | 2.227 (9) | C2—H2A | 0.9700 |
Cd1—O3 | 2.227 (9) | C2—H2B | 0.9700 |
O4i—Ba1—O4ii | 62.7 (4) | O4i—Ba1—C3 | 103.9 (3) |
O4i—Ba1—O6iii | 127.3 (3) | O4ii—Ba1—C3 | 145.4 (3) |
O4ii—Ba1—O6iii | 78.5 (3) | O6iii—Ba1—C3 | 88.0 (3) |
O4i—Ba1—O6 | 78.5 (3) | O6—Ba1—C3 | 74.9 (3) |
O4ii—Ba1—O6 | 127.3 (3) | O4iii—Ba1—C3 | 81.9 (3) |
O6iii—Ba1—O6 | 152.5 (4) | O4—Ba1—C3 | 21.3 (3) |
O4i—Ba1—O4iii | 154.2 (5) | O5—Ba1—C3 | 77.8 (3) |
O4ii—Ba1—O4iii | 124.7 (4) | O5iii—Ba1—C3 | 139.3 (3) |
O6iii—Ba1—O4iii | 77.4 (3) | O3iii—Ba1—C3 | 124.9 (3) |
O6—Ba1—O4iii | 79.0 (3) | O3—Ba1—C3 | 22.2 (3) |
O4i—Ba1—O4 | 124.7 (4) | C3iii—Ba1—C3 | 103.0 (5) |
O4ii—Ba1—O4 | 154.2 (5) | O2iv—Cd1—O2 | 180.000 (1) |
O6iii—Ba1—O4 | 79.0 (3) | O2iv—Cd1—O3iv | 85.9 (3) |
O6—Ba1—O4 | 77.4 (3) | O2—Cd1—O3iv | 94.1 (3) |
O4iii—Ba1—O4 | 61.2 (4) | O2iv—Cd1—O3 | 94.1 (3) |
O4i—Ba1—O5 | 68.4 (3) | O2—Cd1—O3 | 85.9 (3) |
O4ii—Ba1—O5 | 67.6 (3) | O3iv—Cd1—O3 | 180.0 (3) |
O6iii—Ba1—O5 | 64.4 (3) | O2iv—Cd1—O1v | 92.8 (3) |
O6—Ba1—O5 | 129.8 (3) | O2—Cd1—O1v | 87.2 (3) |
O4iii—Ba1—O5 | 136.9 (3) | O3iv—Cd1—O1v | 93.3 (3) |
O4—Ba1—O5 | 91.4 (3) | O3—Cd1—O1v | 86.7 (3) |
O4i—Ba1—O5iii | 67.6 (3) | O2iv—Cd1—O1i | 87.2 (3) |
O4ii—Ba1—O5iii | 68.4 (3) | O2—Cd1—O1i | 92.8 (3) |
O6iii—Ba1—O5iii | 129.8 (3) | O3iv—Cd1—O1i | 86.7 (3) |
O6—Ba1—O5iii | 64.4 (3) | O3—Cd1—O1i | 93.3 (3) |
O4iii—Ba1—O5iii | 91.4 (3) | O1v—Cd1—O1i | 180.0 (4) |
O4—Ba1—O5iii | 136.9 (3) | C1—O1—Cd1vi | 125.1 (8) |
O5—Ba1—O5iii | 128.0 (4) | C1—O2—Cd1 | 124.6 (9) |
O4i—Ba1—O3iii | 128.1 (3) | C3—O3—Cd1 | 124.7 (9) |
O4ii—Ba1—O3iii | 82.4 (3) | C3—O3—Ba1 | 91.3 (8) |
O6iii—Ba1—O3iii | 75.3 (3) | Cd1—O3—Ba1 | 140.6 (4) |
O6—Ba1—O3iii | 96.8 (3) | C3—O4—Ba1vii | 136.6 (9) |
O4iii—Ba1—O3iii | 43.5 (3) | C3—O4—Ba1 | 102.8 (8) |
O4—Ba1—O3iii | 103.7 (3) | Ba1vii—O4—Ba1 | 118.0 (3) |
O5—Ba1—O3iii | 133.2 (3) | Ba1—O5—H5B | 111.5 |
O5iii—Ba1—O3iii | 64.2 (3) | Ba1—O5—H5A | 102.7 |
O4i—Ba1—O3 | 82.4 (3) | H5B—O5—H5A | 115.1 |
O4ii—Ba1—O3 | 128.1 (3) | Ba1—O6—H6A | 130.6 |
O6iii—Ba1—O3 | 96.8 (3) | Ba1—O6—H6B | 106.2 |
O6—Ba1—O3 | 75.3 (3) | H6A—O6—H6B | 115.7 |
O4iii—Ba1—O3 | 103.7 (3) | O2—C1—O1 | 122.6 (12) |
O4—Ba1—O3 | 43.5 (3) | O2—C1—C2 | 119.9 (12) |
O5—Ba1—O3 | 64.2 (3) | O1—C1—C2 | 117.4 (12) |
O5iii—Ba1—O3 | 133.2 (3) | C3—C2—C1 | 120.2 (11) |
O3iii—Ba1—O3 | 147.0 (3) | C3—C2—H2A | 107.3 |
O4i—Ba1—C3iii | 145.3 (3) | C1—C2—H2A | 107.3 |
O4ii—Ba1—C3iii | 103.9 (3) | C3—C2—H2B | 107.3 |
O6iii—Ba1—C3iii | 74.9 (3) | C1—C2—H2B | 107.3 |
O6—Ba1—C3iii | 88.0 (3) | H2A—C2—H2B | 106.9 |
O4iii—Ba1—C3iii | 21.3 (3) | O4—C3—O3 | 122.4 (13) |
O4—Ba1—C3iii | 81.9 (3) | O4—C3—C2 | 116.4 (12) |
O5—Ba1—C3iii | 139.3 (3) | O3—C3—C2 | 121.0 (12) |
O5iii—Ba1—C3iii | 77.8 (3) | O4—C3—Ba1 | 55.9 (7) |
O3iii—Ba1—C3iii | 22.2 (3) | O3—C3—Ba1 | 66.6 (7) |
O3—Ba1—C3iii | 124.9 (3) | C2—C3—Ba1 | 172.1 (9) |
O3iv—Cd1—O2—C1 | −170.4 (11) | O6—Ba1—O4—Ba1vii | 84.2 (4) |
O3—Cd1—O2—C1 | 9.6 (11) | O4iii—Ba1—O4—Ba1vii | 0.0 |
O1v—Cd1—O2—C1 | −77.2 (11) | O5—Ba1—O4—Ba1vii | −145.1 (4) |
O1i—Cd1—O2—C1 | 102.8 (11) | O5iii—Ba1—O4—Ba1vii | 56.8 (6) |
O2iv—Cd1—O3—C3 | 148.6 (11) | O3iii—Ba1—O4—Ba1vii | −9.8 (5) |
O2—Cd1—O3—C3 | −31.4 (11) | O3—Ba1—O4—Ba1vii | 166.0 (7) |
O1v—Cd1—O3—C3 | 56.0 (11) | C3iii—Ba1—O4—Ba1vii | −5.5 (4) |
O1i—Cd1—O3—C3 | −124.0 (11) | C3—Ba1—O4—Ba1vii | 164.9 (12) |
O2iv—Cd1—O3—Ba1 | −3.7 (7) | Cd1—O2—C1—O1 | −156.7 (9) |
O2—Cd1—O3—Ba1 | 176.3 (7) | Cd1—O2—C1—C2 | 26.4 (17) |
O1v—Cd1—O3—Ba1 | −96.3 (6) | Cd1vi—O1—C1—O2 | 129.4 (11) |
O1i—Cd1—O3—Ba1 | 83.7 (6) | Cd1vi—O1—C1—C2 | −53.6 (14) |
O4i—Ba1—O3—C3 | 166.0 (8) | O2—C1—C2—C3 | −57.2 (17) |
O4ii—Ba1—O3—C3 | −147.8 (8) | O1—C1—C2—C3 | 125.7 (13) |
O6iii—Ba1—O3—C3 | −67.2 (8) | Ba1vii—O4—C3—O3 | −162.7 (10) |
O6—Ba1—O3—C3 | 86.0 (8) | Ba1—O4—C3—O3 | −2.2 (15) |
O4iii—Ba1—O3—C3 | 11.5 (8) | Ba1vii—O4—C3—C2 | 22 (2) |
O4—Ba1—O3—C3 | −1.1 (7) | Ba1—O4—C3—C2 | −177.9 (9) |
O5—Ba1—O3—C3 | −124.4 (9) | Ba1vii—O4—C3—Ba1 | −160.5 (15) |
O5iii—Ba1—O3—C3 | 116.7 (8) | Cd1—O3—C3—O4 | −160.9 (10) |
O3iii—Ba1—O3—C3 | 6.3 (7) | Ba1—O3—C3—O4 | 2.0 (14) |
C3iii—Ba1—O3—C3 | 9.2 (11) | Cd1—O3—C3—C2 | 14.7 (18) |
O4i—Ba1—O3—Cd1 | −36.5 (7) | Ba1—O3—C3—C2 | 177.5 (11) |
O4ii—Ba1—O3—Cd1 | 9.7 (8) | Cd1—O3—C3—Ba1 | −162.9 (10) |
O6iii—Ba1—O3—Cd1 | 90.4 (7) | C1—C2—C3—O4 | −151.1 (13) |
O6—Ba1—O3—Cd1 | −116.5 (7) | C1—C2—C3—O3 | 33.1 (19) |
O4iii—Ba1—O3—Cd1 | 169.0 (6) | O4i—Ba1—C3—O4 | 167.7 (7) |
O4—Ba1—O3—Cd1 | 156.5 (9) | O4ii—Ba1—C3—O4 | −130.5 (10) |
O5—Ba1—O3—Cd1 | 33.2 (6) | O6iii—Ba1—C3—O4 | −64.3 (9) |
O5iii—Ba1—O3—Cd1 | −85.7 (7) | O6—Ba1—C3—O4 | 94.0 (9) |
O3iii—Ba1—O3—Cd1 | 163.8 (7) | O4iii—Ba1—C3—O4 | 13.3 (10) |
C3iii—Ba1—O3—Cd1 | 166.7 (6) | O5—Ba1—C3—O4 | −128.5 (9) |
C3—Ba1—O3—Cd1 | 157.5 (13) | O5iii—Ba1—C3—O4 | 96.0 (9) |
O4i—Ba1—O4—C3 | −14.5 (8) | O3iii—Ba1—C3—O4 | 6.2 (10) |
O4ii—Ba1—O4—C3 | 84.2 (9) | O3—Ba1—C3—O4 | −178.0 (14) |
O6iii—Ba1—O4—C3 | 113.5 (9) | C3iii—Ba1—C3—O4 | 9.7 (8) |
O6—Ba1—O4—C3 | −80.7 (9) | O4i—Ba1—C3—O3 | −14.3 (8) |
O4iii—Ba1—O4—C3 | −164.9 (12) | O4ii—Ba1—C3—O3 | 47.5 (10) |
O5—Ba1—O4—C3 | 49.9 (9) | O6iii—Ba1—C3—O3 | 113.7 (8) |
O5iii—Ba1—O4—C3 | −108.1 (9) | O6—Ba1—C3—O3 | −88.0 (8) |
O3iii—Ba1—O4—C3 | −174.8 (9) | O4iii—Ba1—C3—O3 | −168.7 (8) |
O3—Ba1—O4—C3 | 1.1 (8) | O4—Ba1—C3—O3 | 178.0 (14) |
C3iii—Ba1—O4—C3 | −170.4 (8) | O5—Ba1—C3—O3 | 49.5 (8) |
O4i—Ba1—O4—Ba1vii | 150.4 (5) | O5iii—Ba1—C3—O3 | −86.0 (9) |
O4ii—Ba1—O4—Ba1vii | −110.9 (6) | O3iii—Ba1—C3—O3 | −175.8 (5) |
O6iii—Ba1—O4—Ba1vii | −81.6 (4) | C3iii—Ba1—C3—O3 | −172.3 (9) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1/2, y, z+1/2; (iii) −x+1/2, −y+1/2, z; (iv) −x+1, −y+1, −z+1; (v) −x+1, y+1/2, −z+1/2; (vi) −x+1, y−1/2, −z+1/2; (vii) −x+1/2, y, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6B···O5viii | 0.87 | 2.08 | 2.893 (14) | 157 |
O6—H6A···O1vi | 0.85 | 1.99 | 2.781 (13) | 156 |
O5—H5B···O6i | 0.87 | 2.19 | 2.919 (15) | 141 |
O5—H5A···O2iv | 0.84 | 2.01 | 2.810 (14) | 159 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z+1; (vi) −x+1, y−1/2, −z+1/2; (viii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [BaCd(C3H2O4)2(H2O)4] |
Mr | 525.90 |
Crystal system, space group | Orthorhombic, Pccn |
Temperature (K) | 294 |
a, b, c (Å) | 18.809 (4), 6.9224 (14), 9.6849 (19) |
V (Å3) | 1261.0 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.85 |
Crystal size (mm) | 0.24 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.370, 0.662 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5716, 1103, 978 |
Rint | 0.059 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.161, 1.06 |
No. of reflections | 1103 |
No. of parameters | 94 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0364P)2 + 63.5907P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.94, −1.24 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Ba1—O4i | 2.794 (9) | Cd1—O2iv | 2.227 (10) |
Ba1—O4ii | 2.794 (9) | Cd1—O3 | 2.227 (9) |
Ba1—O6iii | 2.809 (10) | Cd1—O1v | 2.364 (8) |
Ba1—O6 | 2.809 (10) | O1—C1 | 1.252 (16) |
Ba1—O4iii | 2.854 (9) | O2—C1 | 1.241 (16) |
Ba1—O4 | 2.854 (9) | O3—C3 | 1.269 (17) |
Ba1—O5 | 2.877 (10) | O4—C3 | 1.255 (16) |
Ba1—O5iii | 2.877 (10) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1/2, y, z+1/2; (iii) −x+1/2, −y+1/2, z; (iv) −x+1, −y+1, −z+1; (v) −x+1, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6B···O5vi | 0.87 | 2.08 | 2.893 (14) | 156.8 |
O6—H6A···O1vii | 0.85 | 1.99 | 2.781 (13) | 156.0 |
O5—H5B···O6i | 0.87 | 2.19 | 2.919 (15) | 141.3 |
O5—H5A···O2iv | 0.84 | 2.01 | 2.810 (14) | 158.5 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z+1; (vi) x, y−1, z; (vii) −x+1, y−1/2, −z+1/2. |
Acknowledgements
We thank Tianjin Polytechnic University for financial support.
References
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Delgado, F. S., Sanchiz, J., Ruis-Perez, C., Lloret, F. & Julve, M. (2004). CrystEngComm, 6, 443–450. Web of Science CSD CrossRef CAS Google Scholar
Djeghri, A., Balegroune, F., Guehria-Laidoudi, A. & Toupet, L. (2005). J. Chem. Crystallogr. 35, 603–607. Web of Science CSD CrossRef CAS Google Scholar
Guo, M.-L. & Guo, C.-H. (2006). Acta Cryst. C62, m7–m9. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The malonate dianion, with two neighboring carboxylate groups, is a very flexible ligand. Its basic coordination mode is as a chelate via two distal carboxylate oxygen atoms to form a six-membered ring and the coordinating ability of the nonchelating oxygen atoms makes the formation of polymeric networks possible (Djeghri et al., 2005; Guo & Guo, 2006). On the other hand, malonate can also coordinate in monodentate, chelated bidentate and bridging modes to create various molecular architectures (Delgado et al., 2004). Herein, we report the structure of the title heterobimetallic malonate complex, (I). It and the chemically similar complex poly[tetraaqua-di-mu4-malonato-barium(II)zinc(II)] (Guo & Guo, 2006) are isotypic.
The asymmetric unit in the structure of (I) comprises half a BaII cation, half a CdII cation, a complete malonate dianion defined by C1—C3/O1—O4 and two independent water molecules involving O5 and O6. Fig. 1 shows a symmetry-expanded view which displays the full coordination of the Ba2+ and Cd2+ centers. Selected geometric parameters are given in Table 1.
The Ba2+ cation, lying on a crystallographic twofold axis, is eight-coordinate, bonded to oxygen atoms of four different malonate groups and four water molecules with Ba—O distances ranging from 2.793 (9) to 2.878 (10) Å. The Ba polyhedra may be described as slightly distorted square antiprisms. They share edges to form chains propagating along c.
The Cd2+ cations, lie on crystallographic centres of symmetry, and have distorted octahedral coordination, with O2 and O3 of two bidentate malonate anions at the equatorial sites and two O1 atoms from two other malonate anions at the apical sites.
Also evident in Fig. 1 is the variability of the coordination modes of the malonate dianion with monodentate (O1), bidentate chelating (O2 and O3) and bridging (O4) bonding modes all present.
The structure as a whole consists of two distinct types of layer, both parallel to (100) and stacked alternately in the direction of a. The first of these (Fig. 2) is composed entirely of CdII ions and malonate dianions and occurs at x = 0 and 1/2. The other type of layer, type 2, alternating with the first and centred on x = 1/4 and 3/4 contains, primarily, the Ba ions and the water molecules. Two forms of connectivity occur within the type 2 layers. First of all O4 atoms on the surfaces of the type 1 layers create chains of edge sharing Ba polyhedra propagating along c and at the same time link the two types of layer and complete the three-dimensional connectivity of the structure. The interlayer connectivity is further enhanced by the hydrogen bonds of the form O5—H5A···O2iv and O6—H6A···O1vi given in Table 2.