metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tetra­aqua-di-μ4-malonato-barium(II)cadmium(II)]

aSchool of Environment and Chemical Engineering and, Key Laboratory of Hollow Fiber Membrane Materials & Membrane Processes, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China
*Correspondence e-mail: guomlin@yahoo.com

(Received 21 November 2010; accepted 29 November 2010; online 4 December 2010)

In the title complex, [BaCd(C3H2O4)2(H2O)4]n, the BaII atoms, located on crystallographic twofold axes, adopt slightly distorted square-anti­prismatic coordination geometries, while the CdII atoms, which lie on crystallographic centres of symmetry, have a distorted octa­hedral coordination. Each malonate dianion binds two different CdII atoms and two different BaII atoms. This connectivity generates alternating layers along [100] in the structure, with one type containing CdII cations and malonate dianions, while the other is primarily composed of BaII ions and coordinated water mol­ecules. The water mol­ecules also participate in extensive O—H⋯O hydrogen bonding.

Related literature

For structural studies on the malonate dianion with its versatile coordination patterns, see: Delgado et al. (2004[Delgado, F. S., Sanchiz, J., Ruis-Perez, C., Lloret, F. & Julve, M. (2004). CrystEngComm, 6, 443-450.]). For related structures, see Djeghri et al. (2005[Djeghri, A., Balegroune, F., Guehria-Laidoudi, A. & Toupet, L. (2005). J. Chem. Crystallogr. 35, 603-607.]); Guo & Guo (2006[Guo, M.-L. & Guo, C.-H. (2006). Acta Cryst. C62, m7-m9.]).

[Scheme 1]

Experimental

Crystal data
  • [BaCd(C3H2O4)2(H2O)4]

  • Mr = 525.90

  • Orthorhombic, P c c n

  • a = 18.809 (4) Å

  • b = 6.9224 (14) Å

  • c = 9.6849 (19) Å

  • V = 1261.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.85 mm−1

  • T = 294 K

  • 0.24 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.370, Tmax = 0.662

  • 5716 measured reflections

  • 1103 independent reflections

  • 978 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.161

  • S = 1.06

  • 1103 reflections

  • 94 parameters

  • H-atom parameters constrained

  • Δρmax = 1.94 e Å−3

  • Δρmin = −1.24 e Å−3

Table 1
Selected bond lengths (Å)

Ba1—O4i 2.794 (9)
Ba1—O6 2.809 (10)
Ba1—O4 2.854 (9)
Ba1—O5 2.877 (10)
Cd1—O2ii 2.227 (10)
Cd1—O3 2.227 (9)
Cd1—O1iii 2.364 (8)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6B⋯O5iii 0.87 2.08 2.893 (14) 157
O6—H6A⋯O1iv 0.85 1.99 2.781 (13) 156
O5—H5B⋯O6i 0.87 2.19 2.919 (15) 141
O5—H5A⋯O2ii 0.84 2.01 2.810 (14) 159
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The malonate dianion, with two neighboring carboxylate groups, is a very flexible ligand. Its basic coordination mode is as a chelate via two distal carboxylate oxygen atoms to form a six-membered ring and the coordinating ability of the nonchelating oxygen atoms makes the formation of polymeric networks possible (Djeghri et al., 2005; Guo & Guo, 2006). On the other hand, malonate can also coordinate in monodentate, chelated bidentate and bridging modes to create various molecular architectures (Delgado et al., 2004). Herein, we report the structure of the title heterobimetallic malonate complex, (I). It and the chemically similar complex poly[tetraaqua-di-mu4-malonato-barium(II)zinc(II)] (Guo & Guo, 2006) are isotypic.

The asymmetric unit in the structure of (I) comprises half a BaII cation, half a CdII cation, a complete malonate dianion defined by C1—C3/O1—O4 and two independent water molecules involving O5 and O6. Fig. 1 shows a symmetry-expanded view which displays the full coordination of the Ba2+ and Cd2+ centers. Selected geometric parameters are given in Table 1.

The Ba2+ cation, lying on a crystallographic twofold axis, is eight-coordinate, bonded to oxygen atoms of four different malonate groups and four water molecules with Ba—O distances ranging from 2.793 (9) to 2.878 (10) Å. The Ba polyhedra may be described as slightly distorted square antiprisms. They share edges to form chains propagating along c.

The Cd2+ cations, lie on crystallographic centres of symmetry, and have distorted octahedral coordination, with O2 and O3 of two bidentate malonate anions at the equatorial sites and two O1 atoms from two other malonate anions at the apical sites.

Also evident in Fig. 1 is the variability of the coordination modes of the malonate dianion with monodentate (O1), bidentate chelating (O2 and O3) and bridging (O4) bonding modes all present.

The structure as a whole consists of two distinct types of layer, both parallel to (100) and stacked alternately in the direction of a. The first of these (Fig. 2) is composed entirely of CdII ions and malonate dianions and occurs at x = 0 and 1/2. The other type of layer, type 2, alternating with the first and centred on x = 1/4 and 3/4 contains, primarily, the Ba ions and the water molecules. Two forms of connectivity occur within the type 2 layers. First of all O4 atoms on the surfaces of the type 1 layers create chains of edge sharing Ba polyhedra propagating along c and at the same time link the two types of layer and complete the three-dimensional connectivity of the structure. The interlayer connectivity is further enhanced by the hydrogen bonds of the form O5—H5A···O2iv and O6—H6A···O1vi given in Table 2.

Related literature top

For structural studies on the malonate dianion with its versatile coordination patterns, see: Delgado et al. (2004). For related structures, see Djeghri et al. (2005); Guo & Guo (2006).

Experimental top

The title complex was prepared under continuous stirring with successive addition of malonic acid (0.43 g, 4 mmol), cadmium(II) chloride (0.37 g, 2 mmol) and Ba(OH)2.8H2O (0.63 g, 2 mmol) to distilled water (40 ml) at room temperature. After filtration, slow evaporation over a period of a week at room temperature provided colorless plate-like crystals of (I).

Refinement top

The H atoms of the water molecule were found in difference Fourier maps and during refinement were fixed at an O–H distance of 0.85 Å, and with Uiso(H) = 1.2 Ueq(O). The H atoms of C–H groups were placed geometrically and during refinement were treated using a riding model, with C–H = 0.97 Å, and with Uiso(H) = 1.2 Ueq(C).

Structure description top

The malonate dianion, with two neighboring carboxylate groups, is a very flexible ligand. Its basic coordination mode is as a chelate via two distal carboxylate oxygen atoms to form a six-membered ring and the coordinating ability of the nonchelating oxygen atoms makes the formation of polymeric networks possible (Djeghri et al., 2005; Guo & Guo, 2006). On the other hand, malonate can also coordinate in monodentate, chelated bidentate and bridging modes to create various molecular architectures (Delgado et al., 2004). Herein, we report the structure of the title heterobimetallic malonate complex, (I). It and the chemically similar complex poly[tetraaqua-di-mu4-malonato-barium(II)zinc(II)] (Guo & Guo, 2006) are isotypic.

The asymmetric unit in the structure of (I) comprises half a BaII cation, half a CdII cation, a complete malonate dianion defined by C1—C3/O1—O4 and two independent water molecules involving O5 and O6. Fig. 1 shows a symmetry-expanded view which displays the full coordination of the Ba2+ and Cd2+ centers. Selected geometric parameters are given in Table 1.

The Ba2+ cation, lying on a crystallographic twofold axis, is eight-coordinate, bonded to oxygen atoms of four different malonate groups and four water molecules with Ba—O distances ranging from 2.793 (9) to 2.878 (10) Å. The Ba polyhedra may be described as slightly distorted square antiprisms. They share edges to form chains propagating along c.

The Cd2+ cations, lie on crystallographic centres of symmetry, and have distorted octahedral coordination, with O2 and O3 of two bidentate malonate anions at the equatorial sites and two O1 atoms from two other malonate anions at the apical sites.

Also evident in Fig. 1 is the variability of the coordination modes of the malonate dianion with monodentate (O1), bidentate chelating (O2 and O3) and bridging (O4) bonding modes all present.

The structure as a whole consists of two distinct types of layer, both parallel to (100) and stacked alternately in the direction of a. The first of these (Fig. 2) is composed entirely of CdII ions and malonate dianions and occurs at x = 0 and 1/2. The other type of layer, type 2, alternating with the first and centred on x = 1/4 and 3/4 contains, primarily, the Ba ions and the water molecules. Two forms of connectivity occur within the type 2 layers. First of all O4 atoms on the surfaces of the type 1 layers create chains of edge sharing Ba polyhedra propagating along c and at the same time link the two types of layer and complete the three-dimensional connectivity of the structure. The interlayer connectivity is further enhanced by the hydrogen bonds of the form O5—H5A···O2iv and O6—H6A···O1vi given in Table 2.

For structural studies on the malonate dianion with its versatile coordination patterns, see: Delgado et al. (2004). For related structures, see Djeghri et al. (2005); Guo & Guo (2006).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination of the metal ions in (I). Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes (i) x, -y + 1/2, z + 1/2; (ii) -x + 1/2, y, z + 1/2; (iii) -x + 1/2, -y + 1/2, z; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 1, y + 1/2, -z + 1/2.
[Figure 2] Fig. 2. A view, approximately along the b axis, showing the alternation of type 1 and type 2 layers along the a axis.
Poly[tetraaqua-di-µ4-malonato-barium(II)cadmium(II)] top
Crystal data top
[BaCd(C3H2O4)2(H2O)4]F(000) = 992
Mr = 525.90Dx = 2.770 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 3576 reflections
a = 18.809 (4) Åθ = 3.1–26.4°
b = 6.9224 (14) ŵ = 4.85 mm1
c = 9.6849 (19) ÅT = 294 K
V = 1261.0 (4) Å3Prism, colorless
Z = 40.24 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1103 independent reflections
Radiation source: sealed tube978 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 2210
Tmin = 0.370, Tmax = 0.662k = 88
5716 measured reflectionsl = 1011
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0364P)2 + 63.5907P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1103 reflectionsΔρmax = 1.94 e Å3
94 parametersΔρmin = 1.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0147 (13)
Crystal data top
[BaCd(C3H2O4)2(H2O)4]V = 1261.0 (4) Å3
Mr = 525.90Z = 4
Orthorhombic, PccnMo Kα radiation
a = 18.809 (4) ŵ = 4.85 mm1
b = 6.9224 (14) ÅT = 294 K
c = 9.6849 (19) Å0.24 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1103 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
978 reflections with I > 2σ(I)
Tmin = 0.370, Tmax = 0.662Rint = 0.059
5716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0364P)2 + 63.5907P]
where P = (Fo2 + 2Fc2)/3
1103 reflectionsΔρmax = 1.94 e Å3
94 parametersΔρmin = 1.24 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.25000.25000.50669 (11)0.0320 (5)
Cd10.50000.50000.50000.0320 (6)
O10.5419 (5)0.2940 (12)0.0939 (9)0.030 (2)
O20.5475 (5)0.4394 (15)0.2939 (10)0.035 (2)
O30.4014 (5)0.3657 (15)0.4162 (9)0.034 (2)
O40.3196 (5)0.3410 (17)0.2530 (9)0.035 (2)
O50.3078 (5)0.5890 (15)0.6370 (11)0.041 (3)
H5B0.28920.60780.71770.061*
H5A0.35170.56650.63700.061*
O60.3163 (5)0.1005 (15)0.4378 (11)0.041 (2)
H6A0.35710.12270.40390.062*
H6B0.30100.18500.49660.062*
C10.5135 (7)0.3835 (18)0.1916 (14)0.029 (3)
C20.4344 (7)0.4323 (19)0.1784 (13)0.028 (3)
H2A0.43070.57140.16860.033*
H2B0.41780.37630.09240.033*
C30.3825 (7)0.3720 (19)0.2905 (15)0.030 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0311 (8)0.0367 (8)0.0281 (7)0.0015 (5)0.0000.000
Cd10.0341 (9)0.0357 (9)0.0261 (8)0.0001 (6)0.0021 (6)0.0004 (6)
O10.035 (5)0.018 (4)0.037 (5)0.003 (4)0.005 (4)0.005 (4)
O20.028 (5)0.045 (6)0.033 (5)0.004 (5)0.006 (4)0.007 (5)
O30.031 (5)0.046 (6)0.026 (5)0.009 (4)0.002 (4)0.003 (4)
O40.020 (5)0.052 (6)0.032 (5)0.010 (5)0.001 (4)0.001 (4)
O50.030 (5)0.041 (6)0.052 (6)0.001 (5)0.006 (5)0.001 (5)
O60.031 (5)0.044 (6)0.049 (6)0.004 (5)0.011 (5)0.006 (5)
C10.031 (7)0.021 (6)0.034 (7)0.001 (5)0.000 (6)0.001 (5)
C20.029 (7)0.029 (7)0.025 (6)0.003 (6)0.001 (6)0.000 (5)
C30.032 (7)0.023 (7)0.036 (7)0.001 (6)0.002 (6)0.003 (6)
Geometric parameters (Å, º) top
Ba1—O4i2.794 (9)Cd1—O1v2.364 (8)
Ba1—O4ii2.794 (9)Cd1—O1i2.364 (8)
Ba1—O6iii2.809 (10)O1—C11.252 (16)
Ba1—O62.809 (10)O1—Cd1vi2.364 (8)
Ba1—O4iii2.854 (9)O2—C11.241 (16)
Ba1—O42.854 (9)O3—C31.269 (17)
Ba1—O52.877 (10)O4—C31.255 (16)
Ba1—O5iii2.877 (10)O4—Ba1vii2.794 (9)
Ba1—O3iii3.086 (9)O5—H5B0.8658
Ba1—O33.086 (9)O5—H5A0.8410
Ba1—C3iii3.363 (14)O6—H6A0.8479
Ba1—C33.363 (14)O6—H6B0.8659
Cd1—O2iv2.227 (10)C1—C21.531 (18)
Cd1—O22.227 (10)C2—C31.518 (19)
Cd1—O3iv2.227 (9)C2—H2A0.9700
Cd1—O32.227 (9)C2—H2B0.9700
O4i—Ba1—O4ii62.7 (4)O4i—Ba1—C3103.9 (3)
O4i—Ba1—O6iii127.3 (3)O4ii—Ba1—C3145.4 (3)
O4ii—Ba1—O6iii78.5 (3)O6iii—Ba1—C388.0 (3)
O4i—Ba1—O678.5 (3)O6—Ba1—C374.9 (3)
O4ii—Ba1—O6127.3 (3)O4iii—Ba1—C381.9 (3)
O6iii—Ba1—O6152.5 (4)O4—Ba1—C321.3 (3)
O4i—Ba1—O4iii154.2 (5)O5—Ba1—C377.8 (3)
O4ii—Ba1—O4iii124.7 (4)O5iii—Ba1—C3139.3 (3)
O6iii—Ba1—O4iii77.4 (3)O3iii—Ba1—C3124.9 (3)
O6—Ba1—O4iii79.0 (3)O3—Ba1—C322.2 (3)
O4i—Ba1—O4124.7 (4)C3iii—Ba1—C3103.0 (5)
O4ii—Ba1—O4154.2 (5)O2iv—Cd1—O2180.000 (1)
O6iii—Ba1—O479.0 (3)O2iv—Cd1—O3iv85.9 (3)
O6—Ba1—O477.4 (3)O2—Cd1—O3iv94.1 (3)
O4iii—Ba1—O461.2 (4)O2iv—Cd1—O394.1 (3)
O4i—Ba1—O568.4 (3)O2—Cd1—O385.9 (3)
O4ii—Ba1—O567.6 (3)O3iv—Cd1—O3180.0 (3)
O6iii—Ba1—O564.4 (3)O2iv—Cd1—O1v92.8 (3)
O6—Ba1—O5129.8 (3)O2—Cd1—O1v87.2 (3)
O4iii—Ba1—O5136.9 (3)O3iv—Cd1—O1v93.3 (3)
O4—Ba1—O591.4 (3)O3—Cd1—O1v86.7 (3)
O4i—Ba1—O5iii67.6 (3)O2iv—Cd1—O1i87.2 (3)
O4ii—Ba1—O5iii68.4 (3)O2—Cd1—O1i92.8 (3)
O6iii—Ba1—O5iii129.8 (3)O3iv—Cd1—O1i86.7 (3)
O6—Ba1—O5iii64.4 (3)O3—Cd1—O1i93.3 (3)
O4iii—Ba1—O5iii91.4 (3)O1v—Cd1—O1i180.0 (4)
O4—Ba1—O5iii136.9 (3)C1—O1—Cd1vi125.1 (8)
O5—Ba1—O5iii128.0 (4)C1—O2—Cd1124.6 (9)
O4i—Ba1—O3iii128.1 (3)C3—O3—Cd1124.7 (9)
O4ii—Ba1—O3iii82.4 (3)C3—O3—Ba191.3 (8)
O6iii—Ba1—O3iii75.3 (3)Cd1—O3—Ba1140.6 (4)
O6—Ba1—O3iii96.8 (3)C3—O4—Ba1vii136.6 (9)
O4iii—Ba1—O3iii43.5 (3)C3—O4—Ba1102.8 (8)
O4—Ba1—O3iii103.7 (3)Ba1vii—O4—Ba1118.0 (3)
O5—Ba1—O3iii133.2 (3)Ba1—O5—H5B111.5
O5iii—Ba1—O3iii64.2 (3)Ba1—O5—H5A102.7
O4i—Ba1—O382.4 (3)H5B—O5—H5A115.1
O4ii—Ba1—O3128.1 (3)Ba1—O6—H6A130.6
O6iii—Ba1—O396.8 (3)Ba1—O6—H6B106.2
O6—Ba1—O375.3 (3)H6A—O6—H6B115.7
O4iii—Ba1—O3103.7 (3)O2—C1—O1122.6 (12)
O4—Ba1—O343.5 (3)O2—C1—C2119.9 (12)
O5—Ba1—O364.2 (3)O1—C1—C2117.4 (12)
O5iii—Ba1—O3133.2 (3)C3—C2—C1120.2 (11)
O3iii—Ba1—O3147.0 (3)C3—C2—H2A107.3
O4i—Ba1—C3iii145.3 (3)C1—C2—H2A107.3
O4ii—Ba1—C3iii103.9 (3)C3—C2—H2B107.3
O6iii—Ba1—C3iii74.9 (3)C1—C2—H2B107.3
O6—Ba1—C3iii88.0 (3)H2A—C2—H2B106.9
O4iii—Ba1—C3iii21.3 (3)O4—C3—O3122.4 (13)
O4—Ba1—C3iii81.9 (3)O4—C3—C2116.4 (12)
O5—Ba1—C3iii139.3 (3)O3—C3—C2121.0 (12)
O5iii—Ba1—C3iii77.8 (3)O4—C3—Ba155.9 (7)
O3iii—Ba1—C3iii22.2 (3)O3—C3—Ba166.6 (7)
O3—Ba1—C3iii124.9 (3)C2—C3—Ba1172.1 (9)
O3iv—Cd1—O2—C1170.4 (11)O6—Ba1—O4—Ba1vii84.2 (4)
O3—Cd1—O2—C19.6 (11)O4iii—Ba1—O4—Ba1vii0.0
O1v—Cd1—O2—C177.2 (11)O5—Ba1—O4—Ba1vii145.1 (4)
O1i—Cd1—O2—C1102.8 (11)O5iii—Ba1—O4—Ba1vii56.8 (6)
O2iv—Cd1—O3—C3148.6 (11)O3iii—Ba1—O4—Ba1vii9.8 (5)
O2—Cd1—O3—C331.4 (11)O3—Ba1—O4—Ba1vii166.0 (7)
O1v—Cd1—O3—C356.0 (11)C3iii—Ba1—O4—Ba1vii5.5 (4)
O1i—Cd1—O3—C3124.0 (11)C3—Ba1—O4—Ba1vii164.9 (12)
O2iv—Cd1—O3—Ba13.7 (7)Cd1—O2—C1—O1156.7 (9)
O2—Cd1—O3—Ba1176.3 (7)Cd1—O2—C1—C226.4 (17)
O1v—Cd1—O3—Ba196.3 (6)Cd1vi—O1—C1—O2129.4 (11)
O1i—Cd1—O3—Ba183.7 (6)Cd1vi—O1—C1—C253.6 (14)
O4i—Ba1—O3—C3166.0 (8)O2—C1—C2—C357.2 (17)
O4ii—Ba1—O3—C3147.8 (8)O1—C1—C2—C3125.7 (13)
O6iii—Ba1—O3—C367.2 (8)Ba1vii—O4—C3—O3162.7 (10)
O6—Ba1—O3—C386.0 (8)Ba1—O4—C3—O32.2 (15)
O4iii—Ba1—O3—C311.5 (8)Ba1vii—O4—C3—C222 (2)
O4—Ba1—O3—C31.1 (7)Ba1—O4—C3—C2177.9 (9)
O5—Ba1—O3—C3124.4 (9)Ba1vii—O4—C3—Ba1160.5 (15)
O5iii—Ba1—O3—C3116.7 (8)Cd1—O3—C3—O4160.9 (10)
O3iii—Ba1—O3—C36.3 (7)Ba1—O3—C3—O42.0 (14)
C3iii—Ba1—O3—C39.2 (11)Cd1—O3—C3—C214.7 (18)
O4i—Ba1—O3—Cd136.5 (7)Ba1—O3—C3—C2177.5 (11)
O4ii—Ba1—O3—Cd19.7 (8)Cd1—O3—C3—Ba1162.9 (10)
O6iii—Ba1—O3—Cd190.4 (7)C1—C2—C3—O4151.1 (13)
O6—Ba1—O3—Cd1116.5 (7)C1—C2—C3—O333.1 (19)
O4iii—Ba1—O3—Cd1169.0 (6)O4i—Ba1—C3—O4167.7 (7)
O4—Ba1—O3—Cd1156.5 (9)O4ii—Ba1—C3—O4130.5 (10)
O5—Ba1—O3—Cd133.2 (6)O6iii—Ba1—C3—O464.3 (9)
O5iii—Ba1—O3—Cd185.7 (7)O6—Ba1—C3—O494.0 (9)
O3iii—Ba1—O3—Cd1163.8 (7)O4iii—Ba1—C3—O413.3 (10)
C3iii—Ba1—O3—Cd1166.7 (6)O5—Ba1—C3—O4128.5 (9)
C3—Ba1—O3—Cd1157.5 (13)O5iii—Ba1—C3—O496.0 (9)
O4i—Ba1—O4—C314.5 (8)O3iii—Ba1—C3—O46.2 (10)
O4ii—Ba1—O4—C384.2 (9)O3—Ba1—C3—O4178.0 (14)
O6iii—Ba1—O4—C3113.5 (9)C3iii—Ba1—C3—O49.7 (8)
O6—Ba1—O4—C380.7 (9)O4i—Ba1—C3—O314.3 (8)
O4iii—Ba1—O4—C3164.9 (12)O4ii—Ba1—C3—O347.5 (10)
O5—Ba1—O4—C349.9 (9)O6iii—Ba1—C3—O3113.7 (8)
O5iii—Ba1—O4—C3108.1 (9)O6—Ba1—C3—O388.0 (8)
O3iii—Ba1—O4—C3174.8 (9)O4iii—Ba1—C3—O3168.7 (8)
O3—Ba1—O4—C31.1 (8)O4—Ba1—C3—O3178.0 (14)
C3iii—Ba1—O4—C3170.4 (8)O5—Ba1—C3—O349.5 (8)
O4i—Ba1—O4—Ba1vii150.4 (5)O5iii—Ba1—C3—O386.0 (9)
O4ii—Ba1—O4—Ba1vii110.9 (6)O3iii—Ba1—C3—O3175.8 (5)
O6iii—Ba1—O4—Ba1vii81.6 (4)C3iii—Ba1—C3—O3172.3 (9)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+1, y+1, z+1; (v) x+1, y+1/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x+1/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O5viii0.872.082.893 (14)157
O6—H6A···O1vi0.851.992.781 (13)156
O5—H5B···O6i0.872.192.919 (15)141
O5—H5A···O2iv0.842.012.810 (14)159
Symmetry codes: (i) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (vi) x+1, y1/2, z+1/2; (viii) x, y1, z.

Experimental details

Crystal data
Chemical formula[BaCd(C3H2O4)2(H2O)4]
Mr525.90
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)294
a, b, c (Å)18.809 (4), 6.9224 (14), 9.6849 (19)
V3)1261.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.85
Crystal size (mm)0.24 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.370, 0.662
No. of measured, independent and
observed [I > 2σ(I)] reflections
5716, 1103, 978
Rint0.059
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.161, 1.06
No. of reflections1103
No. of parameters94
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0364P)2 + 63.5907P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.94, 1.24

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ba1—O4i2.794 (9)Cd1—O2iv2.227 (10)
Ba1—O4ii2.794 (9)Cd1—O32.227 (9)
Ba1—O6iii2.809 (10)Cd1—O1v2.364 (8)
Ba1—O62.809 (10)O1—C11.252 (16)
Ba1—O4iii2.854 (9)O2—C11.241 (16)
Ba1—O42.854 (9)O3—C31.269 (17)
Ba1—O52.877 (10)O4—C31.255 (16)
Ba1—O5iii2.877 (10)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+1, y+1, z+1; (v) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O5vi0.872.082.893 (14)156.8
O6—H6A···O1vii0.851.992.781 (13)156.0
O5—H5B···O6i0.872.192.919 (15)141.3
O5—H5A···O2iv0.842.012.810 (14)158.5
Symmetry codes: (i) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (vi) x, y1, z; (vii) x+1, y1/2, z+1/2.
 

Acknowledgements

We thank Tianjin Polytechnic University for financial support.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelgado, F. S., Sanchiz, J., Ruis-Perez, C., Lloret, F. & Julve, M. (2004). CrystEngComm, 6, 443–450.  Web of Science CSD CrossRef CAS Google Scholar
First citationDjeghri, A., Balegroune, F., Guehria-Laidoudi, A. & Toupet, L. (2005). J. Chem. Crystallogr. 35, 603–607.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuo, M.-L. & Guo, C.-H. (2006). Acta Cryst. C62, m7–m9.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds