organic compounds
16-[(E)-4-Bromobenzylidene]-13-(4-bromophenyl)-2-hydroxy-11-methyl-1,11-diazapentacyclo[12.3.1.02,10.03,8.010,14]octadeca-3(8),4,6-triene-9,15-dione
aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title pyrrolidine compound, C30H24Br2N2O3, the two fused pyrrolidine rings adopt envelope and twisted conformations, whereas the piperidine ring adopts an The essentially planar 2,3-dihydroindanone unit [maximum deviation = −0.0163 (19) Å] is inclined at interplanar angles of 14.29 (9) and 61.07 (9)° to the two benzene rings. In the crystal, adjacent molecules are linked into dimers by intermolecular O—H⋯N and C—H⋯O hydrogen bonds. Short intermolecular Br⋯Br interactions [3.5140 (6) Å] further interconnect these dimers into double dimeric columns along the b axis.
Related literature
For general background to and applications of the title pyrrolidine compound, see: Huryn et al. (1991); Suzuki et al. (1994); Waldmann (1995). For the preparation, see: Kumar et al. (2010a,b,c). For ring puckering analysis, see: Cremer & Pople (1975). For closely related pyrrolidine structures, see: Kumar et al. (2010a,b,c). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810051585/sj5073sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810051585/sj5073Isup2.hkl
The title compound was synthesized according to a previously described procedure (Kumar et al., 2010a,b,c), and was recrystallized from ethyl acetate to afford pale yellow single crystals.
Atom H1O3 was located from a difference Fourier map [O3—H1O3 = 0.82 (3) Å] and allowed to refine freely. The remaining H atoms were placed in their calculated positions, with C—H = 0.93 – 0.97 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group.
Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled
(Suzuki et al., 1994; Huryn et al., 1991). In view of this importance, the of the title compound has been carried out and the results are presented here.The molecular structure of the title pyrrolidine compound is shown in Fig. 1. The two fused pyrrolidine rings with atom sequences (C10/C11/N1/C21/C29) & (C10/C19/C20/N2/C21) adopt envolope and twisted conformations, respectively; the puckering parameters are Q = 0.454 (2) Å, φ = 37.4 (3)° and Q = 0.338 (2) Å, φ = 334.7 (4)°, respectively (Cremer & Pople, 1975). The piperidine ring (C8/C9/C10/C11/N1/C12) adopts an with the flap atom (C11) deviating from the mean plane through the remaining five atoms by 0.800 (2) Å; the puckering parameters are Q = 0.622 (2) Å, θ = 141.18 (18)° and φ = 240.6 (3)° (Cremer & Pople, 1975). The 2,3-dihydro-1H-inden-1-one moiety (C21-C29/O2) is essentially planar, with a maximum deviation of -0.0163 (19) Å at atom C21. The two bromo-substituted benzene rings (C1-C6 & C13-C18) are inclined at interplanar angles of 14.29 (9) and 61.07 (9)°, respectively, with the 2,3-dihydro-1H-inden-1-one moiety. All geometrical parameters are consistent to those observed in closely related structures (Kumar et al., 2010a,b,c).
In the
(Fig. 2), intermolecular O3—H1O3···N2, C11—H11B···O3 and C17—H17A···O3 hydrogen bonds (Table 1) link inversion-related molecules into dimers. An interesting feature of the is the short intermolecular Br1···Br2 interaction [3.5140 (6) Å], which is shorter than the sum of the van der Waals radius of bromine atom (3.70 Å). These Br1···Br2 interactions further interconnect these dimers into double-dimeric columns along the b axis.For general background to and applications of the title pyrrolidine compound, see: Huryn et al. (1991); Suzuki et al. (1994); Waldmann (1995). For the preparation, see: Kumar et al. (2010a,b,c). For ring puckering analysis, see: Cremer & Pople (1975). For closely related pyrrolidine structures, see: Kumar et al. (2010a,b,c). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C30H24Br2N2O3 | F(000) = 1248 |
Mr = 620.33 | Dx = 1.633 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7088 reflections |
a = 13.3490 (18) Å | θ = 2.7–29.9° |
b = 9.1243 (12) Å | µ = 3.25 mm−1 |
c = 22.541 (3) Å | T = 100 K |
β = 113.191 (6)° | Block, yellow |
V = 2523.7 (6) Å3 | 0.39 × 0.38 × 0.18 mm |
Z = 4 |
Bruker APEXII DUO CCD area-detector diffractometer | 7357 independent reflections |
Radiation source: fine-focus sealed tube | 5709 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
φ and ω scans | θmax = 30.1°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −18→18 |
Tmin = 0.362, Tmax = 0.600 | k = −12→12 |
25337 measured reflections | l = −31→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.120 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.067P)2 + 0.5579P] where P = (Fo2 + 2Fc2)/3 |
7357 reflections | (Δ/σ)max = 0.001 |
339 parameters | Δρmax = 1.27 e Å−3 |
0 restraints | Δρmin = −0.94 e Å−3 |
C30H24Br2N2O3 | V = 2523.7 (6) Å3 |
Mr = 620.33 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.3490 (18) Å | µ = 3.25 mm−1 |
b = 9.1243 (12) Å | T = 100 K |
c = 22.541 (3) Å | 0.39 × 0.38 × 0.18 mm |
β = 113.191 (6)° |
Bruker APEXII DUO CCD area-detector diffractometer | 7357 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 5709 reflections with I > 2σ(I) |
Tmin = 0.362, Tmax = 0.600 | Rint = 0.052 |
25337 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.120 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 1.27 e Å−3 |
7357 reflections | Δρmin = −0.94 e Å−3 |
339 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.75505 (2) | −0.12072 (3) | 0.698221 (14) | 0.03673 (9) | |
Br2 | 0.04211 (2) | 1.10857 (3) | 0.764653 (13) | 0.04012 (10) | |
O1 | 0.42011 (12) | 0.74248 (18) | 0.64632 (8) | 0.0298 (4) | |
O2 | 0.33814 (13) | 0.67728 (18) | 0.48068 (8) | 0.0279 (3) | |
O3 | 0.07211 (11) | 0.37326 (16) | 0.49214 (7) | 0.0203 (3) | |
N1 | 0.19684 (13) | 0.41022 (19) | 0.59993 (8) | 0.0185 (3) | |
N2 | 0.10821 (13) | 0.66492 (19) | 0.47739 (8) | 0.0188 (3) | |
C1 | 0.65306 (19) | 0.3089 (3) | 0.65943 (12) | 0.0309 (5) | |
H1A | 0.6778 | 0.3929 | 0.6461 | 0.037* | |
C2 | 0.7103 (2) | 0.1791 (3) | 0.66670 (14) | 0.0369 (6) | |
H2A | 0.7731 | 0.1759 | 0.6584 | 0.044* | |
C3 | 0.67343 (19) | 0.0541 (3) | 0.68643 (11) | 0.0278 (5) | |
C4 | 0.58098 (17) | 0.0572 (3) | 0.70013 (10) | 0.0258 (4) | |
H4A | 0.5567 | −0.0275 | 0.7132 | 0.031* | |
C5 | 0.52520 (16) | 0.1883 (3) | 0.69400 (10) | 0.0245 (4) | |
H5A | 0.4648 | 0.1918 | 0.7048 | 0.029* | |
C6 | 0.55817 (16) | 0.3155 (2) | 0.67190 (10) | 0.0223 (4) | |
C7 | 0.50039 (16) | 0.4559 (2) | 0.65988 (10) | 0.0212 (4) | |
H7A | 0.5431 | 0.5379 | 0.6620 | 0.025* | |
C8 | 0.39434 (15) | 0.4838 (2) | 0.64618 (9) | 0.0197 (4) | |
C9 | 0.35805 (16) | 0.6388 (2) | 0.62815 (10) | 0.0206 (4) | |
C10 | 0.23733 (15) | 0.6582 (2) | 0.58527 (9) | 0.0178 (4) | |
C11 | 0.17469 (16) | 0.5606 (2) | 0.61558 (10) | 0.0193 (4) | |
H11A | 0.2017 | 0.5751 | 0.6619 | 0.023* | |
H11B | 0.0972 | 0.5818 | 0.5967 | 0.023* | |
C12 | 0.30882 (16) | 0.3701 (2) | 0.64265 (10) | 0.0201 (4) | |
H12A | 0.3273 | 0.2782 | 0.6278 | 0.024* | |
H12B | 0.3114 | 0.3541 | 0.6858 | 0.024* | |
C13 | 0.23320 (18) | 0.9689 (3) | 0.66853 (11) | 0.0285 (5) | |
H13A | 0.3058 | 0.9774 | 0.6741 | 0.034* | |
C14 | 0.1991 (2) | 1.0335 (3) | 0.71292 (12) | 0.0321 (5) | |
H14A | 0.2480 | 1.0853 | 0.7478 | 0.038* | |
C15 | 0.09096 (19) | 1.0199 (3) | 0.70461 (11) | 0.0274 (4) | |
C16 | 0.01713 (19) | 0.9433 (2) | 0.65255 (11) | 0.0273 (4) | |
H16A | −0.0553 | 0.9346 | 0.6474 | 0.033* | |
C17 | 0.05257 (18) | 0.8798 (2) | 0.60831 (11) | 0.0247 (4) | |
H17A | 0.0033 | 0.8288 | 0.5732 | 0.030* | |
C18 | 0.16138 (18) | 0.8914 (2) | 0.61564 (11) | 0.0220 (4) | |
C19 | 0.20385 (16) | 0.8202 (2) | 0.56940 (10) | 0.0202 (4) | |
H19A | 0.2696 | 0.8740 | 0.5731 | 0.024* | |
C20 | 0.12693 (17) | 0.8198 (2) | 0.49721 (10) | 0.0221 (4) | |
H20A | 0.0586 | 0.8675 | 0.4910 | 0.027* | |
H20B | 0.1602 | 0.8713 | 0.4720 | 0.027* | |
C21 | 0.20367 (15) | 0.5807 (2) | 0.51872 (9) | 0.0175 (4) | |
C22 | 0.29550 (16) | 0.5715 (2) | 0.49399 (10) | 0.0207 (4) | |
C23 | 0.32090 (16) | 0.4148 (2) | 0.49005 (10) | 0.0214 (4) | |
C24 | 0.39758 (18) | 0.3521 (3) | 0.46964 (12) | 0.0276 (5) | |
H24A | 0.4416 | 0.4107 | 0.4561 | 0.033* | |
C25 | 0.40643 (19) | 0.2012 (3) | 0.47010 (13) | 0.0330 (5) | |
H25A | 0.4578 | 0.1577 | 0.4574 | 0.040* | |
C26 | 0.3394 (2) | 0.1134 (3) | 0.48941 (13) | 0.0328 (5) | |
H26A | 0.3456 | 0.0120 | 0.4887 | 0.039* | |
C27 | 0.26277 (18) | 0.1761 (2) | 0.50979 (11) | 0.0263 (4) | |
H27A | 0.2180 | 0.1174 | 0.5227 | 0.032* | |
C28 | 0.25500 (16) | 0.3277 (2) | 0.51039 (10) | 0.0203 (4) | |
C29 | 0.17847 (15) | 0.4177 (2) | 0.53055 (9) | 0.0172 (4) | |
C30 | 0.07438 (18) | 0.6445 (3) | 0.40754 (10) | 0.0245 (4) | |
H30A | 0.0698 | 0.5417 | 0.3978 | 0.037* | |
H30B | 0.1268 | 0.6894 | 0.3939 | 0.037* | |
H30C | 0.0044 | 0.6891 | 0.3852 | 0.037* | |
H1O3 | 0.032 (2) | 0.380 (3) | 0.5121 (14) | 0.024 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.04380 (16) | 0.02974 (15) | 0.04459 (16) | 0.01490 (10) | 0.02593 (13) | 0.01142 (10) |
Br2 | 0.05369 (18) | 0.03787 (16) | 0.03862 (15) | −0.01126 (11) | 0.02871 (13) | −0.01324 (11) |
O1 | 0.0211 (7) | 0.0207 (8) | 0.0386 (9) | −0.0050 (6) | 0.0022 (7) | −0.0016 (7) |
O2 | 0.0250 (7) | 0.0239 (8) | 0.0379 (9) | −0.0036 (6) | 0.0156 (7) | 0.0014 (7) |
O3 | 0.0131 (6) | 0.0238 (8) | 0.0214 (7) | −0.0039 (5) | 0.0041 (6) | −0.0033 (5) |
N1 | 0.0160 (7) | 0.0167 (8) | 0.0204 (8) | 0.0008 (6) | 0.0047 (6) | 0.0014 (6) |
N2 | 0.0178 (7) | 0.0175 (8) | 0.0186 (7) | 0.0017 (6) | 0.0046 (6) | 0.0019 (6) |
C1 | 0.0300 (11) | 0.0273 (12) | 0.0418 (13) | 0.0038 (9) | 0.0212 (10) | 0.0098 (10) |
C2 | 0.0363 (13) | 0.0328 (13) | 0.0538 (16) | 0.0098 (11) | 0.0307 (12) | 0.0144 (12) |
C3 | 0.0311 (11) | 0.0256 (11) | 0.0295 (11) | 0.0080 (9) | 0.0151 (9) | 0.0043 (9) |
C4 | 0.0231 (10) | 0.0265 (11) | 0.0246 (10) | 0.0002 (8) | 0.0061 (8) | 0.0073 (8) |
C5 | 0.0168 (9) | 0.0305 (12) | 0.0233 (10) | 0.0025 (8) | 0.0049 (8) | 0.0062 (8) |
C6 | 0.0178 (9) | 0.0269 (11) | 0.0200 (9) | 0.0003 (8) | 0.0049 (7) | 0.0018 (8) |
C7 | 0.0173 (8) | 0.0210 (10) | 0.0208 (9) | −0.0015 (7) | 0.0027 (7) | 0.0011 (7) |
C8 | 0.0156 (8) | 0.0217 (10) | 0.0171 (8) | 0.0003 (7) | 0.0014 (7) | 0.0019 (7) |
C9 | 0.0168 (8) | 0.0205 (10) | 0.0217 (9) | −0.0009 (7) | 0.0044 (7) | −0.0007 (7) |
C10 | 0.0145 (8) | 0.0155 (9) | 0.0201 (8) | 0.0000 (7) | 0.0034 (7) | −0.0001 (7) |
C11 | 0.0189 (9) | 0.0169 (9) | 0.0201 (9) | −0.0003 (7) | 0.0057 (7) | −0.0003 (7) |
C12 | 0.0162 (8) | 0.0187 (10) | 0.0216 (9) | 0.0002 (7) | 0.0031 (7) | 0.0025 (7) |
C13 | 0.0224 (10) | 0.0241 (11) | 0.0333 (11) | −0.0013 (8) | 0.0048 (9) | −0.0068 (9) |
C14 | 0.0321 (11) | 0.0281 (12) | 0.0311 (11) | −0.0023 (10) | 0.0072 (10) | −0.0085 (10) |
C15 | 0.0344 (11) | 0.0207 (10) | 0.0276 (10) | 0.0015 (9) | 0.0127 (9) | −0.0006 (8) |
C16 | 0.0286 (10) | 0.0215 (11) | 0.0329 (11) | −0.0021 (9) | 0.0134 (9) | −0.0023 (9) |
C17 | 0.0229 (10) | 0.0208 (10) | 0.0268 (10) | −0.0020 (8) | 0.0058 (8) | −0.0044 (8) |
C18 | 0.0224 (9) | 0.0157 (9) | 0.0247 (10) | 0.0012 (7) | 0.0058 (8) | −0.0001 (7) |
C19 | 0.0199 (9) | 0.0151 (9) | 0.0225 (9) | 0.0006 (7) | 0.0051 (7) | −0.0002 (7) |
C20 | 0.0243 (10) | 0.0166 (9) | 0.0220 (9) | 0.0015 (8) | 0.0053 (8) | 0.0020 (7) |
C21 | 0.0144 (8) | 0.0167 (9) | 0.0197 (9) | 0.0005 (7) | 0.0050 (7) | 0.0002 (7) |
C22 | 0.0166 (8) | 0.0229 (10) | 0.0219 (9) | −0.0009 (7) | 0.0067 (7) | −0.0005 (8) |
C23 | 0.0161 (8) | 0.0226 (10) | 0.0237 (9) | −0.0015 (7) | 0.0061 (8) | −0.0032 (8) |
C24 | 0.0203 (10) | 0.0299 (12) | 0.0340 (11) | −0.0005 (9) | 0.0121 (9) | −0.0052 (9) |
C25 | 0.0241 (10) | 0.0334 (13) | 0.0419 (13) | 0.0034 (9) | 0.0137 (10) | −0.0103 (11) |
C26 | 0.0307 (11) | 0.0217 (11) | 0.0452 (14) | 0.0045 (9) | 0.0139 (11) | −0.0057 (10) |
C27 | 0.0218 (9) | 0.0207 (10) | 0.0340 (11) | 0.0002 (8) | 0.0084 (9) | −0.0026 (9) |
C28 | 0.0164 (8) | 0.0192 (10) | 0.0228 (9) | 0.0010 (7) | 0.0051 (7) | −0.0029 (8) |
C29 | 0.0137 (8) | 0.0158 (9) | 0.0197 (9) | −0.0013 (7) | 0.0039 (7) | −0.0008 (7) |
C30 | 0.0222 (9) | 0.0282 (11) | 0.0204 (9) | −0.0018 (8) | 0.0056 (8) | 0.0012 (8) |
Br1—C3 | 1.891 (2) | C12—H12B | 0.9700 |
Br2—C15 | 1.899 (2) | C13—C14 | 1.384 (3) |
O1—C9 | 1.217 (3) | C13—C18 | 1.393 (3) |
O2—C22 | 1.217 (3) | C13—H13A | 0.9300 |
O3—C29 | 1.400 (2) | C14—C15 | 1.386 (3) |
O3—H1O3 | 0.82 (3) | C14—H14A | 0.9300 |
N1—C12 | 1.470 (2) | C15—C16 | 1.388 (3) |
N1—C11 | 1.476 (3) | C16—C17 | 1.387 (3) |
N1—C29 | 1.486 (3) | C16—H16A | 0.9300 |
N2—C21 | 1.466 (2) | C17—C18 | 1.400 (3) |
N2—C30 | 1.469 (3) | C17—H17A | 0.9300 |
N2—C20 | 1.473 (3) | C18—C19 | 1.515 (3) |
C1—C2 | 1.384 (3) | C19—C20 | 1.545 (3) |
C1—C6 | 1.403 (3) | C19—H19A | 0.9800 |
C1—H1A | 0.9300 | C20—H20A | 0.9700 |
C2—C3 | 1.382 (3) | C20—H20B | 0.9700 |
C2—H2A | 0.9300 | C21—C22 | 1.536 (3) |
C3—C4 | 1.385 (3) | C21—C29 | 1.571 (3) |
C4—C5 | 1.387 (3) | C22—C23 | 1.480 (3) |
C4—H4A | 0.9300 | C23—C28 | 1.391 (3) |
C5—C6 | 1.400 (3) | C23—C24 | 1.399 (3) |
C5—H5A | 0.9300 | C24—C25 | 1.382 (4) |
C6—C7 | 1.465 (3) | C24—H24A | 0.9300 |
C7—C8 | 1.349 (3) | C25—C26 | 1.392 (4) |
C7—H7A | 0.9300 | C25—H25A | 0.9300 |
C8—C9 | 1.498 (3) | C26—C27 | 1.398 (3) |
C8—C12 | 1.522 (3) | C26—H26A | 0.9300 |
C9—C10 | 1.528 (3) | C27—C28 | 1.387 (3) |
C10—C19 | 1.545 (3) | C27—H27A | 0.9300 |
C10—C11 | 1.552 (3) | C28—C29 | 1.513 (3) |
C10—C21 | 1.556 (3) | C30—H30A | 0.9600 |
C11—H11A | 0.9700 | C30—H30B | 0.9600 |
C11—H11B | 0.9700 | C30—H30C | 0.9600 |
C12—H12A | 0.9700 | ||
C29—O3—H1O3 | 110.9 (19) | C17—C16—C15 | 119.2 (2) |
C12—N1—C11 | 108.83 (16) | C17—C16—H16A | 120.4 |
C12—N1—C29 | 113.86 (16) | C15—C16—H16A | 120.4 |
C11—N1—C29 | 104.09 (15) | C16—C17—C18 | 121.0 (2) |
C21—N2—C30 | 116.00 (16) | C16—C17—H17A | 119.5 |
C21—N2—C20 | 108.01 (15) | C18—C17—H17A | 119.5 |
C30—N2—C20 | 112.97 (16) | C13—C18—C17 | 118.1 (2) |
C2—C1—C6 | 120.9 (2) | C13—C18—C19 | 119.26 (19) |
C2—C1—H1A | 119.6 | C17—C18—C19 | 122.58 (19) |
C6—C1—H1A | 119.6 | C18—C19—C20 | 116.89 (17) |
C3—C2—C1 | 119.6 (2) | C18—C19—C10 | 113.80 (17) |
C3—C2—H2A | 120.2 | C20—C19—C10 | 104.67 (16) |
C1—C2—H2A | 120.2 | C18—C19—H19A | 107.0 |
C2—C3—C4 | 121.1 (2) | C20—C19—H19A | 107.0 |
C2—C3—Br1 | 118.87 (17) | C10—C19—H19A | 107.0 |
C4—C3—Br1 | 120.01 (18) | N2—C20—C19 | 106.54 (16) |
C3—C4—C5 | 119.0 (2) | N2—C20—H20A | 110.4 |
C3—C4—H4A | 120.5 | C19—C20—H20A | 110.4 |
C5—C4—H4A | 120.5 | N2—C20—H20B | 110.4 |
C4—C5—C6 | 121.2 (2) | C19—C20—H20B | 110.4 |
C4—C5—H5A | 119.4 | H20A—C20—H20B | 108.6 |
C6—C5—H5A | 119.4 | N2—C21—C22 | 114.61 (16) |
C5—C6—C1 | 118.1 (2) | N2—C21—C10 | 102.89 (15) |
C5—C6—C7 | 125.05 (19) | C22—C21—C10 | 113.96 (16) |
C1—C6—C7 | 116.9 (2) | N2—C21—C29 | 114.45 (15) |
C8—C7—C6 | 129.5 (2) | C22—C21—C29 | 105.35 (16) |
C8—C7—H7A | 115.3 | C10—C21—C29 | 105.46 (15) |
C6—C7—H7A | 115.3 | O2—C22—C23 | 127.68 (19) |
C7—C8—C9 | 115.98 (18) | O2—C22—C21 | 124.3 (2) |
C7—C8—C12 | 125.56 (19) | C23—C22—C21 | 108.00 (17) |
C9—C8—C12 | 118.28 (17) | C28—C23—C24 | 121.0 (2) |
O1—C9—C8 | 122.53 (18) | C28—C23—C22 | 110.04 (18) |
O1—C9—C10 | 122.10 (19) | C24—C23—C22 | 129.0 (2) |
C8—C9—C10 | 115.37 (17) | C25—C24—C23 | 118.4 (2) |
C9—C10—C19 | 113.19 (16) | C25—C24—H24A | 120.8 |
C9—C10—C11 | 105.79 (16) | C23—C24—H24A | 120.8 |
C19—C10—C11 | 119.58 (16) | C24—C25—C26 | 120.8 (2) |
C9—C10—C21 | 112.92 (16) | C24—C25—H25A | 119.6 |
C19—C10—C21 | 105.32 (16) | C26—C25—H25A | 119.6 |
C11—C10—C21 | 99.37 (15) | C25—C26—C27 | 120.7 (2) |
N1—C11—C10 | 103.57 (15) | C25—C26—H26A | 119.6 |
N1—C11—H11A | 111.0 | C27—C26—H26A | 119.6 |
C10—C11—H11A | 111.0 | C28—C27—C26 | 118.6 (2) |
N1—C11—H11B | 111.0 | C28—C27—H27A | 120.7 |
C10—C11—H11B | 111.0 | C26—C27—H27A | 120.7 |
H11A—C11—H11B | 109.0 | C27—C28—C23 | 120.47 (19) |
N1—C12—C8 | 114.38 (16) | C27—C28—C29 | 127.28 (19) |
N1—C12—H12A | 108.7 | C23—C28—C29 | 112.24 (18) |
C8—C12—H12A | 108.7 | O3—C29—N1 | 110.15 (16) |
N1—C12—H12B | 108.7 | O3—C29—C28 | 107.30 (16) |
C8—C12—H12B | 108.7 | N1—C29—C28 | 116.11 (16) |
H12A—C12—H12B | 107.6 | O3—C29—C21 | 113.68 (16) |
C14—C13—C18 | 121.6 (2) | N1—C29—C21 | 105.32 (15) |
C14—C13—H13A | 119.2 | C28—C29—C21 | 104.35 (16) |
C18—C13—H13A | 119.2 | N2—C30—H30A | 109.5 |
C13—C14—C15 | 119.1 (2) | N2—C30—H30B | 109.5 |
C13—C14—H14A | 120.5 | H30A—C30—H30B | 109.5 |
C15—C14—H14A | 120.5 | N2—C30—H30C | 109.5 |
C14—C15—C16 | 121.0 (2) | H30A—C30—H30C | 109.5 |
C14—C15—Br2 | 119.81 (18) | H30B—C30—H30C | 109.5 |
C16—C15—Br2 | 119.24 (17) | ||
C6—C1—C2—C3 | 0.1 (4) | C30—N2—C21—C22 | 40.0 (2) |
C1—C2—C3—C4 | −1.1 (4) | C20—N2—C21—C22 | −88.0 (2) |
C1—C2—C3—Br1 | −178.4 (2) | C30—N2—C21—C10 | 164.25 (16) |
C2—C3—C4—C5 | −0.2 (4) | C20—N2—C21—C10 | 36.29 (19) |
Br1—C3—C4—C5 | 177.03 (17) | C30—N2—C21—C29 | −81.9 (2) |
C3—C4—C5—C6 | 2.5 (3) | C20—N2—C21—C29 | 150.15 (17) |
C4—C5—C6—C1 | −3.5 (3) | C9—C10—C21—N2 | −154.75 (16) |
C4—C5—C6—C7 | 175.8 (2) | C19—C10—C21—N2 | −30.76 (19) |
C2—C1—C6—C5 | 2.1 (4) | C11—C10—C21—N2 | 93.58 (16) |
C2—C1—C6—C7 | −177.2 (2) | C9—C10—C21—C22 | −30.1 (2) |
C5—C6—C7—C8 | −24.2 (4) | C19—C10—C21—C22 | 93.93 (19) |
C1—C6—C7—C8 | 155.0 (2) | C11—C10—C21—C22 | −141.74 (17) |
C6—C7—C8—C9 | −172.5 (2) | C9—C10—C21—C29 | 84.99 (19) |
C6—C7—C8—C12 | 2.6 (4) | C19—C10—C21—C29 | −151.01 (15) |
C7—C8—C9—O1 | −26.2 (3) | C11—C10—C21—C29 | −26.68 (17) |
C12—C8—C9—O1 | 158.3 (2) | N2—C21—C22—O2 | 54.7 (3) |
C7—C8—C9—C10 | 153.83 (18) | C10—C21—C22—O2 | −63.4 (3) |
C12—C8—C9—C10 | −21.6 (3) | C29—C21—C22—O2 | −178.56 (19) |
O1—C9—C10—C19 | −1.2 (3) | N2—C21—C22—C23 | −125.52 (18) |
C8—C9—C10—C19 | 178.73 (17) | C10—C21—C22—C23 | 116.32 (19) |
O1—C9—C10—C11 | −134.0 (2) | C29—C21—C22—C23 | 1.2 (2) |
C8—C9—C10—C11 | 45.9 (2) | O2—C22—C23—C28 | 179.2 (2) |
O1—C9—C10—C21 | 118.4 (2) | C21—C22—C23—C28 | −0.6 (2) |
C8—C9—C10—C21 | −61.7 (2) | O2—C22—C23—C24 | −0.9 (4) |
C12—N1—C11—C10 | 75.54 (18) | C21—C22—C23—C24 | 179.3 (2) |
C29—N1—C11—C10 | −46.21 (18) | C28—C23—C24—C25 | 0.0 (3) |
C9—C10—C11—N1 | −72.53 (18) | C22—C23—C24—C25 | −179.9 (2) |
C19—C10—C11—N1 | 158.33 (16) | C23—C24—C25—C26 | 1.0 (4) |
C21—C10—C11—N1 | 44.65 (17) | C24—C25—C26—C27 | −1.1 (4) |
C11—N1—C12—C8 | −49.2 (2) | C25—C26—C27—C28 | 0.0 (4) |
C29—N1—C12—C8 | 66.4 (2) | C26—C27—C28—C23 | 1.1 (3) |
C7—C8—C12—N1 | −153.2 (2) | C26—C27—C28—C29 | −179.9 (2) |
C9—C8—C12—N1 | 21.8 (3) | C24—C23—C28—C27 | −1.1 (3) |
C18—C13—C14—C15 | 0.4 (4) | C22—C23—C28—C27 | 178.8 (2) |
C13—C14—C15—C16 | −0.3 (4) | C24—C23—C28—C29 | 179.77 (19) |
C13—C14—C15—Br2 | −179.64 (18) | C22—C23—C28—C29 | −0.3 (2) |
C14—C15—C16—C17 | −0.1 (4) | C12—N1—C29—O3 | 146.41 (17) |
Br2—C15—C16—C17 | 179.31 (17) | C11—N1—C29—O3 | −95.24 (18) |
C15—C16—C17—C18 | 0.3 (3) | C12—N1—C29—C28 | 24.2 (2) |
C14—C13—C18—C17 | −0.1 (3) | C11—N1—C29—C28 | 142.58 (17) |
C14—C13—C18—C19 | −178.7 (2) | C12—N1—C29—C21 | −90.63 (18) |
C16—C17—C18—C13 | −0.2 (3) | C11—N1—C29—C21 | 27.72 (18) |
C16—C17—C18—C19 | 178.3 (2) | C27—C28—C29—O3 | −57.1 (3) |
C13—C18—C19—C20 | −144.0 (2) | C23—C28—C29—O3 | 121.97 (18) |
C17—C18—C19—C20 | 37.5 (3) | C27—C28—C29—N1 | 66.6 (3) |
C13—C18—C19—C10 | 93.7 (2) | C23—C28—C29—N1 | −114.36 (19) |
C17—C18—C19—C10 | −84.8 (2) | C27—C28—C29—C21 | −178.0 (2) |
C9—C10—C19—C18 | −92.9 (2) | C23—C28—C29—C21 | 1.0 (2) |
C11—C10—C19—C18 | 32.8 (2) | N2—C21—C29—O3 | 8.9 (2) |
C21—C10—C19—C18 | 143.27 (17) | C22—C21—C29—O3 | −117.90 (17) |
C9—C10—C19—C20 | 138.31 (18) | C10—C21—C29—O3 | 121.25 (17) |
C11—C10—C19—C20 | −96.0 (2) | N2—C21—C29—N1 | −111.75 (17) |
C21—C10—C19—C20 | 14.5 (2) | C22—C21—C29—N1 | 121.43 (16) |
C21—N2—C20—C19 | −27.7 (2) | C10—C21—C29—N1 | 0.58 (18) |
C30—N2—C20—C19 | −157.37 (17) | N2—C21—C29—C28 | 125.49 (17) |
C18—C19—C20—N2 | −119.92 (19) | C22—C21—C29—C28 | −1.32 (19) |
C10—C19—C20—N2 | 7.0 (2) | C10—C21—C29—C28 | −122.17 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···N2i | 0.83 (3) | 2.02 (3) | 2.773 (2) | 151 (3) |
C11—H11B···O3i | 0.97 | 2.39 | 3.288 (3) | 153 |
C17—H17A···O3i | 0.93 | 2.33 | 3.203 (3) | 157 |
Symmetry code: (i) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C30H24Br2N2O3 |
Mr | 620.33 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 13.3490 (18), 9.1243 (12), 22.541 (3) |
β (°) | 113.191 (6) |
V (Å3) | 2523.7 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.25 |
Crystal size (mm) | 0.39 × 0.38 × 0.18 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.362, 0.600 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25337, 7357, 5709 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.705 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.120, 1.02 |
No. of reflections | 7357 |
No. of parameters | 339 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.27, −0.94 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···N2i | 0.83 (3) | 2.02 (3) | 2.773 (2) | 151 (3) |
C11—H11B···O3i | 0.97 | 2.39 | 3.288 (3) | 153 |
C17—H17A···O3i | 0.93 | 2.33 | 3.203 (3) | 157 |
Symmetry code: (i) −x, −y+1, −z+1. |
Acknowledgements
The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PKIMIA/811133). HKF and JHG thank USM for the Research University Grant (No. 1001/PFIZIK/811160). RSK thanks USM for the award of a post doctoral fellowship.
References
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Huryn, D. M., Trost, B. M. & Fleming, I. (1991). Comp. Org. Synth. 1, 64–74. Google Scholar
Kumar, R. S., Osman, H., Ali, M. A., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1370–o1371. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o1540–o1541. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kumar, R. S., Osman, H., Ali, M. A., Yeap, C. S. & Fun, H.-K. (2010c). Acta Cryst. E66, o2370–o2371. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119–6122. CrossRef CAS Web of Science Google Scholar
Waldmann, H. (1995). Synlett, pp. 133–141. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994; Huryn et al., 1991). In view of this importance, the crystal structure of the title compound has been carried out and the results are presented here.
The molecular structure of the title pyrrolidine compound is shown in Fig. 1. The two fused pyrrolidine rings with atom sequences (C10/C11/N1/C21/C29) & (C10/C19/C20/N2/C21) adopt envolope and twisted conformations, respectively; the puckering parameters are Q = 0.454 (2) Å, φ = 37.4 (3)° and Q = 0.338 (2) Å, φ = 334.7 (4)°, respectively (Cremer & Pople, 1975). The piperidine ring (C8/C9/C10/C11/N1/C12) adopts an envelope conformation, with the flap atom (C11) deviating from the mean plane through the remaining five atoms by 0.800 (2) Å; the puckering parameters are Q = 0.622 (2) Å, θ = 141.18 (18)° and φ = 240.6 (3)° (Cremer & Pople, 1975). The 2,3-dihydro-1H-inden-1-one moiety (C21-C29/O2) is essentially planar, with a maximum deviation of -0.0163 (19) Å at atom C21. The two bromo-substituted benzene rings (C1-C6 & C13-C18) are inclined at interplanar angles of 14.29 (9) and 61.07 (9)°, respectively, with the 2,3-dihydro-1H-inden-1-one moiety. All geometrical parameters are consistent to those observed in closely related structures (Kumar et al., 2010a,b,c).
In the crystal structure (Fig. 2), intermolecular O3—H1O3···N2, C11—H11B···O3 and C17—H17A···O3 hydrogen bonds (Table 1) link inversion-related molecules into dimers. An interesting feature of the crystal structure is the short intermolecular Br1···Br2 interaction [3.5140 (6) Å], which is shorter than the sum of the van der Waals radius of bromine atom (3.70 Å). These Br1···Br2 interactions further interconnect these dimers into double-dimeric columns along the b axis.