organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

16-[(E)-4-Bromo­benzyl­­idene]-13-(4-bromo­phen­yl)-2-hy­dr­oxy-11-methyl-1,11-di­aza­penta­cyclo­[12.3.1.02,10.03,8.010,14]octa­deca-3(8),4,6-triene-9,15-dione

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 8 December 2010; accepted 9 December 2010; online 15 December 2010)

In the title pyrrolidine compound, C30H24Br2N2O3, the two fused pyrrolidine rings adopt envelope and twisted conformations, whereas the piperidine ring adopts an envelope conformation. The essentially planar 2,3-dihydro­indanone unit [maximum deviation = −0.0163 (19) Å] is inclined at inter­planar angles of 14.29 (9) and 61.07 (9)° to the two benzene rings. In the crystal, adjacent mol­ecules are linked into dimers by inter­molecular O—H⋯N and C—H⋯O hydrogen bonds. Short inter­molecular Br⋯Br inter­actions [3.5140 (6) Å] further inter­connect these dimers into double dimeric columns along the b axis.

Related literature

For general background to and applications of the title pyrrolidine compound, see: Huryn et al. (1991[Huryn, D. M., Trost, B. M. & Fleming, I. (1991). Comp. Org. Synth. 1, 64-74.]); Suzuki et al. (1994[Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119-6122.]); Waldmann (1995[Waldmann, H. (1995). Synlett, pp. 133-141.]). For the preparation, see: Kumar et al. (2010a[Kumar, R. S., Osman, H., Ali, M. A., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1370-o1371.],b[Kumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o1540-o1541.],c[Kumar, R. S., Osman, H., Ali, M. A., Yeap, C. S. & Fun, H.-K. (2010c). Acta Cryst. E66, o2370-o2371.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For closely related pyrrolidine structures, see: Kumar et al. (2010a[Kumar, R. S., Osman, H., Ali, M. A., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1370-o1371.],b[Kumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o1540-o1541.],c[Kumar, R. S., Osman, H., Ali, M. A., Yeap, C. S. & Fun, H.-K. (2010c). Acta Cryst. E66, o2370-o2371.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C30H24Br2N2O3

  • Mr = 620.33

  • Monoclinic, P 21 /c

  • a = 13.3490 (18) Å

  • b = 9.1243 (12) Å

  • c = 22.541 (3) Å

  • β = 113.191 (6)°

  • V = 2523.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.25 mm−1

  • T = 100 K

  • 0.39 × 0.38 × 0.18 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.362, Tmax = 0.600

  • 25337 measured reflections

  • 7357 independent reflections

  • 5709 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.120

  • S = 1.02

  • 7357 reflections

  • 339 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.27 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯N2i 0.83 (3) 2.02 (3) 2.773 (2) 151 (3)
C11—H11B⋯O3i 0.97 2.39 3.288 (3) 153
C17—H17A⋯O3i 0.93 2.33 3.203 (3) 157
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994; Huryn et al., 1991). In view of this importance, the crystal structure of the title compound has been carried out and the results are presented here.

The molecular structure of the title pyrrolidine compound is shown in Fig. 1. The two fused pyrrolidine rings with atom sequences (C10/C11/N1/C21/C29) & (C10/C19/C20/N2/C21) adopt envolope and twisted conformations, respectively; the puckering parameters are Q = 0.454 (2) Å, φ = 37.4 (3)° and Q = 0.338 (2) Å, φ = 334.7 (4)°, respectively (Cremer & Pople, 1975). The piperidine ring (C8/C9/C10/C11/N1/C12) adopts an envelope conformation, with the flap atom (C11) deviating from the mean plane through the remaining five atoms by 0.800 (2) Å; the puckering parameters are Q = 0.622 (2) Å, θ = 141.18 (18)° and φ = 240.6 (3)° (Cremer & Pople, 1975). The 2,3-dihydro-1H-inden-1-one moiety (C21-C29/O2) is essentially planar, with a maximum deviation of -0.0163 (19) Å at atom C21. The two bromo-substituted benzene rings (C1-C6 & C13-C18) are inclined at interplanar angles of 14.29 (9) and 61.07 (9)°, respectively, with the 2,3-dihydro-1H-inden-1-one moiety. All geometrical parameters are consistent to those observed in closely related structures (Kumar et al., 2010a,b,c).

In the crystal structure (Fig. 2), intermolecular O3—H1O3···N2, C11—H11B···O3 and C17—H17A···O3 hydrogen bonds (Table 1) link inversion-related molecules into dimers. An interesting feature of the crystal structure is the short intermolecular Br1···Br2 interaction [3.5140 (6) Å], which is shorter than the sum of the van der Waals radius of bromine atom (3.70 Å). These Br1···Br2 interactions further interconnect these dimers into double-dimeric columns along the b axis.

Related literature top

For general background to and applications of the title pyrrolidine compound, see: Huryn et al. (1991); Suzuki et al. (1994); Waldmann (1995). For the preparation, see: Kumar et al. (2010a,b,c). For ring puckering analysis, see: Cremer & Pople (1975). For closely related pyrrolidine structures, see: Kumar et al. (2010a,b,c). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized according to a previously described procedure (Kumar et al., 2010a,b,c), and was recrystallized from ethyl acetate to afford pale yellow single crystals.

Refinement top

Atom H1O3 was located from a difference Fourier map [O3—H1O3 = 0.82 (3) Å] and allowed to refine freely. The remaining H atoms were placed in their calculated positions, with C—H = 0.93 – 0.97 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group.

Structure description top

Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994; Huryn et al., 1991). In view of this importance, the crystal structure of the title compound has been carried out and the results are presented here.

The molecular structure of the title pyrrolidine compound is shown in Fig. 1. The two fused pyrrolidine rings with atom sequences (C10/C11/N1/C21/C29) & (C10/C19/C20/N2/C21) adopt envolope and twisted conformations, respectively; the puckering parameters are Q = 0.454 (2) Å, φ = 37.4 (3)° and Q = 0.338 (2) Å, φ = 334.7 (4)°, respectively (Cremer & Pople, 1975). The piperidine ring (C8/C9/C10/C11/N1/C12) adopts an envelope conformation, with the flap atom (C11) deviating from the mean plane through the remaining five atoms by 0.800 (2) Å; the puckering parameters are Q = 0.622 (2) Å, θ = 141.18 (18)° and φ = 240.6 (3)° (Cremer & Pople, 1975). The 2,3-dihydro-1H-inden-1-one moiety (C21-C29/O2) is essentially planar, with a maximum deviation of -0.0163 (19) Å at atom C21. The two bromo-substituted benzene rings (C1-C6 & C13-C18) are inclined at interplanar angles of 14.29 (9) and 61.07 (9)°, respectively, with the 2,3-dihydro-1H-inden-1-one moiety. All geometrical parameters are consistent to those observed in closely related structures (Kumar et al., 2010a,b,c).

In the crystal structure (Fig. 2), intermolecular O3—H1O3···N2, C11—H11B···O3 and C17—H17A···O3 hydrogen bonds (Table 1) link inversion-related molecules into dimers. An interesting feature of the crystal structure is the short intermolecular Br1···Br2 interaction [3.5140 (6) Å], which is shorter than the sum of the van der Waals radius of bromine atom (3.70 Å). These Br1···Br2 interactions further interconnect these dimers into double-dimeric columns along the b axis.

For general background to and applications of the title pyrrolidine compound, see: Huryn et al. (1991); Suzuki et al. (1994); Waldmann (1995). For the preparation, see: Kumar et al. (2010a,b,c). For ring puckering analysis, see: Cremer & Pople (1975). For closely related pyrrolidine structures, see: Kumar et al. (2010a,b,c). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30 % probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed down the b axis, showing the molecules being interconnected into two double-dimeric columns. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
16-[(E)-4-Bromobenzylidene]-13-(4-bromophenyl)-2-hydroxy-11- methyl-1,11-diazapentacyclo[12.3.1.02,10.03,8.010,14]octadeca-3(8),4,6- triene-9,15-dione top
Crystal data top
C30H24Br2N2O3F(000) = 1248
Mr = 620.33Dx = 1.633 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7088 reflections
a = 13.3490 (18) Åθ = 2.7–29.9°
b = 9.1243 (12) ŵ = 3.25 mm1
c = 22.541 (3) ÅT = 100 K
β = 113.191 (6)°Block, yellow
V = 2523.7 (6) Å30.39 × 0.38 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7357 independent reflections
Radiation source: fine-focus sealed tube5709 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1818
Tmin = 0.362, Tmax = 0.600k = 1212
25337 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.067P)2 + 0.5579P]
where P = (Fo2 + 2Fc2)/3
7357 reflections(Δ/σ)max = 0.001
339 parametersΔρmax = 1.27 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
C30H24Br2N2O3V = 2523.7 (6) Å3
Mr = 620.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3490 (18) ŵ = 3.25 mm1
b = 9.1243 (12) ÅT = 100 K
c = 22.541 (3) Å0.39 × 0.38 × 0.18 mm
β = 113.191 (6)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7357 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5709 reflections with I > 2σ(I)
Tmin = 0.362, Tmax = 0.600Rint = 0.052
25337 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.27 e Å3
7357 reflectionsΔρmin = 0.94 e Å3
339 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.75505 (2)0.12072 (3)0.698221 (14)0.03673 (9)
Br20.04211 (2)1.10857 (3)0.764653 (13)0.04012 (10)
O10.42011 (12)0.74248 (18)0.64632 (8)0.0298 (4)
O20.33814 (13)0.67728 (18)0.48068 (8)0.0279 (3)
O30.07211 (11)0.37326 (16)0.49214 (7)0.0203 (3)
N10.19684 (13)0.41022 (19)0.59993 (8)0.0185 (3)
N20.10821 (13)0.66492 (19)0.47739 (8)0.0188 (3)
C10.65306 (19)0.3089 (3)0.65943 (12)0.0309 (5)
H1A0.67780.39290.64610.037*
C20.7103 (2)0.1791 (3)0.66670 (14)0.0369 (6)
H2A0.77310.17590.65840.044*
C30.67343 (19)0.0541 (3)0.68643 (11)0.0278 (5)
C40.58098 (17)0.0572 (3)0.70013 (10)0.0258 (4)
H4A0.55670.02750.71320.031*
C50.52520 (16)0.1883 (3)0.69400 (10)0.0245 (4)
H5A0.46480.19180.70480.029*
C60.55817 (16)0.3155 (2)0.67190 (10)0.0223 (4)
C70.50039 (16)0.4559 (2)0.65988 (10)0.0212 (4)
H7A0.54310.53790.66200.025*
C80.39434 (15)0.4838 (2)0.64618 (9)0.0197 (4)
C90.35805 (16)0.6388 (2)0.62815 (10)0.0206 (4)
C100.23733 (15)0.6582 (2)0.58527 (9)0.0178 (4)
C110.17469 (16)0.5606 (2)0.61558 (10)0.0193 (4)
H11A0.20170.57510.66190.023*
H11B0.09720.58180.59670.023*
C120.30882 (16)0.3701 (2)0.64265 (10)0.0201 (4)
H12A0.32730.27820.62780.024*
H12B0.31140.35410.68580.024*
C130.23320 (18)0.9689 (3)0.66853 (11)0.0285 (5)
H13A0.30580.97740.67410.034*
C140.1991 (2)1.0335 (3)0.71292 (12)0.0321 (5)
H14A0.24801.08530.74780.038*
C150.09096 (19)1.0199 (3)0.70461 (11)0.0274 (4)
C160.01713 (19)0.9433 (2)0.65255 (11)0.0273 (4)
H16A0.05530.93460.64740.033*
C170.05257 (18)0.8798 (2)0.60831 (11)0.0247 (4)
H17A0.00330.82880.57320.030*
C180.16138 (18)0.8914 (2)0.61564 (11)0.0220 (4)
C190.20385 (16)0.8202 (2)0.56940 (10)0.0202 (4)
H19A0.26960.87400.57310.024*
C200.12693 (17)0.8198 (2)0.49721 (10)0.0221 (4)
H20A0.05860.86750.49100.027*
H20B0.16020.87130.47200.027*
C210.20367 (15)0.5807 (2)0.51872 (9)0.0175 (4)
C220.29550 (16)0.5715 (2)0.49399 (10)0.0207 (4)
C230.32090 (16)0.4148 (2)0.49005 (10)0.0214 (4)
C240.39758 (18)0.3521 (3)0.46964 (12)0.0276 (5)
H24A0.44160.41070.45610.033*
C250.40643 (19)0.2012 (3)0.47010 (13)0.0330 (5)
H25A0.45780.15770.45740.040*
C260.3394 (2)0.1134 (3)0.48941 (13)0.0328 (5)
H26A0.34560.01200.48870.039*
C270.26277 (18)0.1761 (2)0.50979 (11)0.0263 (4)
H27A0.21800.11740.52270.032*
C280.25500 (16)0.3277 (2)0.51039 (10)0.0203 (4)
C290.17847 (15)0.4177 (2)0.53055 (9)0.0172 (4)
C300.07438 (18)0.6445 (3)0.40754 (10)0.0245 (4)
H30A0.06980.54170.39780.037*
H30B0.12680.68940.39390.037*
H30C0.00440.68910.38520.037*
H1O30.032 (2)0.380 (3)0.5121 (14)0.024 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04380 (16)0.02974 (15)0.04459 (16)0.01490 (10)0.02593 (13)0.01142 (10)
Br20.05369 (18)0.03787 (16)0.03862 (15)0.01126 (11)0.02871 (13)0.01324 (11)
O10.0211 (7)0.0207 (8)0.0386 (9)0.0050 (6)0.0022 (7)0.0016 (7)
O20.0250 (7)0.0239 (8)0.0379 (9)0.0036 (6)0.0156 (7)0.0014 (7)
O30.0131 (6)0.0238 (8)0.0214 (7)0.0039 (5)0.0041 (6)0.0033 (5)
N10.0160 (7)0.0167 (8)0.0204 (8)0.0008 (6)0.0047 (6)0.0014 (6)
N20.0178 (7)0.0175 (8)0.0186 (7)0.0017 (6)0.0046 (6)0.0019 (6)
C10.0300 (11)0.0273 (12)0.0418 (13)0.0038 (9)0.0212 (10)0.0098 (10)
C20.0363 (13)0.0328 (13)0.0538 (16)0.0098 (11)0.0307 (12)0.0144 (12)
C30.0311 (11)0.0256 (11)0.0295 (11)0.0080 (9)0.0151 (9)0.0043 (9)
C40.0231 (10)0.0265 (11)0.0246 (10)0.0002 (8)0.0061 (8)0.0073 (8)
C50.0168 (9)0.0305 (12)0.0233 (10)0.0025 (8)0.0049 (8)0.0062 (8)
C60.0178 (9)0.0269 (11)0.0200 (9)0.0003 (8)0.0049 (7)0.0018 (8)
C70.0173 (8)0.0210 (10)0.0208 (9)0.0015 (7)0.0027 (7)0.0011 (7)
C80.0156 (8)0.0217 (10)0.0171 (8)0.0003 (7)0.0014 (7)0.0019 (7)
C90.0168 (8)0.0205 (10)0.0217 (9)0.0009 (7)0.0044 (7)0.0007 (7)
C100.0145 (8)0.0155 (9)0.0201 (8)0.0000 (7)0.0034 (7)0.0001 (7)
C110.0189 (9)0.0169 (9)0.0201 (9)0.0003 (7)0.0057 (7)0.0003 (7)
C120.0162 (8)0.0187 (10)0.0216 (9)0.0002 (7)0.0031 (7)0.0025 (7)
C130.0224 (10)0.0241 (11)0.0333 (11)0.0013 (8)0.0048 (9)0.0068 (9)
C140.0321 (11)0.0281 (12)0.0311 (11)0.0023 (10)0.0072 (10)0.0085 (10)
C150.0344 (11)0.0207 (10)0.0276 (10)0.0015 (9)0.0127 (9)0.0006 (8)
C160.0286 (10)0.0215 (11)0.0329 (11)0.0021 (9)0.0134 (9)0.0023 (9)
C170.0229 (10)0.0208 (10)0.0268 (10)0.0020 (8)0.0058 (8)0.0044 (8)
C180.0224 (9)0.0157 (9)0.0247 (10)0.0012 (7)0.0058 (8)0.0001 (7)
C190.0199 (9)0.0151 (9)0.0225 (9)0.0006 (7)0.0051 (7)0.0002 (7)
C200.0243 (10)0.0166 (9)0.0220 (9)0.0015 (8)0.0053 (8)0.0020 (7)
C210.0144 (8)0.0167 (9)0.0197 (9)0.0005 (7)0.0050 (7)0.0002 (7)
C220.0166 (8)0.0229 (10)0.0219 (9)0.0009 (7)0.0067 (7)0.0005 (8)
C230.0161 (8)0.0226 (10)0.0237 (9)0.0015 (7)0.0061 (8)0.0032 (8)
C240.0203 (10)0.0299 (12)0.0340 (11)0.0005 (9)0.0121 (9)0.0052 (9)
C250.0241 (10)0.0334 (13)0.0419 (13)0.0034 (9)0.0137 (10)0.0103 (11)
C260.0307 (11)0.0217 (11)0.0452 (14)0.0045 (9)0.0139 (11)0.0057 (10)
C270.0218 (9)0.0207 (10)0.0340 (11)0.0002 (8)0.0084 (9)0.0026 (9)
C280.0164 (8)0.0192 (10)0.0228 (9)0.0010 (7)0.0051 (7)0.0029 (8)
C290.0137 (8)0.0158 (9)0.0197 (9)0.0013 (7)0.0039 (7)0.0008 (7)
C300.0222 (9)0.0282 (11)0.0204 (9)0.0018 (8)0.0056 (8)0.0012 (8)
Geometric parameters (Å, º) top
Br1—C31.891 (2)C12—H12B0.9700
Br2—C151.899 (2)C13—C141.384 (3)
O1—C91.217 (3)C13—C181.393 (3)
O2—C221.217 (3)C13—H13A0.9300
O3—C291.400 (2)C14—C151.386 (3)
O3—H1O30.82 (3)C14—H14A0.9300
N1—C121.470 (2)C15—C161.388 (3)
N1—C111.476 (3)C16—C171.387 (3)
N1—C291.486 (3)C16—H16A0.9300
N2—C211.466 (2)C17—C181.400 (3)
N2—C301.469 (3)C17—H17A0.9300
N2—C201.473 (3)C18—C191.515 (3)
C1—C21.384 (3)C19—C201.545 (3)
C1—C61.403 (3)C19—H19A0.9800
C1—H1A0.9300C20—H20A0.9700
C2—C31.382 (3)C20—H20B0.9700
C2—H2A0.9300C21—C221.536 (3)
C3—C41.385 (3)C21—C291.571 (3)
C4—C51.387 (3)C22—C231.480 (3)
C4—H4A0.9300C23—C281.391 (3)
C5—C61.400 (3)C23—C241.399 (3)
C5—H5A0.9300C24—C251.382 (4)
C6—C71.465 (3)C24—H24A0.9300
C7—C81.349 (3)C25—C261.392 (4)
C7—H7A0.9300C25—H25A0.9300
C8—C91.498 (3)C26—C271.398 (3)
C8—C121.522 (3)C26—H26A0.9300
C9—C101.528 (3)C27—C281.387 (3)
C10—C191.545 (3)C27—H27A0.9300
C10—C111.552 (3)C28—C291.513 (3)
C10—C211.556 (3)C30—H30A0.9600
C11—H11A0.9700C30—H30B0.9600
C11—H11B0.9700C30—H30C0.9600
C12—H12A0.9700
C29—O3—H1O3110.9 (19)C17—C16—C15119.2 (2)
C12—N1—C11108.83 (16)C17—C16—H16A120.4
C12—N1—C29113.86 (16)C15—C16—H16A120.4
C11—N1—C29104.09 (15)C16—C17—C18121.0 (2)
C21—N2—C30116.00 (16)C16—C17—H17A119.5
C21—N2—C20108.01 (15)C18—C17—H17A119.5
C30—N2—C20112.97 (16)C13—C18—C17118.1 (2)
C2—C1—C6120.9 (2)C13—C18—C19119.26 (19)
C2—C1—H1A119.6C17—C18—C19122.58 (19)
C6—C1—H1A119.6C18—C19—C20116.89 (17)
C3—C2—C1119.6 (2)C18—C19—C10113.80 (17)
C3—C2—H2A120.2C20—C19—C10104.67 (16)
C1—C2—H2A120.2C18—C19—H19A107.0
C2—C3—C4121.1 (2)C20—C19—H19A107.0
C2—C3—Br1118.87 (17)C10—C19—H19A107.0
C4—C3—Br1120.01 (18)N2—C20—C19106.54 (16)
C3—C4—C5119.0 (2)N2—C20—H20A110.4
C3—C4—H4A120.5C19—C20—H20A110.4
C5—C4—H4A120.5N2—C20—H20B110.4
C4—C5—C6121.2 (2)C19—C20—H20B110.4
C4—C5—H5A119.4H20A—C20—H20B108.6
C6—C5—H5A119.4N2—C21—C22114.61 (16)
C5—C6—C1118.1 (2)N2—C21—C10102.89 (15)
C5—C6—C7125.05 (19)C22—C21—C10113.96 (16)
C1—C6—C7116.9 (2)N2—C21—C29114.45 (15)
C8—C7—C6129.5 (2)C22—C21—C29105.35 (16)
C8—C7—H7A115.3C10—C21—C29105.46 (15)
C6—C7—H7A115.3O2—C22—C23127.68 (19)
C7—C8—C9115.98 (18)O2—C22—C21124.3 (2)
C7—C8—C12125.56 (19)C23—C22—C21108.00 (17)
C9—C8—C12118.28 (17)C28—C23—C24121.0 (2)
O1—C9—C8122.53 (18)C28—C23—C22110.04 (18)
O1—C9—C10122.10 (19)C24—C23—C22129.0 (2)
C8—C9—C10115.37 (17)C25—C24—C23118.4 (2)
C9—C10—C19113.19 (16)C25—C24—H24A120.8
C9—C10—C11105.79 (16)C23—C24—H24A120.8
C19—C10—C11119.58 (16)C24—C25—C26120.8 (2)
C9—C10—C21112.92 (16)C24—C25—H25A119.6
C19—C10—C21105.32 (16)C26—C25—H25A119.6
C11—C10—C2199.37 (15)C25—C26—C27120.7 (2)
N1—C11—C10103.57 (15)C25—C26—H26A119.6
N1—C11—H11A111.0C27—C26—H26A119.6
C10—C11—H11A111.0C28—C27—C26118.6 (2)
N1—C11—H11B111.0C28—C27—H27A120.7
C10—C11—H11B111.0C26—C27—H27A120.7
H11A—C11—H11B109.0C27—C28—C23120.47 (19)
N1—C12—C8114.38 (16)C27—C28—C29127.28 (19)
N1—C12—H12A108.7C23—C28—C29112.24 (18)
C8—C12—H12A108.7O3—C29—N1110.15 (16)
N1—C12—H12B108.7O3—C29—C28107.30 (16)
C8—C12—H12B108.7N1—C29—C28116.11 (16)
H12A—C12—H12B107.6O3—C29—C21113.68 (16)
C14—C13—C18121.6 (2)N1—C29—C21105.32 (15)
C14—C13—H13A119.2C28—C29—C21104.35 (16)
C18—C13—H13A119.2N2—C30—H30A109.5
C13—C14—C15119.1 (2)N2—C30—H30B109.5
C13—C14—H14A120.5H30A—C30—H30B109.5
C15—C14—H14A120.5N2—C30—H30C109.5
C14—C15—C16121.0 (2)H30A—C30—H30C109.5
C14—C15—Br2119.81 (18)H30B—C30—H30C109.5
C16—C15—Br2119.24 (17)
C6—C1—C2—C30.1 (4)C30—N2—C21—C2240.0 (2)
C1—C2—C3—C41.1 (4)C20—N2—C21—C2288.0 (2)
C1—C2—C3—Br1178.4 (2)C30—N2—C21—C10164.25 (16)
C2—C3—C4—C50.2 (4)C20—N2—C21—C1036.29 (19)
Br1—C3—C4—C5177.03 (17)C30—N2—C21—C2981.9 (2)
C3—C4—C5—C62.5 (3)C20—N2—C21—C29150.15 (17)
C4—C5—C6—C13.5 (3)C9—C10—C21—N2154.75 (16)
C4—C5—C6—C7175.8 (2)C19—C10—C21—N230.76 (19)
C2—C1—C6—C52.1 (4)C11—C10—C21—N293.58 (16)
C2—C1—C6—C7177.2 (2)C9—C10—C21—C2230.1 (2)
C5—C6—C7—C824.2 (4)C19—C10—C21—C2293.93 (19)
C1—C6—C7—C8155.0 (2)C11—C10—C21—C22141.74 (17)
C6—C7—C8—C9172.5 (2)C9—C10—C21—C2984.99 (19)
C6—C7—C8—C122.6 (4)C19—C10—C21—C29151.01 (15)
C7—C8—C9—O126.2 (3)C11—C10—C21—C2926.68 (17)
C12—C8—C9—O1158.3 (2)N2—C21—C22—O254.7 (3)
C7—C8—C9—C10153.83 (18)C10—C21—C22—O263.4 (3)
C12—C8—C9—C1021.6 (3)C29—C21—C22—O2178.56 (19)
O1—C9—C10—C191.2 (3)N2—C21—C22—C23125.52 (18)
C8—C9—C10—C19178.73 (17)C10—C21—C22—C23116.32 (19)
O1—C9—C10—C11134.0 (2)C29—C21—C22—C231.2 (2)
C8—C9—C10—C1145.9 (2)O2—C22—C23—C28179.2 (2)
O1—C9—C10—C21118.4 (2)C21—C22—C23—C280.6 (2)
C8—C9—C10—C2161.7 (2)O2—C22—C23—C240.9 (4)
C12—N1—C11—C1075.54 (18)C21—C22—C23—C24179.3 (2)
C29—N1—C11—C1046.21 (18)C28—C23—C24—C250.0 (3)
C9—C10—C11—N172.53 (18)C22—C23—C24—C25179.9 (2)
C19—C10—C11—N1158.33 (16)C23—C24—C25—C261.0 (4)
C21—C10—C11—N144.65 (17)C24—C25—C26—C271.1 (4)
C11—N1—C12—C849.2 (2)C25—C26—C27—C280.0 (4)
C29—N1—C12—C866.4 (2)C26—C27—C28—C231.1 (3)
C7—C8—C12—N1153.2 (2)C26—C27—C28—C29179.9 (2)
C9—C8—C12—N121.8 (3)C24—C23—C28—C271.1 (3)
C18—C13—C14—C150.4 (4)C22—C23—C28—C27178.8 (2)
C13—C14—C15—C160.3 (4)C24—C23—C28—C29179.77 (19)
C13—C14—C15—Br2179.64 (18)C22—C23—C28—C290.3 (2)
C14—C15—C16—C170.1 (4)C12—N1—C29—O3146.41 (17)
Br2—C15—C16—C17179.31 (17)C11—N1—C29—O395.24 (18)
C15—C16—C17—C180.3 (3)C12—N1—C29—C2824.2 (2)
C14—C13—C18—C170.1 (3)C11—N1—C29—C28142.58 (17)
C14—C13—C18—C19178.7 (2)C12—N1—C29—C2190.63 (18)
C16—C17—C18—C130.2 (3)C11—N1—C29—C2127.72 (18)
C16—C17—C18—C19178.3 (2)C27—C28—C29—O357.1 (3)
C13—C18—C19—C20144.0 (2)C23—C28—C29—O3121.97 (18)
C17—C18—C19—C2037.5 (3)C27—C28—C29—N166.6 (3)
C13—C18—C19—C1093.7 (2)C23—C28—C29—N1114.36 (19)
C17—C18—C19—C1084.8 (2)C27—C28—C29—C21178.0 (2)
C9—C10—C19—C1892.9 (2)C23—C28—C29—C211.0 (2)
C11—C10—C19—C1832.8 (2)N2—C21—C29—O38.9 (2)
C21—C10—C19—C18143.27 (17)C22—C21—C29—O3117.90 (17)
C9—C10—C19—C20138.31 (18)C10—C21—C29—O3121.25 (17)
C11—C10—C19—C2096.0 (2)N2—C21—C29—N1111.75 (17)
C21—C10—C19—C2014.5 (2)C22—C21—C29—N1121.43 (16)
C21—N2—C20—C1927.7 (2)C10—C21—C29—N10.58 (18)
C30—N2—C20—C19157.37 (17)N2—C21—C29—C28125.49 (17)
C18—C19—C20—N2119.92 (19)C22—C21—C29—C281.32 (19)
C10—C19—C20—N27.0 (2)C10—C21—C29—C28122.17 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···N2i0.83 (3)2.02 (3)2.773 (2)151 (3)
C11—H11B···O3i0.972.393.288 (3)153
C17—H17A···O3i0.932.333.203 (3)157
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC30H24Br2N2O3
Mr620.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.3490 (18), 9.1243 (12), 22.541 (3)
β (°) 113.191 (6)
V3)2523.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.25
Crystal size (mm)0.39 × 0.38 × 0.18
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.362, 0.600
No. of measured, independent and
observed [I > 2σ(I)] reflections
25337, 7357, 5709
Rint0.052
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.02
No. of reflections7357
No. of parameters339
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.27, 0.94

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···N2i0.83 (3)2.02 (3)2.773 (2)151 (3)
C11—H11B···O3i0.972.393.288 (3)153
C17—H17A···O3i0.932.333.203 (3)157
Symmetry code: (i) x, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: C-7576-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PKIMIA/811133). HKF and JHG thank USM for the Research University Grant (No. 1001/PFIZIK/811160). RSK thanks USM for the award of a post doctoral fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHuryn, D. M., Trost, B. M. & Fleming, I. (1991). Comp. Org. Synth. 1, 64–74.  Google Scholar
First citationKumar, R. S., Osman, H., Ali, M. A., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1370–o1371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o1540–o1541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, R. S., Osman, H., Ali, M. A., Yeap, C. S. & Fun, H.-K. (2010c). Acta Cryst. E66, o2370–o2371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119–6122.  CrossRef CAS Web of Science Google Scholar
First citationWaldmann, H. (1995). Synlett, pp. 133–141.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds