organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Hy­dr­oxy-3,5-di­iodo­benzyl­­idene)-2-methyl­benzohydrazide

aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China
*Correspondence e-mail: tangchunbao@yahoo.com.cn

(Received 10 December 2010; accepted 12 December 2010; online 18 December 2010)

The asymmetric unit of the title compound, C15H12I2N2O2, contains two independent mol­ecules in which the dihedral angles between the two benzene rings are 62.4 (7) and 41.1 (7)°. Intra­molecular O—H⋯N hydrogen bonds generate S(6) ring motifs in each mol­ecule. In the crystal, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains along the a axis.

Related literature

For general background to hydrazones, see: Rasras et al. (2010[Rasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307-2313.]); Pyta et al. (2010[Pyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147-154.]); Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961-o1962.]); Singh & Singh (2010[Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.]); Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.]); Tang (2010[Tang, C.-B. (2010). Acta Cryst. E66, o2482.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and for hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12I2N2O2

  • Mr = 506.07

  • Monoclinic, P 21

  • a = 9.658 (2) Å

  • b = 11.723 (2) Å

  • c = 14.732 (3) Å

  • β = 93.216 (2)°

  • V = 1665.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.78 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.549, Tmax = 0.601

  • 12106 measured reflections

  • 5976 independent reflections

  • 4443 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.089

  • S = 1.01

  • 5976 reflections

  • 389 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.88 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2163 Friedel pairs

  • Flack parameter: 0.10 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.570 (9) 143
O3—H3⋯N3 0.82 1.85 2.560 (10) 144
N4—H4⋯O2 0.90 (5) 1.94 (4) 2.786 (8) 155 (8)
N2—H2⋯O4i 0.90 (6) 1.91 (3) 2.788 (9) 164 (10)
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazone compounds have received much attention in biological and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). In the present paper, the author reports the crystal structure of the new title hydrazone compound (Fig. 1).

The asymmetric unit of the title compound contains two independent molecules. The dihedral angles between the two benzene rings in the two molecules are 62.4 (7) and 41.1 (7)°, respectively. The torsion angles C1—C7—N1—N2, C7—N1—N2—C8, N1—N2—C8—C9, C16—C22—N3—N4, C22—N3—N4—C23, and N3—N4—C23—C24 are 1.5 (6), 7.2 (6), 4.9 (6), 3.4 (6), 4.8 (6), and 4.3 (6)°, respectively. Bond lengths in the molecules are normal (Allen et al., 1987) and comparable to those in the similar compound the author reported recently (Tang, 2010). Intramolecular O1—H1···N1 and O3—H3···N3 hydrogen bonds generate S(6) ring motifs in each molecule (Bernstein et al., 1995). In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the a axis (Fig. 2).

Related literature top

For general background to hydrazones, see: Rasras et al. (2010); Pyta et al. (2010); Angelusiu et al. (2010). For related structures, see: Fun et al. (2008); Singh & Singh (2010); Ahmad et al. (2010); Tang (2010). For reference bond-length data, see: Allen et al. (1987) and for hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

2-Hydroxy-3,5-diiodobenzaldehyde (0.1 mmol, 37.4 mg) and 2-methylbenzohydrazide (0.1 mmol, 15.0 mg) were dissolved in methanol (20 ml). The mixture was stirred at reflux for 10 min to give a clear colourless solution. Colourless block-shaped crystals of the compound were formed by slow evaporation of the solvent over several days.

Refinement top

The amino H atoms were located in a difference Fourier map and refined isotropically, with the N—H distances restrained to 0.90 (1) Å [Uiso(H) = 0.08 Å2]. Other H atoms were constrained to ideal geometries and refined as riding, with Csp2—H = 0.93 Å, C(methyl)—H = 0.96 Å, and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and Cmethyl).

Structure description top

Hydrazone compounds have received much attention in biological and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). In the present paper, the author reports the crystal structure of the new title hydrazone compound (Fig. 1).

The asymmetric unit of the title compound contains two independent molecules. The dihedral angles between the two benzene rings in the two molecules are 62.4 (7) and 41.1 (7)°, respectively. The torsion angles C1—C7—N1—N2, C7—N1—N2—C8, N1—N2—C8—C9, C16—C22—N3—N4, C22—N3—N4—C23, and N3—N4—C23—C24 are 1.5 (6), 7.2 (6), 4.9 (6), 3.4 (6), 4.8 (6), and 4.3 (6)°, respectively. Bond lengths in the molecules are normal (Allen et al., 1987) and comparable to those in the similar compound the author reported recently (Tang, 2010). Intramolecular O1—H1···N1 and O3—H3···N3 hydrogen bonds generate S(6) ring motifs in each molecule (Bernstein et al., 1995). In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the a axis (Fig. 2).

For general background to hydrazones, see: Rasras et al. (2010); Pyta et al. (2010); Angelusiu et al. (2010). For related structures, see: Fun et al. (2008); Singh & Singh (2010); Ahmad et al. (2010); Tang (2010). For reference bond-length data, see: Allen et al. (1987) and for hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius and hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. Molecular packing of the title compound, with hydrogen bonds shown as dashed lines.
N'-(2-Hydroxy-3,5-diiodobenzylidene)-2-methylbenzohydrazide top
Crystal data top
C15H12I2N2O2F(000) = 952
Mr = 506.07Dx = 2.018 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3095 reflections
a = 9.658 (2) Åθ = 2.5–24.5°
b = 11.723 (2) ŵ = 3.78 mm1
c = 14.732 (3) ÅT = 298 K
β = 93.216 (2)°Block, colourless
V = 1665.4 (6) Å30.18 × 0.17 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5976 independent reflections
Radiation source: fine-focus sealed tube4443 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.549, Tmax = 0.601k = 914
12106 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0325P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5976 reflectionsΔρmax = 0.53 e Å3
389 parametersΔρmin = 0.88 e Å3
3 restraintsAbsolute structure: Flack (1983), 2163 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (3)
Crystal data top
C15H12I2N2O2V = 1665.4 (6) Å3
Mr = 506.07Z = 4
Monoclinic, P21Mo Kα radiation
a = 9.658 (2) ŵ = 3.78 mm1
b = 11.723 (2) ÅT = 298 K
c = 14.732 (3) Å0.18 × 0.17 × 0.15 mm
β = 93.216 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5976 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4443 reflections with I > 2σ(I)
Tmin = 0.549, Tmax = 0.601Rint = 0.040
12106 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089Δρmax = 0.53 e Å3
S = 1.01Δρmin = 0.88 e Å3
5976 reflectionsAbsolute structure: Flack (1983), 2163 Friedel pairs
389 parametersAbsolute structure parameter: 0.10 (3)
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.63728 (6)0.05063 (8)0.65864 (5)0.0703 (3)
I20.04006 (6)0.04601 (6)0.72932 (4)0.0560 (2)
I31.16416 (8)0.40275 (8)0.64944 (6)0.0777 (3)
I40.57051 (8)0.30877 (7)0.73109 (5)0.0722 (3)
N10.3538 (7)0.1082 (8)0.3438 (4)0.040 (2)
N20.3260 (6)0.1360 (8)0.2538 (5)0.039 (2)
N30.8691 (7)0.2375 (8)0.3398 (5)0.037 (2)
N40.8323 (6)0.2070 (7)0.2514 (5)0.038 (2)
O10.5262 (5)0.0329 (7)0.4690 (4)0.0500 (18)
H10.49960.04490.41600.075*
O20.5548 (5)0.1423 (9)0.2297 (4)0.065 (3)
O31.0418 (5)0.3199 (8)0.4607 (4)0.055 (2)
H31.01880.28460.41420.082*
O41.0562 (5)0.2148 (8)0.2173 (4)0.062 (3)
C10.2840 (8)0.0766 (8)0.4902 (6)0.035 (2)
C20.4176 (7)0.0386 (10)0.5221 (6)0.038 (2)
C30.4385 (7)0.0046 (8)0.6126 (6)0.038 (2)
C40.3328 (8)0.0075 (8)0.6722 (5)0.041 (3)
H4A0.34880.01470.73250.050*
C50.2011 (7)0.0447 (10)0.6398 (6)0.041 (2)
C60.1778 (8)0.0739 (8)0.5498 (5)0.036 (2)
H60.08830.09250.52830.044*
C70.2561 (8)0.1083 (9)0.3969 (6)0.037 (2)
H70.16700.12880.37590.044*
C80.4346 (7)0.1479 (9)0.1991 (5)0.034 (2)
C90.3917 (8)0.1684 (10)0.1014 (6)0.043 (3)
C100.4529 (9)0.2538 (8)0.0538 (6)0.048 (2)
C110.4131 (11)0.2638 (10)0.0406 (6)0.070 (3)
H110.45120.32100.07510.084*
C120.3196 (13)0.1896 (14)0.0802 (8)0.086 (5)
H120.29450.19720.14170.103*
C130.2618 (11)0.1041 (11)0.0316 (7)0.079 (3)
H130.19870.05410.06040.095*
C140.2961 (9)0.0924 (9)0.0577 (6)0.058 (3)
H140.25680.03430.09060.070*
C150.5496 (10)0.3374 (10)0.0925 (7)0.075 (3)
H15A0.51970.36200.15040.113*
H15B0.55310.40180.05240.113*
H15C0.64020.30390.10040.113*
C160.8046 (8)0.2772 (9)0.4902 (5)0.041 (3)
C170.9381 (8)0.3161 (10)0.5183 (5)0.037 (2)
C180.9635 (8)0.3486 (9)0.6068 (6)0.045 (3)
C190.8592 (10)0.3491 (9)0.6676 (6)0.052 (3)
H190.87770.37390.72700.063*
C200.7290 (9)0.3129 (10)0.6401 (6)0.046 (2)
C210.7013 (9)0.2749 (9)0.5519 (6)0.050 (3)
H210.61350.24770.53400.060*
C220.7737 (9)0.2397 (10)0.3971 (6)0.043 (3)
H220.68410.21710.37890.051*
C230.9330 (8)0.1963 (10)0.1929 (6)0.048 (3)
C240.8872 (8)0.1720 (9)0.0985 (6)0.039 (2)
C250.9316 (9)0.2342 (8)0.0260 (6)0.054 (2)
C260.8796 (12)0.2072 (11)0.0621 (7)0.068 (3)
H260.90750.24970.11120.082*
C270.7902 (12)0.1207 (15)0.0763 (8)0.085 (4)
H270.75880.10410.13570.102*
C280.7430 (10)0.0558 (11)0.0069 (8)0.079 (3)
H280.68050.00350.01870.094*
C290.7919 (9)0.0814 (9)0.0826 (6)0.057 (3)
H290.76170.03910.13110.069*
C301.0280 (11)0.3345 (9)0.0403 (7)0.076 (3)
H30A1.00040.37860.09110.114*
H30B1.02390.38120.01330.114*
H30C1.12110.30750.05220.114*
H20.239 (4)0.153 (10)0.233 (6)0.080*
H40.748 (4)0.188 (10)0.227 (6)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0474 (4)0.0872 (8)0.0748 (5)0.0162 (4)0.0098 (3)0.0093 (4)
I20.0566 (4)0.0726 (6)0.0403 (3)0.0013 (4)0.0168 (2)0.0029 (4)
I30.0673 (5)0.0831 (8)0.0806 (6)0.0164 (4)0.0136 (4)0.0137 (5)
I40.0870 (5)0.0812 (7)0.0519 (5)0.0016 (5)0.0343 (4)0.0025 (4)
N10.045 (4)0.051 (7)0.024 (4)0.004 (3)0.007 (3)0.004 (3)
N20.029 (3)0.053 (6)0.035 (4)0.000 (3)0.006 (3)0.002 (4)
N30.034 (4)0.037 (6)0.040 (5)0.004 (3)0.002 (3)0.004 (4)
N40.031 (4)0.054 (6)0.031 (4)0.002 (3)0.006 (3)0.001 (4)
O10.042 (3)0.064 (6)0.045 (4)0.001 (3)0.010 (2)0.004 (4)
O20.026 (3)0.121 (8)0.048 (4)0.007 (3)0.002 (3)0.007 (4)
O30.037 (3)0.071 (6)0.058 (4)0.002 (4)0.012 (3)0.005 (4)
O40.032 (3)0.101 (8)0.054 (4)0.010 (3)0.004 (3)0.010 (4)
C10.035 (4)0.029 (7)0.042 (5)0.004 (4)0.007 (3)0.003 (4)
C20.033 (4)0.031 (7)0.051 (5)0.007 (4)0.006 (3)0.000 (5)
C30.038 (4)0.040 (7)0.036 (5)0.001 (4)0.004 (3)0.007 (4)
C40.062 (5)0.037 (7)0.024 (5)0.001 (4)0.005 (4)0.003 (4)
C50.036 (4)0.042 (7)0.043 (5)0.002 (5)0.002 (3)0.005 (5)
C60.039 (4)0.042 (8)0.027 (4)0.007 (4)0.000 (3)0.000 (4)
C70.040 (5)0.036 (7)0.035 (5)0.007 (4)0.007 (4)0.002 (4)
C80.030 (4)0.044 (7)0.028 (4)0.002 (4)0.003 (3)0.001 (4)
C90.028 (4)0.061 (8)0.040 (5)0.003 (4)0.012 (4)0.001 (5)
C100.044 (5)0.052 (7)0.050 (5)0.009 (4)0.017 (4)0.003 (4)
C110.087 (8)0.080 (9)0.047 (6)0.013 (6)0.035 (5)0.006 (5)
C120.108 (10)0.118 (15)0.032 (6)0.005 (9)0.014 (6)0.004 (7)
C130.084 (8)0.103 (10)0.048 (6)0.004 (7)0.015 (5)0.020 (6)
C140.059 (6)0.077 (8)0.037 (5)0.007 (5)0.001 (4)0.010 (5)
C150.076 (7)0.080 (9)0.070 (7)0.014 (6)0.001 (5)0.017 (6)
C160.044 (5)0.052 (9)0.026 (5)0.003 (4)0.001 (3)0.001 (4)
C170.050 (5)0.029 (6)0.032 (5)0.002 (4)0.001 (3)0.007 (5)
C180.044 (5)0.044 (8)0.047 (6)0.009 (4)0.004 (4)0.005 (5)
C190.081 (7)0.034 (8)0.039 (6)0.001 (5)0.014 (5)0.002 (5)
C200.062 (6)0.045 (7)0.031 (5)0.002 (5)0.010 (4)0.000 (5)
C210.050 (5)0.046 (8)0.055 (7)0.006 (5)0.014 (4)0.003 (5)
C220.047 (5)0.050 (8)0.032 (5)0.004 (5)0.006 (4)0.001 (5)
C230.033 (5)0.063 (9)0.049 (6)0.010 (5)0.006 (4)0.004 (5)
C240.040 (5)0.043 (7)0.034 (5)0.015 (4)0.005 (3)0.005 (5)
C250.069 (6)0.051 (7)0.043 (5)0.011 (5)0.014 (4)0.006 (4)
C260.084 (8)0.077 (10)0.045 (6)0.020 (7)0.019 (5)0.007 (6)
C270.075 (8)0.133 (14)0.047 (7)0.030 (8)0.004 (6)0.013 (7)
C280.067 (7)0.076 (9)0.092 (9)0.002 (6)0.002 (6)0.033 (7)
C290.050 (5)0.069 (8)0.054 (6)0.005 (5)0.010 (4)0.010 (5)
C300.089 (8)0.069 (8)0.073 (7)0.008 (6)0.028 (6)0.009 (6)
Geometric parameters (Å, º) top
I1—C32.102 (8)C11—H110.9300
I2—C52.095 (8)C12—C131.369 (17)
I3—C182.101 (9)C12—H120.9300
I4—C202.091 (8)C13—C141.346 (12)
N1—C71.259 (9)C13—H130.9300
N1—N21.378 (9)C14—H140.9300
N2—C81.365 (9)C15—H15A0.9600
N2—H20.90 (6)C15—H15B0.9600
N3—C221.284 (9)C15—H15C0.9600
N3—N41.377 (9)C16—C211.386 (11)
N4—C231.341 (10)C16—C171.408 (12)
N4—H40.90 (5)C16—C221.456 (11)
O1—C21.345 (8)C17—C181.367 (12)
O1—H10.8200C18—C191.386 (12)
O2—C81.224 (9)C19—C201.367 (12)
O3—C171.349 (8)C19—H190.9300
O3—H30.8200C20—C211.386 (12)
O4—C231.243 (10)C21—H210.9300
C1—C61.387 (10)C22—H220.9300
C1—C21.420 (11)C23—C241.464 (11)
C1—C71.435 (11)C24—C251.381 (12)
C2—C31.395 (11)C24—C291.416 (13)
C3—C41.383 (10)C25—C261.401 (13)
C4—C51.403 (11)C25—C301.507 (13)
C4—H4A0.9300C26—C271.341 (18)
C5—C61.376 (11)C26—H260.9300
C6—H60.9300C27—C281.373 (17)
C7—H70.9300C27—H270.9300
C8—C91.495 (11)C28—C291.409 (12)
C9—C101.374 (13)C28—H280.9300
C9—C141.412 (12)C29—H290.9300
C10—C111.426 (12)C30—H30A0.9600
C10—C151.450 (13)C30—H30B0.9600
C11—C121.361 (16)C30—H30C0.9600
C7—N1—N2119.1 (7)C10—C15—H15B109.5
C8—N2—N1118.6 (6)H15A—C15—H15B109.5
C8—N2—H2120 (6)C10—C15—H15C109.5
N1—N2—H2121 (6)H15A—C15—H15C109.5
C22—N3—N4118.1 (7)H15B—C15—H15C109.5
C23—N4—N3118.3 (7)C21—C16—C17119.7 (8)
C23—N4—H4113 (6)C21—C16—C22119.7 (9)
N3—N4—H4128 (6)C17—C16—C22120.7 (7)
C2—O1—H1109.5O3—C17—C18119.4 (8)
C17—O3—H3109.5O3—C17—C16121.7 (8)
C6—C1—C2118.3 (8)C18—C17—C16118.9 (7)
C6—C1—C7120.4 (8)C17—C18—C19121.3 (9)
C2—C1—C7121.1 (7)C17—C18—I3118.9 (6)
O1—C2—C3117.8 (7)C19—C18—I3119.8 (7)
O1—C2—C1123.1 (8)C20—C19—C18119.8 (9)
C3—C2—C1119.1 (7)C20—C19—H19120.1
C4—C3—C2121.8 (7)C18—C19—H19120.1
C4—C3—I1119.7 (6)C19—C20—C21120.3 (8)
C2—C3—I1118.4 (6)C19—C20—I4120.8 (7)
C3—C4—C5118.6 (8)C21—C20—I4118.9 (7)
C3—C4—H4A120.7C16—C21—C20120.0 (9)
C5—C4—H4A120.7C16—C21—H21120.0
C6—C5—C4120.1 (7)C20—C21—H21120.0
C6—C5—I2121.2 (6)N3—C22—C16120.6 (9)
C4—C5—I2118.6 (6)N3—C22—H22119.7
C5—C6—C1121.9 (8)C16—C22—H22119.7
C5—C6—H6119.0O4—C23—N4121.0 (9)
C1—C6—H6119.0O4—C23—C24122.9 (7)
N1—C7—C1119.2 (8)N4—C23—C24115.9 (7)
N1—C7—H7120.4C25—C24—C29119.7 (8)
C1—C7—H7120.4C25—C24—C23122.8 (9)
O2—C8—N2121.4 (8)C29—C24—C23117.5 (8)
O2—C8—C9124.7 (7)C24—C25—C26119.1 (10)
N2—C8—C9113.9 (6)C24—C25—C30121.3 (8)
C10—C9—C14121.1 (8)C26—C25—C30119.5 (9)
C10—C9—C8120.3 (8)C27—C26—C25120.7 (11)
C14—C9—C8118.5 (9)C27—C26—H26119.7
C9—C10—C11117.2 (9)C25—C26—H26119.7
C9—C10—C15125.3 (8)C26—C27—C28122.7 (11)
C11—C10—C15117.4 (9)C26—C27—H27118.6
C12—C11—C10120.1 (10)C28—C27—H27118.6
C12—C11—H11120.0C27—C28—C29118.1 (11)
C10—C11—H11120.0C27—C28—H28120.9
C11—C12—C13121.6 (11)C29—C28—H28120.9
C11—C12—H12119.2C28—C29—C24119.7 (9)
C13—C12—H12119.2C28—C29—H29120.2
C14—C13—C12120.0 (11)C24—C29—H29120.2
C14—C13—H13120.0C25—C30—H30A109.5
C12—C13—H13120.0C25—C30—H30B109.5
C13—C14—C9120.0 (10)H30A—C30—H30B109.5
C13—C14—H14120.0C25—C30—H30C109.5
C9—C14—H14120.0H30A—C30—H30C109.5
C10—C15—H15A109.5H30B—C30—H30C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.570 (9)143
O3—H3···N30.821.852.560 (10)144
N4—H4···O20.90 (5)1.94 (4)2.786 (8)155 (8)
N2—H2···O4i0.90 (6)1.91 (3)2.788 (9)164 (10)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H12I2N2O2
Mr506.07
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)9.658 (2), 11.723 (2), 14.732 (3)
β (°) 93.216 (2)
V3)1665.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.78
Crystal size (mm)0.18 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.549, 0.601
No. of measured, independent and
observed [I > 2σ(I)] reflections
12106, 5976, 4443
Rint0.040
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.089, 1.01
No. of reflections5976
No. of parameters389
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.88
Absolute structureFlack (1983), 2163 Friedel pairs
Absolute structure parameter0.10 (3)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.570 (9)143
O3—H3···N30.821.852.560 (10)144
N4—H4···O20.90 (5)1.94 (4)2.786 (8)155 (8)
N2—H2···O4i0.90 (6)1.91 (3)2.788 (9)164 (10)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

Financial support from the Jiaying University research fund is gratefully acknowledged.

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationRasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2010). Acta Cryst. E66, o2482.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds