organic compounds
(E)-3-(1-Naphthylamino)methylene-(+)-camphor
aDepartamento de Química, Universidad Simón Bolívar, Caracas 1080A, Venezuela, and bInstitute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
*Correspondence e-mail: alinden@oci.uzh.ch, rdorta@usb.ve
In the E)-1,7,7-trimethyl-3-[(1-naphthylamino)methylidene]bicyclo[2.2.1]heptan-2-one}, C21H23NO, there are two independent molecules in the Both molecules have an E configuration about the alkene function. The main conformational difference between the molecules is in the orientation of the plane of the naphthyl rings with respect to the camphor fragment. The torsion angle about the enamine C—N bond is 21.3 (7)° for molecule A, but −24.4 (8)° for molecule B. Intermolecular N—H⋯O hydrogen bonds between the amino and ketone groups of adjacent independent molecules sustain the crystal, and the resulting extended chains, containing an alternating sequence of the two independent molecules, run parallel to the [001] direction and can be described by a graph-set motif of C22(12).
of the title ketoamine {systematic name: (Related literature
For the conformations of β-ketoamines, see: Zharkova et al. (2009). For chiral camphor-derived β-aminoketonate ligands, see: Everett & Powers (1970); Casella et al. (1979). For reactions involving aminoketonate complexes, see: Hsu, Chang et al. (2004); Hsu, Li et al. (2007); Lai et al. (2005); Pan et al. (2008); Wang et al. (2006). For the coordination chemistry of β-aminoketonate ligands, see: Lesikar et al. (2008); Sedai et al. (2008). For the synthesis of (+)-hydroxymethylenecamphor, see: Lintvedt & Fatta (1968). For related (1-naphthylamino)methylene structures, see: Li et al. (2009); Özek et al. (2005). For graph-set theory, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Nonius, 2000); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810052487/su2235sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810052487/su2235Isup2.hkl
The title compound was prepared by refluxing 1-naphthylamine (6.77 g, 37.6 mmol) with (+)-hydroxymethylenecamphor (Lintvedt & Fatta, 1968) (5.92 g, 41.3 mmol) in dry ethanol (200 ml) and formic acid (2.5 ml) for 48 h. After removing the solvent under reduced pressure, the resulting yellow solid was dried in vacuo for 4 h. The crude product contained both conformers, which after washing with hexane and HV drying afforded 6.53 g (57%) of the pure (E)-conformer [the (Z)-conformer being more soluble in alkanes]. Yellow single crystals suitable for an X-ray analysis were grown from a saturated and filtered ethanol solution that was cooled slowly to 263 K (m.p. 351–353 K). Elemental analysis calculated for C21H23NO: C 82.58, H 7.59, N 4.59%; found: C 85.26, H 7.99, N 4.61%. NMR and IR Spectroscopic data are available in the archived CIF.
In the final cycles of
in the absence of significant effects, 2643 Friedel pairs were merged and Δf " set to zero. The used in the model was chosen to match the known configuration of the (+)-camphor fragment. The amine H atoms were located in a difference Fourier map and their positions were refined freely with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms: C—H = 0.95, 0.98, 1.00 Å, for CH, CH3 and CH2 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms.β-Ketoamines are the neutral protic form of β-aminoketonate bidentate anionic ligands that have been used in the coordination chemistry of transition and main group metals (Lesikar et al., 2008; Sedai et al., 2008). The electronic and steric dissymmetry of these ligands is easily modified in order to tune the reactivity of the metal centre. β-Aminoketonate complexes have been used effectively in stoichiometric (Hsu, Chang et al., 2004; Hsu, Li et al., 2007) and catalytic processes, such as Suzuki cross-coupling (Lai et al., 2005), polymerization (Wang et al., 2006) and (Pan et al., 2008) reactions. Interestingly, there are only a few reports on chiral camphor-derived β-aminoketonate ligands (Everett & Powers, 1970; Casella et al., 1979). Generally, β-ketoamines have Z conformations that are stabilized by intramolecular hydrogen bonding (Zharkova et al., 2009). The structure of the title compound was determined in order to confirm the anticipated E conformation about the alkene bond for the major product of the synthesis.
There are two molecules (A and B) of the title compound in the
(Fig. 1). The slightly twisted conformations of the (1-naphthylamino)methylene fragments are similar to that in the structure of 2,2-dimethyl-5-(1-naphthylaminomethylene)-1,3-dioxane-4,6-dione (Li et al., 2009): the absolute values of the torsion angle about the enamine C—N bond for the two structures lie in the narrow range of 21–25°. In contrast, the same group in 2-hydroxy-6-[(1-napthylamino)methylene]cyclohexa-2,4-dien-1-one is almost planar (Özek et al., 2005).The preference for the E conformation during the synthesis of the title compound may be attributed to the large size of the naphthyl group, whose steric pressure overcomes the competing intramolecular N—H···O hydrogen bonding, which is facilitated in the Z conformer. The observed intermolecular N—H···O hydrogen bonds between the amino and keto groups of adjacent independent molecules, which link the molecules into extended chains running parallel to [001] (Fig. 2), are an additional stabilizing factor of the E conformation. They can be described by a graph-set motif of C22(12) [Bernstein et al., 1995].
While the
of the (+)-camphor fragment means that both symmetry-independent molecules are of the same it is interesting to note that there is significant pseudo-inversion symmetry in the structure, with 82% of the atoms in one molecule matching closely with those of the inverted structure of the other molecule; the r.m.s. fit of 21 atoms from each molecule is 1.14 Å. Slight in-plane disorder of the naphthyl groups leads to enlarged displacement ellipsoids for some of the atoms of these groups with the direction of elongation being in the naphthyl plane.For the conformations of β-ketoamines, see: Zharkova et al. (2009). For chiral camphor-derived β-aminoketonate ligands, see: Everett & Powers (1970); Casella et al. (1979). For reactions involving aminoketonate complexes, see: Hsu, Chang et al. (2004); Hsu, Li et al. (2007); Lai et al. (2005); Pan et al. (2008); Wang et al. (2006). For the coordination chemistry of β-aminoketonate ligands, see: Lesikar et al. (2008); Sedai et al. (2008). For the synthesis of (+)-hydroxymethylenecamphor, see: Lintvedt & Fatta (1968). For related (1-naphthylamino)methylene structures, see: Li et al. (2009); Özek et al. (2005). For graph-set theory, see: Bernstein et al. (1995).
Data collection: COLLECT (Nonius, 2000); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C21H23NO | F(000) = 1312 |
Mr = 305.42 | Dx = 1.190 Mg m−3 |
Monoclinic, C2 | Melting point: 352 K |
Hall symbol: C 2y | Mo Kα radiation, λ = 0.71073 Å |
a = 23.807 (2) Å | Cell parameters from 3158 reflections |
b = 11.9688 (12) Å | θ = 2.0–25.0° |
c = 12.0192 (8) Å | µ = 0.07 mm−1 |
β = 95.672 (5)° | T = 160 K |
V = 3408.1 (5) Å3 | Prism, yellow |
Z = 8 | 0.25 × 0.20 × 0.12 mm |
Nonius KappaCCD area-detector diffractometer | 2227 reflections with I > 2σ(I) |
Radiation source: Nonius FR590 sealed tube generator | Rint = 0.092 |
Horizontally mounted graphite crystal monochromator | θmax = 25.0°, θmin = 2.5° |
Detector resolution: 9 pixels mm-1 | h = 0→28 |
ω scans with κ offsets | k = 0→14 |
21618 measured reflections | l = −14→14 |
3170 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.155 | w = 1/[σ2(Fo2) + (0.0737P)2 + 1.1311P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3170 reflections | Δρmax = 0.24 e Å−3 |
428 parameters | Δρmin = −0.17 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0040 (7) |
C21H23NO | V = 3408.1 (5) Å3 |
Mr = 305.42 | Z = 8 |
Monoclinic, C2 | Mo Kα radiation |
a = 23.807 (2) Å | µ = 0.07 mm−1 |
b = 11.9688 (12) Å | T = 160 K |
c = 12.0192 (8) Å | 0.25 × 0.20 × 0.12 mm |
β = 95.672 (5)° |
Nonius KappaCCD area-detector diffractometer | 2227 reflections with I > 2σ(I) |
21618 measured reflections | Rint = 0.092 |
3170 independent reflections |
R[F2 > 2σ(F2)] = 0.059 | 1 restraint |
wR(F2) = 0.155 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.24 e Å−3 |
3170 reflections | Δρmin = −0.17 e Å−3 |
428 parameters |
Experimental. Solvent used: EtOH. Cooling Device: Oxford Cryosystems Cryostream 700. Crystal mount: glued on a glass fibre. Mosaicity: 1.498 (4)°. Frames collected: 273. Seconds exposure per frame: 88. Degrees rotation per frame: 1.4. Crystal-Detector distance: 30.0 mm. Spectroscopic data: 1H-NMR (400 MHz, CDCl3): δ 10.77 (d, J = 12.0 Hz, 1H), 8.09 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 12.0 Hz, 1H), 7.54–7.45 (m, 3H), 7.40–7.36 (t, 1H), 7.20 (d, J = 12.0 Hz, 1H), 7.11 (d, J = 8.0 Hz, 1H), 2.53–2.52 (d, J = 4.0 Hz, 1H), 2.11–2.05 (m, 1H), 1.73–1.66 (m, 1H), 1.49–1.41 (m, 2H), 1.03 (s, 3H), 0.94 (s,3H), 0.89 (s, 3H); 13C {1H}-NMR (101 MHz, CDCl3): δ 209.4, 136.9, 134.5, 132.9, 128.5, 126.4, 126.2, 125.9, 123.9, 121.9, 120.7, 116.3, 107.6, 58.9, 49.9, 49.1, 30.4, 28.5, 20.7, 19.1, 9.2; FT—IR (ν, cm- 1, KBr): 3300 (N—H), 1681 (C=O). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.68329 (13) | 0.4955 (3) | 0.5734 (2) | 0.0597 (10) | |
N1 | 0.76542 (16) | 0.5821 (4) | 0.2820 (3) | 0.0467 (10) | |
H1 | 0.7453 (18) | 0.563 (4) | 0.204 (4) | 0.056* | |
C1 | 0.82420 (18) | 0.6018 (4) | 0.2844 (4) | 0.0457 (12) | |
C2 | 0.8445 (2) | 0.6690 (4) | 0.1988 (4) | 0.0454 (12) | |
C3 | 0.8088 (2) | 0.7267 (5) | 0.1164 (4) | 0.0542 (14) | |
H3 | 0.7691 | 0.7240 | 0.1190 | 0.065* | |
C4 | 0.8307 (2) | 0.7866 (5) | 0.0329 (4) | 0.0624 (15) | |
H4 | 0.8064 | 0.8257 | −0.0211 | 0.075* | |
C5 | 0.8888 (3) | 0.7892 (5) | 0.0282 (5) | 0.0674 (16) | |
H5 | 0.9036 | 0.8278 | −0.0316 | 0.081* | |
C6 | 0.9245 (2) | 0.7388 (5) | 0.1057 (4) | 0.0584 (15) | |
H6 | 0.9641 | 0.7438 | 0.1009 | 0.070* | |
C7 | 0.9041 (2) | 0.6780 (5) | 0.1950 (4) | 0.0508 (13) | |
C8 | 0.9406 (2) | 0.6296 (5) | 0.2821 (5) | 0.0575 (14) | |
H8 | 0.9802 | 0.6378 | 0.2817 | 0.069* | |
C9 | 0.9198 (2) | 0.5715 (5) | 0.3664 (4) | 0.0569 (13) | |
H9 | 0.9449 | 0.5412 | 0.4251 | 0.068* | |
C10 | 0.86094 (19) | 0.5562 (4) | 0.3669 (4) | 0.0514 (13) | |
H10 | 0.8468 | 0.5140 | 0.4250 | 0.062* | |
C11 | 0.74053 (18) | 0.5505 (4) | 0.3731 (4) | 0.0435 (12) | |
H11 | 0.7592 | 0.5701 | 0.4439 | 0.052* | |
C12 | 0.69145 (18) | 0.4934 (4) | 0.3731 (3) | 0.0436 (12) | |
C13 | 0.65587 (19) | 0.4306 (4) | 0.2821 (3) | 0.0454 (12) | |
H13 | 0.6557 | 0.4624 | 0.2051 | 0.054* | |
C14 | 0.6757 (2) | 0.3084 (4) | 0.2953 (4) | 0.0574 (14) | |
H141 | 0.7173 | 0.3028 | 0.2978 | 0.069* | |
H142 | 0.6583 | 0.2611 | 0.2336 | 0.069* | |
C15 | 0.6547 (2) | 0.2746 (5) | 0.4094 (4) | 0.0595 (14) | |
H151 | 0.6869 | 0.2576 | 0.4654 | 0.071* | |
H152 | 0.6297 | 0.2084 | 0.4008 | 0.071* | |
C16 | 0.62158 (19) | 0.3793 (4) | 0.4453 (3) | 0.0469 (12) | |
C17 | 0.66827 (19) | 0.4636 (4) | 0.4773 (4) | 0.0467 (13) | |
C18 | 0.59773 (18) | 0.4275 (4) | 0.3300 (3) | 0.0459 (12) | |
C19 | 0.5713 (2) | 0.5429 (5) | 0.3385 (4) | 0.0590 (14) | |
H191 | 0.5393 | 0.5382 | 0.3836 | 0.088* | |
H192 | 0.5581 | 0.5699 | 0.2634 | 0.088* | |
H193 | 0.5995 | 0.5948 | 0.3738 | 0.088* | |
C20 | 0.5540 (2) | 0.3515 (5) | 0.2652 (4) | 0.0624 (15) | |
H201 | 0.5440 | 0.3824 | 0.1903 | 0.094* | |
H202 | 0.5202 | 0.3469 | 0.3051 | 0.094* | |
H203 | 0.5700 | 0.2766 | 0.2586 | 0.094* | |
C21 | 0.5823 (2) | 0.3569 (6) | 0.5342 (4) | 0.0631 (15) | |
H211 | 0.5603 | 0.4243 | 0.5460 | 0.095* | |
H212 | 0.6044 | 0.3362 | 0.6042 | 0.095* | |
H213 | 0.5566 | 0.2956 | 0.5099 | 0.095* | |
O2 | 0.69132 (15) | 0.5802 (3) | 1.0744 (3) | 0.0673 (11) | |
N2 | 0.76421 (18) | 0.5057 (4) | 0.7714 (3) | 0.0564 (12) | |
H2 | 0.743 (2) | 0.502 (5) | 0.712 (4) | 0.068* | |
C31 | 0.8225 (2) | 0.4882 (5) | 0.7702 (4) | 0.0512 (13) | |
C32 | 0.8415 (2) | 0.4213 (5) | 0.6840 (4) | 0.0554 (14) | |
C33 | 0.8049 (2) | 0.3591 (5) | 0.6054 (4) | 0.0588 (14) | |
H33 | 0.7653 | 0.3617 | 0.6100 | 0.071* | |
C34 | 0.8253 (3) | 0.2968 (5) | 0.5246 (5) | 0.0674 (16) | |
H34 | 0.7998 | 0.2569 | 0.4732 | 0.081* | |
C35 | 0.8829 (3) | 0.2900 (6) | 0.5154 (5) | 0.0750 (17) | |
H35 | 0.8965 | 0.2475 | 0.4569 | 0.090* | |
C36 | 0.9189 (3) | 0.3432 (5) | 0.5889 (5) | 0.0700 (16) | |
H36 | 0.9582 | 0.3376 | 0.5822 | 0.084* | |
C37 | 0.8998 (2) | 0.4094 (5) | 0.6788 (5) | 0.0572 (14) | |
C38 | 0.9397 (2) | 0.4604 (5) | 0.7578 (5) | 0.0621 (15) | |
H38 | 0.9791 | 0.4515 | 0.7537 | 0.075* | |
C39 | 0.9195 (2) | 0.5234 (5) | 0.8409 (5) | 0.0708 (17) | |
H39 | 0.9455 | 0.5581 | 0.8952 | 0.085* | |
C40 | 0.8608 (2) | 0.5376 (5) | 0.8472 (4) | 0.0582 (14) | |
H40 | 0.8480 | 0.5817 | 0.9054 | 0.070* | |
C41 | 0.7408 (2) | 0.5355 (5) | 0.8651 (4) | 0.0575 (14) | |
H41 | 0.7626 | 0.5197 | 0.9339 | 0.069* | |
C42 | 0.68961 (18) | 0.5857 (4) | 0.8730 (4) | 0.0452 (12) | |
C43 | 0.6461 (2) | 0.6346 (5) | 0.7896 (4) | 0.0547 (14) | |
H43 | 0.6592 | 0.6503 | 0.7146 | 0.066* | |
C44 | 0.5941 (2) | 0.5569 (6) | 0.7881 (4) | 0.0674 (16) | |
H441 | 0.5651 | 0.5764 | 0.7263 | 0.081* | |
H442 | 0.6049 | 0.4775 | 0.7811 | 0.081* | |
C45 | 0.5733 (2) | 0.5810 (5) | 0.9029 (4) | 0.0621 (14) | |
H451 | 0.5747 | 0.5127 | 0.9495 | 0.075* | |
H452 | 0.5341 | 0.6097 | 0.8944 | 0.075* | |
C46 | 0.6151 (2) | 0.6717 (5) | 0.9562 (4) | 0.0524 (13) | |
C47 | 0.6699 (2) | 0.6078 (4) | 0.9813 (4) | 0.0458 (12) | |
C48 | 0.62762 (19) | 0.7388 (5) | 0.8533 (4) | 0.0556 (14) | |
C49 | 0.6746 (2) | 0.8251 (5) | 0.8770 (5) | 0.0661 (15) | |
H491 | 0.6821 | 0.8616 | 0.8070 | 0.099* | |
H492 | 0.7090 | 0.7877 | 0.9098 | 0.099* | |
H493 | 0.6630 | 0.8812 | 0.9295 | 0.099* | |
C50 | 0.5761 (2) | 0.8006 (6) | 0.7922 (5) | 0.0802 (18) | |
H501 | 0.5461 | 0.7466 | 0.7704 | 0.120* | |
H502 | 0.5875 | 0.8377 | 0.7253 | 0.120* | |
H503 | 0.5622 | 0.8565 | 0.8423 | 0.120* | |
C51 | 0.5939 (3) | 0.7335 (6) | 1.0546 (4) | 0.0796 (18) | |
H511 | 0.6229 | 0.7860 | 1.0858 | 0.119* | |
H512 | 0.5857 | 0.6796 | 1.1123 | 0.119* | |
H513 | 0.5594 | 0.7747 | 1.0292 | 0.119* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.059 (2) | 0.080 (3) | 0.0400 (18) | −0.0056 (19) | 0.0018 (15) | −0.0112 (19) |
N1 | 0.043 (2) | 0.055 (3) | 0.041 (2) | −0.004 (2) | −0.0013 (17) | 0.000 (2) |
C1 | 0.038 (3) | 0.045 (3) | 0.054 (3) | −0.002 (2) | 0.004 (2) | −0.004 (2) |
C2 | 0.051 (3) | 0.041 (3) | 0.046 (3) | −0.009 (3) | 0.014 (2) | −0.011 (2) |
C3 | 0.055 (3) | 0.053 (3) | 0.054 (3) | −0.014 (3) | 0.007 (2) | −0.008 (3) |
C4 | 0.076 (4) | 0.063 (4) | 0.048 (3) | −0.022 (3) | 0.005 (3) | −0.002 (3) |
C5 | 0.078 (4) | 0.072 (4) | 0.054 (3) | −0.037 (4) | 0.019 (3) | −0.012 (3) |
C6 | 0.055 (3) | 0.063 (4) | 0.061 (3) | −0.022 (3) | 0.021 (3) | −0.017 (3) |
C7 | 0.047 (3) | 0.046 (3) | 0.061 (3) | −0.008 (3) | 0.010 (2) | −0.017 (3) |
C8 | 0.040 (3) | 0.049 (3) | 0.085 (4) | −0.005 (3) | 0.013 (3) | −0.015 (3) |
C9 | 0.049 (3) | 0.040 (3) | 0.079 (3) | 0.004 (3) | −0.005 (3) | −0.003 (3) |
C10 | 0.047 (3) | 0.043 (3) | 0.065 (3) | −0.005 (3) | 0.009 (2) | −0.003 (3) |
C11 | 0.045 (3) | 0.044 (3) | 0.041 (2) | −0.001 (2) | 0.002 (2) | −0.003 (2) |
C12 | 0.040 (3) | 0.050 (3) | 0.041 (2) | −0.001 (2) | 0.0016 (19) | 0.001 (2) |
C13 | 0.048 (3) | 0.054 (3) | 0.035 (2) | −0.007 (2) | 0.0080 (19) | 0.005 (2) |
C14 | 0.064 (3) | 0.057 (4) | 0.053 (3) | −0.006 (3) | 0.013 (2) | −0.007 (3) |
C15 | 0.071 (3) | 0.049 (3) | 0.059 (3) | −0.006 (3) | 0.008 (3) | 0.004 (3) |
C16 | 0.050 (3) | 0.050 (3) | 0.041 (2) | −0.008 (3) | 0.007 (2) | 0.001 (2) |
C17 | 0.045 (3) | 0.054 (3) | 0.040 (3) | 0.006 (2) | 0.000 (2) | 0.000 (2) |
C18 | 0.045 (3) | 0.051 (3) | 0.041 (2) | −0.011 (2) | 0.0043 (19) | −0.001 (2) |
C19 | 0.047 (3) | 0.066 (4) | 0.063 (3) | −0.003 (3) | −0.001 (2) | 0.002 (3) |
C20 | 0.046 (3) | 0.085 (4) | 0.057 (3) | −0.024 (3) | 0.009 (2) | −0.013 (3) |
C21 | 0.063 (3) | 0.078 (4) | 0.051 (3) | −0.007 (3) | 0.019 (2) | 0.001 (3) |
O2 | 0.077 (2) | 0.076 (3) | 0.0455 (18) | −0.020 (2) | −0.0127 (17) | 0.0087 (19) |
N2 | 0.049 (3) | 0.064 (3) | 0.055 (2) | 0.006 (2) | 0.0027 (19) | −0.001 (2) |
C31 | 0.049 (3) | 0.047 (3) | 0.058 (3) | 0.002 (3) | 0.006 (2) | 0.000 (3) |
C32 | 0.054 (3) | 0.040 (3) | 0.072 (3) | 0.005 (3) | 0.007 (3) | 0.017 (3) |
C33 | 0.058 (3) | 0.052 (4) | 0.066 (3) | −0.003 (3) | 0.004 (3) | 0.009 (3) |
C34 | 0.089 (5) | 0.054 (4) | 0.060 (3) | 0.013 (3) | 0.011 (3) | 0.002 (3) |
C35 | 0.095 (5) | 0.065 (4) | 0.066 (4) | 0.010 (4) | 0.013 (3) | 0.006 (3) |
C36 | 0.067 (4) | 0.062 (4) | 0.084 (4) | 0.017 (3) | 0.022 (3) | 0.020 (4) |
C37 | 0.048 (3) | 0.045 (3) | 0.079 (3) | 0.005 (3) | 0.009 (3) | 0.017 (3) |
C38 | 0.056 (3) | 0.051 (4) | 0.082 (4) | 0.006 (3) | 0.020 (3) | 0.013 (3) |
C39 | 0.058 (4) | 0.051 (4) | 0.101 (4) | −0.011 (3) | −0.004 (3) | 0.015 (4) |
C40 | 0.051 (3) | 0.052 (3) | 0.072 (3) | 0.003 (3) | 0.006 (3) | 0.002 (3) |
C41 | 0.061 (3) | 0.063 (4) | 0.048 (3) | −0.010 (3) | 0.001 (2) | 0.003 (3) |
C42 | 0.039 (3) | 0.053 (3) | 0.043 (3) | 0.004 (2) | 0.003 (2) | 0.000 (2) |
C43 | 0.057 (3) | 0.064 (4) | 0.042 (3) | 0.004 (3) | 0.000 (2) | 0.007 (3) |
C44 | 0.056 (3) | 0.083 (4) | 0.060 (3) | 0.013 (3) | −0.012 (2) | −0.004 (3) |
C45 | 0.046 (3) | 0.063 (4) | 0.078 (3) | 0.005 (3) | 0.010 (3) | 0.002 (3) |
C46 | 0.055 (3) | 0.053 (3) | 0.051 (3) | 0.004 (3) | 0.015 (2) | 0.001 (2) |
C47 | 0.050 (3) | 0.047 (3) | 0.039 (3) | −0.004 (2) | −0.004 (2) | 0.003 (2) |
C48 | 0.050 (3) | 0.058 (4) | 0.060 (3) | 0.011 (3) | 0.007 (2) | 0.012 (3) |
C49 | 0.066 (3) | 0.058 (4) | 0.076 (3) | −0.002 (3) | 0.016 (3) | 0.009 (3) |
C50 | 0.073 (4) | 0.083 (5) | 0.085 (4) | 0.021 (4) | 0.009 (3) | 0.013 (4) |
C51 | 0.093 (4) | 0.077 (5) | 0.073 (4) | 0.002 (4) | 0.031 (3) | −0.006 (3) |
O1—C17 | 1.235 (5) | O2—C47 | 1.229 (5) |
N1—C11 | 1.351 (6) | N2—C41 | 1.353 (6) |
N1—C1 | 1.416 (6) | N2—C31 | 1.404 (6) |
N1—H1 | 1.03 (4) | N2—H2 | 0.83 (5) |
C1—C10 | 1.370 (6) | C31—C40 | 1.368 (7) |
C1—C2 | 1.427 (6) | C31—C32 | 1.419 (7) |
C2—C3 | 1.419 (7) | C32—C37 | 1.404 (7) |
C2—C7 | 1.429 (6) | C32—C33 | 1.430 (7) |
C3—C4 | 1.378 (7) | C33—C34 | 1.353 (7) |
C3—H3 | 0.9500 | C33—H33 | 0.9500 |
C4—C5 | 1.391 (8) | C34—C35 | 1.390 (8) |
C4—H4 | 0.9500 | C34—H34 | 0.9500 |
C5—C6 | 1.341 (8) | C35—C36 | 1.331 (8) |
C5—H5 | 0.9500 | C35—H35 | 0.9500 |
C6—C7 | 1.421 (7) | C36—C37 | 1.449 (8) |
C6—H6 | 0.9500 | C36—H36 | 0.9500 |
C7—C8 | 1.416 (7) | C37—C38 | 1.413 (8) |
C8—C9 | 1.362 (7) | C38—C39 | 1.375 (7) |
C8—H8 | 0.9500 | C38—H38 | 0.9500 |
C9—C10 | 1.414 (6) | C39—C40 | 1.418 (7) |
C9—H9 | 0.9500 | C39—H39 | 0.9500 |
C10—H10 | 0.9500 | C40—H40 | 0.9500 |
C11—C12 | 1.353 (6) | C41—C42 | 1.371 (7) |
C11—H11 | 0.9500 | C41—H41 | 0.9500 |
C12—C17 | 1.462 (6) | C42—C47 | 1.451 (6) |
C12—C13 | 1.516 (6) | C42—C43 | 1.488 (6) |
C13—C14 | 1.541 (7) | C43—C44 | 1.547 (8) |
C13—C18 | 1.551 (6) | C43—C48 | 1.551 (7) |
C13—H13 | 1.0000 | C43—H43 | 1.0000 |
C14—C15 | 1.559 (7) | C44—C45 | 1.540 (7) |
C14—H141 | 0.9900 | C44—H441 | 0.9900 |
C14—H142 | 0.9900 | C44—H442 | 0.9900 |
C15—C16 | 1.563 (7) | C45—C46 | 1.566 (8) |
C15—H151 | 0.9900 | C45—H451 | 0.9900 |
C15—H152 | 0.9900 | C45—H452 | 0.9900 |
C16—C21 | 1.512 (6) | C46—C47 | 1.516 (7) |
C16—C17 | 1.522 (7) | C46—C51 | 1.523 (7) |
C16—C18 | 1.555 (6) | C46—C48 | 1.528 (7) |
C18—C19 | 1.526 (7) | C48—C49 | 1.529 (7) |
C18—C20 | 1.535 (6) | C48—C50 | 1.553 (7) |
C19—H191 | 0.9800 | C49—H491 | 0.9800 |
C19—H192 | 0.9800 | C49—H492 | 0.9800 |
C19—H193 | 0.9800 | C49—H493 | 0.9800 |
C20—H201 | 0.9800 | C50—H501 | 0.9800 |
C20—H202 | 0.9800 | C50—H502 | 0.9800 |
C20—H203 | 0.9800 | C50—H503 | 0.9800 |
C21—H211 | 0.9800 | C51—H511 | 0.9800 |
C21—H212 | 0.9800 | C51—H512 | 0.9800 |
C21—H213 | 0.9800 | C51—H513 | 0.9800 |
C11—N1—C1 | 122.8 (4) | C41—N2—C31 | 122.4 (4) |
C11—N1—H1 | 118 (3) | C41—N2—H2 | 117 (4) |
C1—N1—H1 | 115 (2) | C31—N2—H2 | 120 (4) |
C10—C1—N1 | 120.5 (4) | C40—C31—N2 | 121.5 (5) |
C10—C1—C2 | 120.6 (4) | C40—C31—C32 | 119.9 (5) |
N1—C1—C2 | 118.9 (4) | N2—C31—C32 | 118.6 (4) |
C3—C2—C1 | 123.7 (4) | C37—C32—C31 | 118.6 (5) |
C3—C2—C7 | 118.0 (5) | C37—C32—C33 | 117.4 (5) |
C1—C2—C7 | 118.3 (5) | C31—C32—C33 | 124.0 (5) |
C4—C3—C2 | 121.2 (5) | C34—C33—C32 | 121.5 (5) |
C4—C3—H3 | 119.4 | C34—C33—H33 | 119.2 |
C2—C3—H3 | 119.4 | C32—C33—H33 | 119.2 |
C3—C4—C5 | 119.4 (5) | C33—C34—C35 | 121.1 (6) |
C3—C4—H4 | 120.3 | C33—C34—H34 | 119.4 |
C5—C4—H4 | 120.3 | C35—C34—H34 | 119.4 |
C6—C5—C4 | 121.8 (5) | C36—C35—C34 | 119.7 (6) |
C6—C5—H5 | 119.1 | C36—C35—H35 | 120.1 |
C4—C5—H5 | 119.1 | C34—C35—H35 | 120.1 |
C5—C6—C7 | 121.0 (5) | C35—C36—C37 | 121.9 (6) |
C5—C6—H6 | 119.5 | C35—C36—H36 | 119.1 |
C7—C6—H6 | 119.5 | C37—C36—H36 | 119.1 |
C8—C7—C6 | 122.5 (5) | C32—C37—C38 | 121.9 (5) |
C8—C7—C2 | 118.9 (5) | C32—C37—C36 | 118.2 (5) |
C6—C7—C2 | 118.5 (5) | C38—C37—C36 | 119.9 (5) |
C9—C8—C7 | 121.3 (5) | C39—C38—C37 | 117.7 (5) |
C9—C8—H8 | 119.4 | C39—C38—H38 | 121.1 |
C7—C8—H8 | 119.4 | C37—C38—H38 | 121.1 |
C8—C9—C10 | 120.1 (5) | C38—C39—C40 | 121.5 (5) |
C8—C9—H9 | 119.9 | C38—C39—H39 | 119.3 |
C10—C9—H9 | 119.9 | C40—C39—H39 | 119.3 |
C1—C10—C9 | 120.5 (5) | C31—C40—C39 | 120.5 (5) |
C1—C10—H10 | 119.7 | C31—C40—H40 | 119.8 |
C9—C10—H10 | 119.7 | C39—C40—H40 | 119.8 |
N1—C11—C12 | 126.1 (4) | N2—C41—C42 | 128.0 (5) |
N1—C11—H11 | 116.9 | N2—C41—H41 | 116.0 |
C12—C11—H11 | 116.9 | C42—C41—H41 | 116.0 |
C11—C12—C17 | 121.5 (4) | C41—C42—C47 | 120.8 (4) |
C11—C12—C13 | 132.2 (4) | C41—C42—C43 | 133.6 (4) |
C17—C12—C13 | 105.4 (4) | C47—C42—C43 | 105.5 (4) |
C12—C13—C14 | 104.7 (4) | C42—C43—C44 | 105.9 (4) |
C12—C13—C18 | 101.5 (3) | C42—C43—C48 | 101.3 (4) |
C14—C13—C18 | 102.4 (4) | C44—C43—C48 | 102.9 (4) |
C12—C13—H13 | 115.5 | C42—C43—H43 | 115.0 |
C14—C13—H13 | 115.5 | C44—C43—H43 | 115.0 |
C18—C13—H13 | 115.5 | C48—C43—H43 | 115.0 |
C13—C14—C15 | 102.4 (4) | C45—C44—C43 | 101.8 (4) |
C13—C14—H141 | 111.3 | C45—C44—H441 | 111.4 |
C15—C14—H141 | 111.3 | C43—C44—H441 | 111.4 |
C13—C14—H142 | 111.3 | C45—C44—H442 | 111.4 |
C15—C14—H142 | 111.3 | C43—C44—H442 | 111.4 |
H141—C14—H142 | 109.2 | H441—C44—H442 | 109.3 |
C14—C15—C16 | 104.5 (4) | C44—C45—C46 | 104.4 (4) |
C14—C15—H151 | 110.9 | C44—C45—H451 | 110.9 |
C16—C15—H151 | 110.9 | C46—C45—H451 | 110.9 |
C14—C15—H152 | 110.9 | C44—C45—H452 | 110.9 |
C16—C15—H152 | 110.9 | C46—C45—H452 | 110.9 |
H151—C15—H152 | 108.9 | H451—C45—H452 | 108.9 |
C21—C16—C17 | 115.2 (4) | C47—C46—C51 | 115.8 (4) |
C21—C16—C18 | 119.9 (4) | C47—C46—C48 | 101.1 (4) |
C17—C16—C18 | 99.9 (4) | C51—C46—C48 | 118.6 (5) |
C21—C16—C15 | 114.7 (5) | C47—C46—C45 | 103.4 (4) |
C17—C16—C15 | 103.0 (4) | C51—C46—C45 | 114.1 (4) |
C18—C16—C15 | 101.6 (4) | C48—C46—C45 | 101.6 (4) |
O1—C17—C12 | 128.8 (5) | O2—C47—C42 | 128.7 (5) |
O1—C17—C16 | 125.3 (4) | O2—C47—C46 | 126.1 (4) |
C12—C17—C16 | 105.9 (4) | C42—C47—C46 | 105.2 (4) |
C19—C18—C20 | 107.9 (4) | C46—C48—C49 | 113.7 (4) |
C19—C18—C13 | 113.1 (4) | C46—C48—C43 | 93.7 (4) |
C20—C18—C13 | 114.2 (4) | C49—C48—C43 | 113.4 (4) |
C19—C18—C16 | 113.2 (4) | C46—C48—C50 | 115.1 (4) |
C20—C18—C16 | 113.7 (4) | C49—C48—C50 | 107.2 (5) |
C13—C18—C16 | 94.5 (3) | C43—C48—C50 | 113.5 (4) |
C18—C19—H191 | 109.5 | C48—C49—H491 | 109.5 |
C18—C19—H192 | 109.5 | C48—C49—H492 | 109.5 |
H191—C19—H192 | 109.5 | H491—C49—H492 | 109.5 |
C18—C19—H193 | 109.5 | C48—C49—H493 | 109.5 |
H191—C19—H193 | 109.5 | H491—C49—H493 | 109.5 |
H192—C19—H193 | 109.5 | H492—C49—H493 | 109.5 |
C18—C20—H201 | 109.5 | C48—C50—H501 | 109.5 |
C18—C20—H202 | 109.5 | C48—C50—H502 | 109.5 |
H201—C20—H202 | 109.5 | H501—C50—H502 | 109.5 |
C18—C20—H203 | 109.5 | C48—C50—H503 | 109.5 |
H201—C20—H203 | 109.5 | H501—C50—H503 | 109.5 |
H202—C20—H203 | 109.5 | H502—C50—H503 | 109.5 |
C16—C21—H211 | 109.5 | C46—C51—H511 | 109.5 |
C16—C21—H212 | 109.5 | C46—C51—H512 | 109.5 |
H211—C21—H212 | 109.5 | H511—C51—H512 | 109.5 |
C16—C21—H213 | 109.5 | C46—C51—H513 | 109.5 |
H211—C21—H213 | 109.5 | H511—C51—H513 | 109.5 |
H212—C21—H213 | 109.5 | H512—C51—H513 | 109.5 |
C11—N1—C1—C10 | 21.3 (7) | C41—N2—C31—C40 | −24.4 (8) |
C11—N1—C1—C2 | −159.3 (4) | C41—N2—C31—C32 | 158.1 (5) |
C10—C1—C2—C3 | −174.3 (5) | C40—C31—C32—C37 | −1.3 (7) |
N1—C1—C2—C3 | 6.2 (7) | N2—C31—C32—C37 | 176.1 (5) |
C10—C1—C2—C7 | 6.2 (7) | C40—C31—C32—C33 | 174.7 (5) |
N1—C1—C2—C7 | −173.2 (4) | N2—C31—C32—C33 | −7.8 (8) |
C1—C2—C3—C4 | −177.2 (5) | C37—C32—C33—C34 | −4.1 (7) |
C7—C2—C3—C4 | 2.2 (7) | C31—C32—C33—C34 | 179.9 (5) |
C2—C3—C4—C5 | 0.9 (8) | C32—C33—C34—C35 | 0.5 (8) |
C3—C4—C5—C6 | −2.8 (9) | C33—C34—C35—C36 | 1.8 (9) |
C4—C5—C6—C7 | 1.5 (9) | C34—C35—C36—C37 | −0.4 (9) |
C5—C6—C7—C8 | −176.0 (5) | C31—C32—C37—C38 | 1.2 (8) |
C5—C6—C7—C2 | 1.7 (8) | C33—C32—C37—C38 | −175.2 (5) |
C3—C2—C7—C8 | 174.3 (5) | C31—C32—C37—C36 | −178.5 (5) |
C1—C2—C7—C8 | −6.2 (7) | C33—C32—C37—C36 | 5.2 (7) |
C3—C2—C7—C6 | −3.5 (7) | C35—C36—C37—C32 | −3.1 (8) |
C1—C2—C7—C6 | 176.0 (4) | C35—C36—C37—C38 | 177.2 (6) |
C6—C7—C8—C9 | −179.8 (5) | C32—C37—C38—C39 | −0.3 (8) |
C2—C7—C8—C9 | 2.5 (8) | C36—C37—C38—C39 | 179.3 (5) |
C7—C8—C9—C10 | 1.5 (8) | C37—C38—C39—C40 | −0.4 (8) |
N1—C1—C10—C9 | 177.1 (5) | N2—C31—C40—C39 | −176.7 (5) |
C2—C1—C10—C9 | −2.4 (8) | C32—C31—C40—C39 | 0.7 (8) |
C8—C9—C10—C1 | −1.6 (8) | C38—C39—C40—C31 | 0.2 (9) |
C1—N1—C11—C12 | −155.0 (5) | C31—N2—C41—C42 | 159.3 (5) |
N1—C11—C12—C17 | −179.9 (5) | N2—C41—C42—C47 | 177.4 (5) |
N1—C11—C12—C13 | 12.9 (9) | N2—C41—C42—C43 | −7.6 (10) |
C11—C12—C13—C14 | 94.2 (6) | C41—C42—C43—C44 | 112.2 (6) |
C17—C12—C13—C14 | −74.5 (4) | C47—C42—C43—C44 | −72.2 (5) |
C11—C12—C13—C18 | −159.5 (5) | C41—C42—C43—C48 | −140.7 (6) |
C17—C12—C13—C18 | 31.8 (5) | C47—C42—C43—C48 | 34.8 (5) |
C12—C13—C14—C15 | 67.9 (4) | C42—C43—C44—C45 | 70.0 (5) |
C18—C13—C14—C15 | −37.7 (4) | C48—C43—C44—C45 | −35.9 (5) |
C13—C14—C15—C16 | 3.6 (5) | C43—C44—C45—C46 | 1.1 (5) |
C14—C15—C16—C21 | 162.2 (4) | C44—C45—C46—C47 | −70.1 (5) |
C14—C15—C16—C17 | −71.8 (4) | C44—C45—C46—C51 | 163.3 (5) |
C14—C15—C16—C18 | 31.4 (5) | C44—C45—C46—C48 | 34.5 (5) |
C11—C12—C17—O1 | 10.6 (8) | C41—C42—C47—O2 | −5.9 (9) |
C13—C12—C17—O1 | −179.2 (5) | C43—C42—C47—O2 | 177.8 (5) |
C11—C12—C17—C16 | −167.4 (5) | C41—C42—C47—C46 | 175.3 (5) |
C13—C12—C17—C16 | 2.8 (5) | C43—C42—C47—C46 | −0.9 (6) |
C21—C16—C17—O1 | 15.9 (7) | C51—C46—C47—O2 | 17.8 (8) |
C18—C16—C17—O1 | 145.8 (5) | C48—C46—C47—O2 | 147.4 (5) |
C15—C16—C17—O1 | −109.7 (5) | C45—C46—C47—O2 | −107.8 (6) |
C21—C16—C17—C12 | −166.0 (4) | C51—C46—C47—C42 | −163.4 (5) |
C18—C16—C17—C12 | −36.1 (5) | C48—C46—C47—C42 | −33.8 (5) |
C15—C16—C17—C12 | 68.4 (4) | C45—C46—C47—C42 | 71.0 (5) |
C12—C13—C18—C19 | 65.7 (5) | C47—C46—C48—C49 | −65.4 (5) |
C14—C13—C18—C19 | 173.7 (4) | C51—C46—C48—C49 | 62.4 (6) |
C12—C13—C18—C20 | −170.4 (4) | C45—C46—C48—C49 | −171.7 (4) |
C14—C13—C18—C20 | −62.4 (5) | C47—C46—C48—C43 | 52.2 (4) |
C12—C13—C18—C16 | −51.9 (4) | C51—C46—C48—C43 | 179.9 (5) |
C14—C13—C18—C16 | 56.2 (4) | C45—C46—C48—C43 | −54.2 (4) |
C21—C16—C18—C19 | 62.3 (6) | C47—C46—C48—C50 | 170.3 (5) |
C17—C16—C18—C19 | −64.5 (4) | C51—C46—C48—C50 | −61.9 (7) |
C15—C16—C18—C19 | −170.2 (4) | C45—C46—C48—C50 | 64.0 (6) |
C21—C16—C18—C20 | −61.2 (6) | C42—C43—C48—C46 | −53.2 (4) |
C17—C16—C18—C20 | 171.9 (4) | C44—C43—C48—C46 | 56.2 (4) |
C15—C16—C18—C20 | 66.3 (5) | C42—C43—C48—C49 | 64.7 (5) |
C21—C16—C18—C13 | 179.8 (5) | C44—C43—C48—C49 | 174.1 (4) |
C17—C16—C18—C13 | 53.0 (4) | C42—C43—C48—C50 | −172.7 (4) |
C15—C16—C18—C13 | −52.7 (4) | C44—C43—C48—C50 | −63.3 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 1.03 (4) | 1.93 (4) | 2.909 (5) | 157 (4) |
N2—H2···O1 | 0.83 (5) | 2.08 (5) | 2.913 (5) | 174 (5) |
Symmetry code: (i) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C21H23NO |
Mr | 305.42 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 160 |
a, b, c (Å) | 23.807 (2), 11.9688 (12), 12.0192 (8) |
β (°) | 95.672 (5) |
V (Å3) | 3408.1 (5) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.25 × 0.20 × 0.12 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21618, 3170, 2227 |
Rint | 0.092 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.155, 1.05 |
No. of reflections | 3170 |
No. of parameters | 428 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.24, −0.17 |
Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 1.03 (4) | 1.93 (4) | 2.909 (5) | 157 (4) |
N2—H2···O1 | 0.83 (5) | 2.08 (5) | 2.913 (5) | 174 (5) |
Symmetry code: (i) x, y, z−1. |
Acknowledgements
This work was financed by FONACIT (project S1-2001000851).
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Casella, L., Gullotti, M., Pasini, A. & Rockenbauer, A. (1979). Inorg. Chem. 18, 2825–2835. CrossRef CAS Web of Science Google Scholar
Everett, G. W. & Powers, C. R. (1970). Inorg. Chem. 9, 521–527. Web of Science CrossRef CAS Google Scholar
Hsu, S., Chang, J., Lai, C., Hu, C., Lee, H., Lee, G., Peng, S. & Huang, J. (2004). Inorg. Chem. 43, 6786–6792. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hsu, S., Li, C., Chiu, Y., Chiu, M., Lien, Y., Kuo, P., Lee, H., Cheng, C. & Huang, J. (2007). J. Organomet. Chem. 692, 5421–5428. Web of Science CSD CrossRef CAS Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Lai, Y., Chen, H., Hung, W., Lin, C. & Hong, F. (2005). Tetrahedron, 61, 9484–9489. Web of Science CSD CrossRef CAS Google Scholar
Lesikar, L., Gushwa, A. F. & Richards, A. F. (2008). J. Organomet. Chem. 693, 3245–3255. Web of Science CSD CrossRef CAS Google Scholar
Li, Z., Li, R. & Ding, Z.-Y. (2009). Acta Cryst. E65, o2289. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lintvedt, R. L. & Fatta, A. M. (1968). Inorg. Chem. 7, 2489–2495. CrossRef CAS Web of Science Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Özek, A., Yüce, S., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o3179–o3181. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pan, L., Ye, W., Liu, J., Hong, M. & Li, Y. (2008). Macromolecules, 41, 2981–2983. Web of Science CrossRef CAS Google Scholar
Sedai, B., Heeg, M. J. & Winter, C. H. (2008). J. Organomet. Chem. 693, 3495–3503. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, L. Y., Li, Y. F., Zhu, F. M. & Wu, Q. (2006). Eur. Polym. J. 42, 322–, 327. Google Scholar
Zharkova, G., Stabnikov, P., Baidina, I., Smolentsev, A. & Tkachey, S. (2009). Polyhedron, 28, 2307–2312. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
β-Ketoamines are the neutral protic form of β-aminoketonate bidentate anionic ligands that have been used in the coordination chemistry of transition and main group metals (Lesikar et al., 2008; Sedai et al., 2008). The electronic and steric dissymmetry of these ligands is easily modified in order to tune the reactivity of the metal centre. β-Aminoketonate complexes have been used effectively in stoichiometric (Hsu, Chang et al., 2004; Hsu, Li et al., 2007) and catalytic processes, such as Suzuki cross-coupling (Lai et al., 2005), polymerization (Wang et al., 2006) and copolymerization (Pan et al., 2008) reactions. Interestingly, there are only a few reports on chiral camphor-derived β-aminoketonate ligands (Everett & Powers, 1970; Casella et al., 1979). Generally, β-ketoamines have Z conformations that are stabilized by intramolecular hydrogen bonding (Zharkova et al., 2009). The structure of the title compound was determined in order to confirm the anticipated E conformation about the alkene bond for the major product of the synthesis.
There are two molecules (A and B) of the title compound in the asymmetric unit (Fig. 1). The slightly twisted conformations of the (1-naphthylamino)methylene fragments are similar to that in the structure of 2,2-dimethyl-5-(1-naphthylaminomethylene)-1,3-dioxane-4,6-dione (Li et al., 2009): the absolute values of the torsion angle about the enamine C—N bond for the two structures lie in the narrow range of 21–25°. In contrast, the same group in 2-hydroxy-6-[(1-napthylamino)methylene]cyclohexa-2,4-dien-1-one is almost planar (Özek et al., 2005).
The preference for the E conformation during the synthesis of the title compound may be attributed to the large size of the naphthyl group, whose steric pressure overcomes the competing intramolecular N—H···O hydrogen bonding, which is facilitated in the Z conformer. The observed intermolecular N—H···O hydrogen bonds between the amino and keto groups of adjacent independent molecules, which link the molecules into extended chains running parallel to [001] (Fig. 2), are an additional stabilizing factor of the E conformation. They can be described by a graph-set motif of C22(12) [Bernstein et al., 1995].
While the chirality of the (+)-camphor fragment means that both symmetry-independent molecules are of the same enantiomer, it is interesting to note that there is significant pseudo-inversion symmetry in the structure, with 82% of the atoms in one molecule matching closely with those of the inverted structure of the other molecule; the r.m.s. fit of 21 atoms from each molecule is 1.14 Å. Slight in-plane disorder of the naphthyl groups leads to enlarged displacement ellipsoids for some of the atoms of these groups with the direction of elongation being in the naphthyl plane.