metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(μ-3-aza­niumylbenzoato)-κ3O:O,O′;κ3O,O′:O;κ4O:O′-bis­­[tri­aqua­chloridolanthanum(III)] tetra­chloride dihydrate

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri de Constantine, 25000 Constantine, Algeria, and bLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 05 route de Narbonne, 31077 Toulouse Cedex 4, France
*Correspondence e-mail: b_meriem80@yahoo.fr

(Received 15 December 2010; accepted 16 December 2010; online 24 December 2010)

The tiltle complex, [La2(C7H7NO2)4Cl2(H2O)6]Cl4·2H2O, is a centrosymmetric dimer formed by edge-sharing LaO5(H2O)3Cl polyhedra linked together by a carboxyl­ate ligand. The two LaIII metal ions are linked by two bidentate bridging carboxyl­ate groups with a κ2O:O′ coordination mode and two bidentate chelating bridging carboxyl­ate groups with a κ3O:O,O′ coordination mode. The coordination sphere of lanthanum, completed by a terminal chloride and three water mol­ecules, adopts a distorted tricapped trigonal–prismatic arrangement. N—H⋯Cl, N—H⋯O and O—Hwater⋯Cl hydrogen bonds, and slipped ππ inter­actions between parallel benzene rings [centroid–centroid distance of 3.647 (3) Å] are observed in the structure. These combine to stabilize a three-dimensional network.

Related literature

For potential applications of lanthanide complexes, see: Aime et al. (1998[Aime, S., Botta, M., Fasano, M. & Terreno, E. (1998). Chem. Soc. Rev. 27, 19-29.]); Bao et al. (2007[Bao, S.-S., Ma, L.-F., Wang, Y., Fang, L., Zhu, C.-J., Li, Y.-Z. & Zheng, L.-M. (2007). Chem. Eur. J. 13, 2333-2343.]); Drew et al. (2000[Drew, M. G. B., Iveson, P. B., Hudson, M. J., Liljenzin, J. O., Spjuth, L., Cordier, P.-Y., Enarsson, A., Hill, C. & Madic, C. (2000). J. Chem. Soc. Dalton Trans. pp. 821-830.]); Ishikawa et al. (2005[Ishikawa, N., Sugita, M. & Wernsdorfer, W. (2005). J. Am. Chem. Soc. 127, 3650-3651.]); Liu et al. (2004[Liu, W.-S., Jiao, T.-Q., Li, Y.-Z., Liu, Q.-Z., Tan, M.-Y., Wang, H. & Wang, L.-F. (2004). J. Am. Chem. Soc. 126, 2280-2281.]). For lanthanide complexes with organic ligands, see: Cao et al. (2002[Cao, R., Sun, D. F., Liang, Y. C., Hong, M. C., Tatsumi, K. & Shi, Q. (2002). Inorg. Chem. 126, 2087-2094.]); Wang et al. (2000[Wang, Z. M., van de Burgt, L. J. & Choppin, G. R. (2000). Inorg. Chim. Acta, 310, 248-256.]); Lam et al. (2003[Lam, A. W. H., Wong, W. T., Gao, S., Wen, G. H. & Zhang, X. X. (2003). Eur. J. Inorg. Chem. 1, 149-163.]); De Sa et al. (1998[De Sa, G. F., Alves, S. Jr, Da Silva, B. J. P. & Da Silva, E. F. Jr (1998). Opt. Mater. 11, 23-28.]); Serra et al. (1998[Serra, O. A., Nassar, E. J., Calefi, P. S. & Rosa, I. L. V. (1998). J. Alloys Compd, pp. 838-840.]); Bassett et al. (2004[Bassett, A. P., Magennis, S. W., Glover, P. B., Lewis, D. J., Spencer, N., Parsons, S., Williams, R. M., Cola, L. D. & Pikramenou, Z. (2004). J. Am. Chem. Soc. 126, 9413-9424.]); Galaup et al. (1999[Galaup, C., Picard, C., Cathala, B., Cazaux, L., Tisnes, P., Autier, H. & Aspe, D. (1999). Helv. Chim. Acta, 82, 543-560.]); Blasse et al. (1987[Blasse, G., Dirksen, G. J., Sabbatini, N. & Perathoner, S. (1987). Inorg. Chim. Acta, 133, 167-173.]); Prodi et al. (1998[Prodi, L., Pivari, S., Bolletta, F., Hissler, M. & Ziessel, R. (1998). Eur. J. Inorg. Chem. pp. 1959-1965.]); Ramirez et al. (2001[Ramirez, F. D. M., Charbonniere, L., Muller, G., Scopelliti, R. & Bunzli, J. C. G. (2001). J. Chem. Soc. Dalton Trans. pp. 3205-3213.]); Thuery et al. (2000[Thuery, P., Nierlich, M., Vicens, J. & Takemura, H. (2000). Polyhedron, 19, 2673-2678.]); Bunzli & Ihringer (2002[Bunzli, J. C. G. & Ihringer, F. (2002). Inorg. Chim. Acta, 246, 195-205.]); Jones et al. (1997[Jones, P. L., Amoroso, A. J., Jeffery, J. C., McCleverty, J. A., Psillakis, E., Ree, L. H. & Ward, M. D. (1997). Inorg. Chem. 36, 10-18.]); Bardwell et al. (1997[Bardwell, D. A., Jeffery, J. C., Jones, P. L., MCleverty, J. A., Psillakis, E., Reeves, Z. & Ward, M. D. (1997). J. Chem. Soc. Dalton Trans. pp. 2079-2086.]); Horrocks et al. (1997[Horrocks, W. D., Bolender, J. P., Smith, W. D. & Supkowski, R. M. (1997). J. Am. Chem. Soc. 119, 5972-5973.]). For similar complexes, see: Qin et al. (2005[Qin, C., WangX, -L., Wang, E.-B. & Xu, L. (2005). Inorg. Chem. Commun. 8, 669-672.], 2006[Qin, C., Wang, X.-L., Wang, E.-B. & Xu, L. (2006). Inorg. Chim. Acta, 359, 417-423.]); Xiong & Qi (2007[Xiong, L.-Q. & Qi, C.-M. (2007). Acta Cryst. C63, m10-m12.]); Song et al. (2005[Song, Y., Yan, B. & Chen, Z. (2005). J. Coord. Chem. 58, 647-652.]); Anna & Kaziol (1999[Anna, E. & Kaziol, B. K. (1999). Z. Kristallogr. 200, 25-33.]). For the use of the SQUEEZE function of PLATON, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [La2(C7H7NO2)4Cl2(H2O)6]Cl4·2H2O

  • Mr = 1183.19

  • Monoclinic, P 21 /c

  • a = 11.2988 (3) Å

  • b = 19.8679 (4) Å

  • c = 10.4679 (3) Å

  • β = 112.693 (1)°

  • V = 2167.96 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.38 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: refined from ΔF (DIFABS; Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.550, Tmax = 0.789

  • 6316 measured reflections

  • 6315 independent reflections

  • 4414 reflections with I > 2σ(I)

  • Rint = 0.027

  • 2 standard reflections every 60 min intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.110

  • S = 1.00

  • 6315 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 2.85 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl3 0.89 2.30 3.170 (5) 167
N1—H1B⋯Cl2i 0.89 2.43 3.214 (5) 147
N2—H2A⋯O4ii 0.89 2.45 3.046 (5) 125
N2—H2A⋯Cl2 0.89 2.49 3.221 (4) 140
N2—H2B⋯Cl3iii 0.89 2.28 3.169 (4) 177
N2—H2C⋯Cl1ii 0.89 2.49 3.215 (4) 138
N2—H2C⋯Cl1iv 0.89 2.72 3.349 (5) 128
O1W—H11⋯Cl2ii 0.81 2.39 3.186 (4) 170
O1W—H21⋯Cl2v 0.87 2.38 3.196 (4) 157
O2W—H12⋯Cl3vi 0.87 2.26 3.123 (4) 172
O2W—H22⋯Cl3vii 0.84 2.47 3.276 (4) 160
O3W—H13⋯O1W 0.79 2.41 2.920 (5) 124
O3W—H13⋯Cl2v 0.79 2.53 3.156 (4) 137
O3W—H23⋯Cl3vii 0.90 2.17 3.069 (4) 172
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The study of the coordination chemistry of lanthanide elements is a rapidly growing area of interest, as a result of potential applications of their complexes, as magnetic resonance imaging contrast agents (MRI) (Aime et al., 1998), as catalysts in organic synthesis (Bao et al., 2007), as molecular magnetic materials (Ishikawa et al., 2005), in luminescence studies (Liu et al., 2004) and in the solvent extraction of actinides (Drew et al., 2000). In this field much work has been focused on the design and assembly of lanthanide complexes with organic ligands, such as carboxylic acids derivatives [Wang et al., 2000; Cao et al., 2002; Lam et al., 2003;], β-dicetones [De Sa et al., 1998; Serra et al., 1998; Bassett et al., 2004], cryptands [Galaup et al., 1999; Blasse et al., 1987], calixarenes [Prodi et al., 1998; Ramirez et al., 2001; Thuery et al., 2000; Bunzli et al., 2002], podands [Jones et al., 1997; Bardwell et al., 1997], heterocyclic ligands and proteins (Horrocks et al., 1997). We report herein on the preparation and crystal structure of the title compound.

The molecular structure of the title compound consists of dimeric units related by an inversion centre (Fig. 1). Each LaIII atom is nine-coordinated by five O atoms from carboxylate groups of the 3-ammoniumbenzoate, three O atoms from water molecules and one chloride anion. They adopt a distorted tricapped trigonal-prismatic arrangement. The two LaIII atoms are linked by two bridging bidentate carboxylate groups and two bidentate chelating bridging carboxylate groups. A similar coordination environment was observed previously for lanthanoid(III) complexes, such as [Ln2(imidazole 4,5-dicarboxylate)2(H2O)3].1.5H2O (Ln = Sm and Eu; Qin et al., 2005), [La2(pyridine-3,4-dicarboxylate)2(NO3)2 (H2O)3] (Qin et al., 2006), and [La2(C8H3NO6)2(C8H4NO6)(H2O)6]2H2O (Xiong & Qi, 2007). The La···La distance is 4.2245 (5) Å, showing that there is no direct metal-metal bond between the La atoms. The La—O distances involving the carboxylate groups range from 2.453 (3) Å to 2.503 (3) Å, and those of the La-Owater bonds from 2.557 (3) Å to 2.618 (4) Å. All are within the range of those observed for other nine coordinate LaIII complexes with oxygen-donor ligands (Song et al., 2005; Anna & Kaziol, 1999). The carboxylate group shows a distortion from the molecular plane; the dihedral angle between the mean-planes of the benzene ring (C2-C7; plane 1) and the carboxlate group (O1/C1/O3) is 14.7 (6)°, and that between the mean-planes of benzene ring (C9-C14; plane 2) and the O2/C8/O4 carboxlate group is 24.6 (5)°. The two carboxylate groups are almost perpendicular to one another with a dihedral angle of 80.3 (8) °, and planes 1 and 2 are inclined to one another by 80.0 (2) °.

In the crystal hydrogen bonds involving the coordinated water molecules, the ammonium group NH3 and the Cl atom (free and coordinated) build up a three dimensionnal network (Fig. 2, Table 1). There are slipped π -π stacking interactions between the symetry (1 - x, 1 - y, 2 - z) related benzene rings (C9-C14) with a centroid-to-centroid distance of 3.647 (3) Å and an interplanar distance of 3.3607 (18) Å, leading to a slippage of 1.417 Å. Both hydrogen-bonding and π-π interactions combine to stabilize the three-dimensional network.

Related literature top

For potential applications of lanthanide complexes, see: Aime et al. (1998); Bao et al. (2007); Drew et al. (2000); Ishikawa et al. (2005); Liu et al. (2004). For lanthanide complexes with organic ligands, see: Cao et al. (2002); Wang et al. (2000); Lam et al. (2003); De Sa et al. (1998); Serra et al. (1998); Bassett et al. (2004); Galaup et al. (1999); Blasse et al. (1987); Prodi et al. (1998); Ramirez et al. (2001); Thuery et al. (2000); Bunzli & Ihringer (2002); Jones et al. (1997); Bardwell et al. (1997); Horrocks et al. (1997). For similar complexes, see: Qin et al. (2005, 2006); Xiong & Qi (2007); Song et al. (2005); Anna & Kaziol (1999). For the use of the SQUEEZE function of PLATON, see: Spek (2009).

Experimental top

LaCl3.nH2O (0.25 g, 1 mmol) was dissolved in aqueous solution of NaOH (0.5M, 25 ml) with constant stirring. 3-aminobenzoic acid (0.11 g, 1 mmol) was added to the mixture and the pH was adjusted to ca. 3 using 4M HCl. The mixture was refluxed at 353 K for about 1 h and then cooled to room temperature. Slow evaporation of the solvent at room temperature lead to the formation of prismatic brown crystals of the title compound.

Refinement top

The unit cell contains some water molecules which appear to be highly disordered and it was difficult to model their positions and distribution reliably. The SQUEEZE function of PLATON (Spek, 2009) was used to eliminate the contribution of the electron density in the solvent region from the intensity data, and the solvent-free model was employed for the final refinement. There are four cavities of 27 Å3 per unit cell. PLATON estimated that the cavity contains 11 electrons which corresponds roughly to one water molecules per asymmetric unit or 2 water molecules per dimer. All H atoms attached to the aromatic C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H-atoms of the coordinated water molecules and the amonium groups were located in difference Fourier maps and were initially refined using distance restraints (O—H and N—H = 0.85 (2) Å, and H···H= 1.40 (2) Å, with Uiso(H) = 1.5Ueq(O, N). However, in the last cycles of refinement, they were treated as riding on their parent atoms with AFIX 3 for the water H-atoms and AFIX 137 for the NH3 H-atoms (O-H = 0.79 - 0.90 Å; N-H = 0.89 Å). The highest peak in the difference map is 2.85Å located close to the La atom while the deepest hole is 0.87 Å.

Structure description top

The study of the coordination chemistry of lanthanide elements is a rapidly growing area of interest, as a result of potential applications of their complexes, as magnetic resonance imaging contrast agents (MRI) (Aime et al., 1998), as catalysts in organic synthesis (Bao et al., 2007), as molecular magnetic materials (Ishikawa et al., 2005), in luminescence studies (Liu et al., 2004) and in the solvent extraction of actinides (Drew et al., 2000). In this field much work has been focused on the design and assembly of lanthanide complexes with organic ligands, such as carboxylic acids derivatives [Wang et al., 2000; Cao et al., 2002; Lam et al., 2003;], β-dicetones [De Sa et al., 1998; Serra et al., 1998; Bassett et al., 2004], cryptands [Galaup et al., 1999; Blasse et al., 1987], calixarenes [Prodi et al., 1998; Ramirez et al., 2001; Thuery et al., 2000; Bunzli et al., 2002], podands [Jones et al., 1997; Bardwell et al., 1997], heterocyclic ligands and proteins (Horrocks et al., 1997). We report herein on the preparation and crystal structure of the title compound.

The molecular structure of the title compound consists of dimeric units related by an inversion centre (Fig. 1). Each LaIII atom is nine-coordinated by five O atoms from carboxylate groups of the 3-ammoniumbenzoate, three O atoms from water molecules and one chloride anion. They adopt a distorted tricapped trigonal-prismatic arrangement. The two LaIII atoms are linked by two bridging bidentate carboxylate groups and two bidentate chelating bridging carboxylate groups. A similar coordination environment was observed previously for lanthanoid(III) complexes, such as [Ln2(imidazole 4,5-dicarboxylate)2(H2O)3].1.5H2O (Ln = Sm and Eu; Qin et al., 2005), [La2(pyridine-3,4-dicarboxylate)2(NO3)2 (H2O)3] (Qin et al., 2006), and [La2(C8H3NO6)2(C8H4NO6)(H2O)6]2H2O (Xiong & Qi, 2007). The La···La distance is 4.2245 (5) Å, showing that there is no direct metal-metal bond between the La atoms. The La—O distances involving the carboxylate groups range from 2.453 (3) Å to 2.503 (3) Å, and those of the La-Owater bonds from 2.557 (3) Å to 2.618 (4) Å. All are within the range of those observed for other nine coordinate LaIII complexes with oxygen-donor ligands (Song et al., 2005; Anna & Kaziol, 1999). The carboxylate group shows a distortion from the molecular plane; the dihedral angle between the mean-planes of the benzene ring (C2-C7; plane 1) and the carboxlate group (O1/C1/O3) is 14.7 (6)°, and that between the mean-planes of benzene ring (C9-C14; plane 2) and the O2/C8/O4 carboxlate group is 24.6 (5)°. The two carboxylate groups are almost perpendicular to one another with a dihedral angle of 80.3 (8) °, and planes 1 and 2 are inclined to one another by 80.0 (2) °.

In the crystal hydrogen bonds involving the coordinated water molecules, the ammonium group NH3 and the Cl atom (free and coordinated) build up a three dimensionnal network (Fig. 2, Table 1). There are slipped π -π stacking interactions between the symetry (1 - x, 1 - y, 2 - z) related benzene rings (C9-C14) with a centroid-to-centroid distance of 3.647 (3) Å and an interplanar distance of 3.3607 (18) Å, leading to a slippage of 1.417 Å. Both hydrogen-bonding and π-π interactions combine to stabilize the three-dimensional network.

For potential applications of lanthanide complexes, see: Aime et al. (1998); Bao et al. (2007); Drew et al. (2000); Ishikawa et al. (2005); Liu et al. (2004). For lanthanide complexes with organic ligands, see: Cao et al. (2002); Wang et al. (2000); Lam et al. (2003); De Sa et al. (1998); Serra et al. (1998); Bassett et al. (2004); Galaup et al. (1999); Blasse et al. (1987); Prodi et al. (1998); Ramirez et al. (2001); Thuery et al. (2000); Bunzli & Ihringer (2002); Jones et al. (1997); Bardwell et al. (1997); Horrocks et al. (1997). For similar complexes, see: Qin et al. (2005, 2006); Xiong & Qi (2007); Song et al. (2005); Anna & Kaziol (1999). For the use of the SQUEEZE function of PLATON, see: Spek (2009).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [Symmetry code: (i) -x + 1, -y + 1, -z + 1; Hydrogen atoms have been omitted for clarity].
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed roughly down the a axis. Hydrogen bonds are shown as dashed lines [see Table 1 for details; Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity].
Tetrakis(µ-3-azaniumylbenzoato)- κ3O:O,O';κ3O,O': O;κ4O:O'-bis[triaquachloridolanthanum(III)] tetrachloride dihydrate top
Crystal data top
[La2(C7H7NO2)4Cl2(H2O)6]Cl4·2H2OF(000) = 1168
Mr = 1183.19Dx = 1.813 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6316 reflections
a = 11.2988 (3) Åθ = 1.0–30.0°
b = 19.8679 (4) ŵ = 2.38 mm1
c = 10.4679 (3) ÅT = 293 K
β = 112.693 (1)°Prism, brown
V = 2167.96 (10) Å30.24 × 0.22 × 0.18 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.027
Graphite monochromatorθmax = 30.0°, θmin = 2.0°
non–profiled ω/2τ scansh = 1514
Absorption correction: part of the refinement model (ΔF)
DIFABS (Walker & Stuart, 1983)
k = 027
Tmin = 0.550, Tmax = 0.789l = 014
6316 measured reflections2 standard reflections every 60 min
6315 independent reflections intensity decay: 3%
4414 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.060P)2]
where P = (Fo2 + 2Fc2)/3
6315 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 2.85 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
[La2(C7H7NO2)4Cl2(H2O)6]Cl4·2H2OV = 2167.96 (10) Å3
Mr = 1183.19Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.2988 (3) ŵ = 2.38 mm1
b = 19.8679 (4) ÅT = 293 K
c = 10.4679 (3) Å0.24 × 0.22 × 0.18 mm
β = 112.693 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
4414 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
DIFABS (Walker & Stuart, 1983)
Rint = 0.027
Tmin = 0.550, Tmax = 0.7892 standard reflections every 60 min
6316 measured reflections intensity decay: 3%
6315 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.00Δρmax = 2.85 e Å3
6315 reflectionsΔρmin = 0.87 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3737 (5)0.6180 (2)0.3817 (5)0.0270 (9)
C20.3278 (4)0.6773 (2)0.2831 (5)0.0265 (9)
C30.4148 (5)0.7263 (2)0.2812 (5)0.0325 (10)
H30.49850.72520.34680.039*
C40.3781 (5)0.7766 (2)0.1827 (6)0.0385 (12)
H40.43760.80810.17910.046*
C50.2527 (5)0.7798 (3)0.0900 (6)0.0390 (12)
H50.22640.81400.02430.047*
C60.1667 (5)0.7324 (3)0.0949 (5)0.0347 (11)
C70.2016 (5)0.6809 (2)0.1899 (5)0.0304 (10)
H70.14170.64910.19140.036*
C80.5026 (5)0.5348 (2)0.7463 (5)0.0252 (9)
C90.4230 (4)0.5418 (2)0.8325 (4)0.0241 (9)
C100.4425 (5)0.5977 (2)0.9175 (5)0.0298 (10)
H100.50410.62950.92080.036*
C110.3714 (5)0.6062 (2)0.9963 (5)0.0364 (11)
H010.38140.64501.04910.044*
C120.2846 (5)0.5575 (2)0.9982 (5)0.0320 (10)
H020.23730.56281.05320.038*
C130.2694 (4)0.5011 (2)0.9176 (4)0.0251 (9)
C140.3360 (4)0.4921 (2)0.8324 (4)0.0256 (9)
H140.32310.45410.77670.031*
N10.0341 (5)0.7368 (3)0.0085 (6)0.0559 (14)
H1A0.01430.77970.03140.084*
H1B0.01950.71990.02710.084*
H1C0.02740.71350.08350.084*
N20.1833 (4)0.4481 (2)0.9262 (4)0.0328 (8)
H2A0.22890.41560.98200.049*
H2B0.14020.43120.84220.049*
H2C0.12820.46510.95970.049*
O10.4840 (3)0.62303 (16)0.4762 (3)0.0327 (7)
O20.4623 (3)0.49888 (16)0.6384 (3)0.0296 (7)
O1W0.7267 (4)0.67276 (18)0.6974 (4)0.0509 (11)
H110.74420.68310.77740.076*
H210.71080.70580.63920.076*
O30.3002 (3)0.56857 (16)0.3589 (4)0.0361 (8)
O2W0.8388 (4)0.5038 (2)0.4974 (4)0.0454 (9)
H120.88590.46820.52800.068*
H220.89070.53010.48210.068*
O40.6072 (3)0.56602 (17)0.7855 (3)0.0331 (8)
O3W0.7332 (4)0.63595 (18)0.4301 (4)0.0459 (10)
H130.70820.66670.46070.069*
H230.80870.62980.42130.069*
Cl10.92083 (12)0.54510 (8)0.82837 (14)0.0468 (3)
Cl20.24108 (15)0.29052 (6)0.99466 (15)0.0445 (3)
Cl30.02500 (13)0.88440 (7)0.13178 (14)0.0400 (3)
La10.67532 (2)0.552876 (12)0.58587 (2)0.02160 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.036 (2)0.022 (2)0.030 (2)0.0100 (18)0.020 (2)0.0042 (17)
C20.036 (2)0.0151 (18)0.033 (2)0.0062 (17)0.018 (2)0.0008 (16)
C30.039 (3)0.026 (2)0.029 (2)0.002 (2)0.010 (2)0.0035 (19)
C40.044 (3)0.028 (2)0.045 (3)0.007 (2)0.019 (2)0.007 (2)
C50.053 (3)0.029 (2)0.039 (3)0.006 (2)0.022 (3)0.015 (2)
C60.034 (3)0.036 (3)0.034 (2)0.008 (2)0.013 (2)0.008 (2)
C70.036 (2)0.024 (2)0.038 (3)0.0043 (18)0.021 (2)0.0068 (19)
C80.037 (2)0.025 (2)0.0213 (19)0.0058 (17)0.0186 (18)0.0050 (16)
C90.027 (2)0.026 (2)0.0230 (19)0.0010 (16)0.0134 (17)0.0017 (16)
C100.036 (3)0.025 (2)0.032 (2)0.0046 (19)0.017 (2)0.0048 (18)
C110.050 (3)0.026 (2)0.042 (3)0.006 (2)0.028 (2)0.012 (2)
C120.036 (2)0.032 (2)0.036 (2)0.004 (2)0.023 (2)0.004 (2)
C130.029 (2)0.025 (2)0.025 (2)0.0008 (17)0.0142 (18)0.0002 (17)
C140.031 (2)0.026 (2)0.022 (2)0.0022 (17)0.0121 (18)0.0050 (16)
N10.040 (3)0.053 (3)0.066 (3)0.010 (2)0.011 (2)0.029 (3)
N20.039 (2)0.033 (2)0.033 (2)0.0057 (19)0.0202 (17)0.0008 (18)
O10.0361 (18)0.0295 (17)0.0296 (17)0.0098 (14)0.0094 (14)0.0047 (14)
O20.0403 (19)0.0284 (16)0.0245 (15)0.0020 (14)0.0173 (14)0.0037 (13)
O1W0.085 (3)0.0282 (19)0.035 (2)0.0070 (19)0.018 (2)0.0013 (16)
O30.0395 (19)0.0224 (16)0.048 (2)0.0059 (14)0.0189 (17)0.0113 (14)
O2W0.044 (2)0.049 (2)0.053 (2)0.0137 (18)0.0309 (19)0.0096 (19)
O40.0356 (18)0.041 (2)0.0288 (16)0.0065 (15)0.0194 (14)0.0036 (14)
O3W0.067 (3)0.0277 (18)0.065 (3)0.0033 (18)0.050 (2)0.0008 (17)
Cl10.0314 (6)0.0699 (10)0.0373 (6)0.0061 (6)0.0114 (5)0.0087 (6)
Cl20.0609 (9)0.0258 (6)0.0508 (8)0.0008 (6)0.0260 (7)0.0036 (5)
Cl30.0387 (7)0.0364 (6)0.0460 (7)0.0029 (5)0.0177 (6)0.0077 (5)
La10.02571 (12)0.02025 (11)0.02189 (11)0.00083 (11)0.01252 (9)0.00244 (11)
Geometric parameters (Å, º) top
C1—O31.249 (6)C13—N21.460 (6)
C1—O11.261 (6)C14—H140.9300
C1—C21.518 (6)N1—H1A0.8900
C2—C71.385 (7)N1—H1B0.8900
C2—C31.390 (6)N1—H1C0.8900
C3—C41.381 (7)N2—H2A0.8900
C3—H30.9300N2—H2B0.8900
C4—C51.376 (8)N2—H2C0.8900
C4—H40.9300O1—La12.453 (3)
C5—C61.369 (7)O2—La1i2.484 (3)
C5—H50.9300O2—La12.875 (3)
C6—C71.374 (6)O1W—La12.618 (4)
C6—N11.474 (7)O1W—H110.8086
C7—H70.9300O1W—H210.8660
C8—O41.255 (6)O3—La1i2.472 (3)
C8—O21.263 (5)O2W—La12.557 (3)
C8—C91.506 (6)O2W—H120.8700
C8—La13.047 (4)O2W—H220.8447
C9—C101.387 (6)O4—La12.503 (3)
C9—C141.392 (6)O3W—La12.575 (3)
C10—C111.367 (6)O3W—H130.7901
C10—H100.9300O3W—H230.9015
C11—C121.383 (7)Cl1—La12.9545 (13)
C11—H010.9300La1—O3i2.472 (3)
C12—C131.372 (6)La1—O2i2.484 (3)
C12—H020.9300La1—La1i4.2245 (5)
C13—C141.383 (6)
O3—C1—O1126.5 (4)C1—O3—La1i135.8 (3)
O3—C1—C2116.9 (4)La1—O2W—H12127.0
O1—C1—C2116.6 (4)La1—O2W—H22119.0
C7—C2—C3119.7 (4)H12—O2W—H22101.6
C7—C2—C1120.5 (4)C8—O4—La1103.3 (3)
C3—C2—C1119.7 (4)La1—O3W—H1391.2
C4—C3—C2120.5 (5)La1—O3W—H23117.3
C4—C3—H3119.7H13—O3W—H23130.3
C2—C3—H3119.7O1—La1—O3i131.54 (12)
C5—C4—C3119.4 (5)O1—La1—O2i71.07 (11)
C5—C4—H4120.3O3i—La1—O2i77.85 (12)
C3—C4—H4120.3O1—La1—O480.34 (11)
C6—C5—C4119.6 (5)O3i—La1—O487.11 (12)
C6—C5—H5120.2O2i—La1—O4123.36 (11)
C4—C5—H5120.2O1—La1—O2W132.54 (12)
C5—C6—C7122.0 (5)O3i—La1—O2W71.41 (12)
C5—C6—N1117.8 (5)O2i—La1—O2W77.07 (12)
C7—C6—N1120.1 (5)O4—La1—O2W147.12 (12)
C6—C7—C2118.6 (5)O1—La1—O3W74.48 (12)
C6—C7—H7120.7O3i—La1—O3W137.80 (12)
C2—C7—H7120.7O2i—La1—O3W83.47 (12)
O4—C8—O2122.7 (4)O4—La1—O3W134.14 (11)
O4—C8—C9117.6 (4)O2W—La1—O3W67.65 (12)
O2—C8—C9119.7 (4)O1—La1—O1W72.27 (13)
O4—C8—La153.1 (2)O3i—La1—O1W142.99 (13)
O2—C8—La170.1 (2)O2i—La1—O1W138.47 (12)
C9—C8—La1167.6 (3)O4—La1—O1W67.64 (12)
C10—C9—C14120.4 (4)O2W—La1—O1W116.19 (14)
C10—C9—C8118.3 (4)O3W—La1—O1W68.43 (12)
C14—C9—C8121.3 (4)O1—La1—O269.52 (10)
C11—C10—C9120.1 (4)O3i—La1—O267.52 (10)
C11—C10—H10120.0O2i—La1—O276.19 (10)
C9—C10—H10120.0O4—La1—O247.91 (10)
C10—C11—C12120.5 (4)O2W—La1—O2134.59 (11)
C10—C11—H01119.7O3W—La1—O2142.73 (12)
C12—C11—H01119.7O1W—La1—O2108.19 (12)
C13—C12—C11118.9 (4)O1—La1—Cl1142.89 (9)
C13—C12—H02120.5O3i—La1—Cl176.39 (9)
C11—C12—H02120.5O2i—La1—Cl1145.93 (8)
C12—C13—C14122.1 (4)O4—La1—Cl177.14 (9)
C12—C13—N2118.6 (4)O2W—La1—Cl173.83 (10)
C14—C13—N2119.2 (4)O3W—La1—Cl1101.19 (10)
C13—C14—C9117.9 (4)O1W—La1—Cl172.00 (10)
C13—C14—H14121.0O2—La1—Cl1113.19 (7)
C9—C14—H14121.0O1—La1—C871.87 (12)
C6—N1—H1A109.5O3i—La1—C878.12 (12)
C6—N1—H1B109.5O2i—La1—C899.88 (12)
H1A—N1—H1B109.5O4—La1—C823.63 (12)
C6—N1—H1C109.5O2W—La1—C8149.37 (12)
H1A—N1—H1C109.5O3W—La1—C8142.86 (12)
H1B—N1—H1C109.5O1W—La1—C886.58 (13)
C13—N2—H2A109.5O2—La1—C824.41 (10)
C13—N2—H2B109.5Cl1—La1—C896.26 (9)
H2A—N2—H2B109.5O1—La1—La1i64.61 (8)
C13—N2—H2C109.5O3i—La1—La1i67.42 (9)
H2A—N2—H2C109.5O2i—La1—La1i41.37 (7)
H2B—N2—H2C109.5O4—La1—La1i82.37 (8)
C1—O1—La1138.4 (3)O2W—La1—La1i110.25 (10)
C8—O2—La1i163.2 (3)O3W—La1—La1i118.34 (10)
C8—O2—La185.4 (3)O1W—La1—La1i130.75 (10)
La1i—O2—La1103.81 (10)O2—La1—La1i34.82 (6)
La1—O1W—H11128.0Cl1—La1—La1i139.03 (3)
La1—O1W—H21115.2C8—La1—La1i58.74 (9)
H11—O1W—H21116.0
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl30.892.303.170 (5)167
N1—H1B···Cl2ii0.892.433.214 (5)147
N2—H2A···O4iii0.892.453.046 (5)125
N2—H2A···Cl20.892.493.221 (4)140
N2—H2B···Cl3iv0.892.283.169 (4)177
N2—H2C···Cl1iii0.892.493.215 (4)138
N2—H2C···Cl1v0.892.723.349 (5)128
O1W—H11···Cl2iii0.812.393.186 (4)170
O1W—H21···Cl2vi0.872.383.196 (4)157
O2W—H12···Cl3vii0.872.263.123 (4)172
O2W—H22···Cl3viii0.842.473.276 (4)160
O3W—H13···O1W0.792.412.920 (5)124
O3W—H13···Cl2vi0.792.533.156 (4)137
O3W—H23···Cl3viii0.902.173.069 (4)172
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x, y1/2, z+1/2; (v) x1, y, z; (vi) x+1, y+1/2, z+3/2; (vii) x+1, y1/2, z+1/2; (viii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[La2(C7H7NO2)4Cl2(H2O)6]Cl4·2H2O
Mr1183.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.2988 (3), 19.8679 (4), 10.4679 (3)
β (°) 112.693 (1)
V3)2167.96 (10)
Z2
Radiation typeMo Kα
µ (mm1)2.38
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionPart of the refinement model (ΔF)
DIFABS (Walker & Stuart, 1983)
Tmin, Tmax0.550, 0.789
No. of measured, independent and
observed [I > 2σ(I)] reflections
6316, 6315, 4414
Rint0.027
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.110, 1.00
No. of reflections6315
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.85, 0.87

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl30.892.303.170 (5)167.2
N1—H1B···Cl2i0.892.433.214 (5)146.5
N2—H2A···O4ii0.892.453.046 (5)124.6
N2—H2A···Cl20.892.493.221 (4)140.0
N2—H2B···Cl3iii0.892.283.169 (4)177.1
N2—H2C···Cl1ii0.892.493.215 (4)138.4
N2—H2C···Cl1iv0.892.723.349 (5)128.2
O1W—H11···Cl2ii0.812.393.186 (4)170.3
O1W—H21···Cl2v0.872.383.196 (4)156.5
O2W—H12···Cl3vi0.872.263.123 (4)172.2
O2W—H22···Cl3vii0.842.473.276 (4)160.3
O3W—H13···O1W0.792.412.920 (5)123.5
O3W—H13···Cl2v0.792.533.156 (4)137.4
O3W—H23···Cl3vii0.902.173.069 (4)171.8
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y1/2, z+1/2; (iv) x1, y, z; (v) x+1, y+1/2, z+3/2; (vi) x+1, y1/2, z+1/2; (vii) x+1, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by Mentouri-Constantine University, Algeria.

References

First citationAime, S., Botta, M., Fasano, M. & Terreno, E. (1998). Chem. Soc. Rev. 27, 19–29.  Web of Science CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAnna, E. & Kaziol, B. K. (1999). Z. Kristallogr. 200, 25–33.  Google Scholar
First citationBao, S.-S., Ma, L.-F., Wang, Y., Fang, L., Zhu, C.-J., Li, Y.-Z. & Zheng, L.-M. (2007). Chem. Eur. J. 13, 2333–2343.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBardwell, D. A., Jeffery, J. C., Jones, P. L., MCleverty, J. A., Psillakis, E., Reeves, Z. & Ward, M. D. (1997). J. Chem. Soc. Dalton Trans. pp. 2079–2086.  CSD CrossRef Web of Science Google Scholar
First citationBassett, A. P., Magennis, S. W., Glover, P. B., Lewis, D. J., Spencer, N., Parsons, S., Williams, R. M., Cola, L. D. & Pikramenou, Z. (2004). J. Am. Chem. Soc. 126, 9413–9424.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBlasse, G., Dirksen, G. J., Sabbatini, N. & Perathoner, S. (1987). Inorg. Chim. Acta, 133, 167–173.  CrossRef CAS Web of Science Google Scholar
First citationBunzli, J. C. G. & Ihringer, F. (2002). Inorg. Chim. Acta, 246, 195–205.  Google Scholar
First citationCao, R., Sun, D. F., Liang, Y. C., Hong, M. C., Tatsumi, K. & Shi, Q. (2002). Inorg. Chem. 126, 2087–2094.  Web of Science CSD CrossRef Google Scholar
First citationDe Sa, G. F., Alves, S. Jr, Da Silva, B. J. P. & Da Silva, E. F. Jr (1998). Opt. Mater. 11, 23–28.  CAS Google Scholar
First citationDrew, M. G. B., Iveson, P. B., Hudson, M. J., Liljenzin, J. O., Spjuth, L., Cordier, P.-Y., Enarsson, A., Hill, C. & Madic, C. (2000). J. Chem. Soc. Dalton Trans. pp. 821–830.  Web of Science CSD CrossRef Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalaup, C., Picard, C., Cathala, B., Cazaux, L., Tisnes, P., Autier, H. & Aspe, D. (1999). Helv. Chim. Acta, 82, 543–560.  CrossRef CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHorrocks, W. D., Bolender, J. P., Smith, W. D. & Supkowski, R. M. (1997). J. Am. Chem. Soc. 119, 5972–5973.  CAS Google Scholar
First citationIshikawa, N., Sugita, M. & Wernsdorfer, W. (2005). J. Am. Chem. Soc. 127, 3650–3651.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJones, P. L., Amoroso, A. J., Jeffery, J. C., McCleverty, J. A., Psillakis, E., Ree, L. H. & Ward, M. D. (1997). Inorg. Chem. 36, 10–18.  CSD CrossRef CAS Web of Science Google Scholar
First citationLam, A. W. H., Wong, W. T., Gao, S., Wen, G. H. & Zhang, X. X. (2003). Eur. J. Inorg. Chem. 1, 149–163.  Web of Science CSD CrossRef Google Scholar
First citationLiu, W.-S., Jiao, T.-Q., Li, Y.-Z., Liu, Q.-Z., Tan, M.-Y., Wang, H. & Wang, L.-F. (2004). J. Am. Chem. Soc. 126, 2280–2281.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationProdi, L., Pivari, S., Bolletta, F., Hissler, M. & Ziessel, R. (1998). Eur. J. Inorg. Chem. pp. 1959–1965.  CrossRef Google Scholar
First citationQin, C., Wang, X.-L., Wang, E.-B. & Xu, L. (2006). Inorg. Chim. Acta, 359, 417–423.  CrossRef CAS Google Scholar
First citationQin, C., WangX, -L., Wang, E.-B. & Xu, L. (2005). Inorg. Chem. Commun. 8, 669–672.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamirez, F. D. M., Charbonniere, L., Muller, G., Scopelliti, R. & Bunzli, J. C. G. (2001). J. Chem. Soc. Dalton Trans. pp. 3205–3213.  Google Scholar
First citationSerra, O. A., Nassar, E. J., Calefi, P. S. & Rosa, I. L. V. (1998). J. Alloys Compd, pp. 838–840.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y., Yan, B. & Chen, Z. (2005). J. Coord. Chem. 58, 647–652.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThuery, P., Nierlich, M., Vicens, J. & Takemura, H. (2000). Polyhedron, 19, 2673–2678.  CAS Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWang, Z. M., van de Burgt, L. J. & Choppin, G. R. (2000). Inorg. Chim. Acta, 310, 248–256.  Web of Science CrossRef CAS Google Scholar
First citationXiong, L.-Q. & Qi, C.-M. (2007). Acta Cryst. C63, m10–m12.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds