metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[Malonato(2−)-κ2O,O′]bis­­(1,10-phenanthroline-κ2N,N′)zinc(II) penta­hydrate

aDepartment of Chemistry and Science of Life, Quanzhou Normal University, Fujian 362000, People's Republic of China
*Correspondence e-mail: 15060805088@163.com

(Received 26 October 2010; accepted 26 November 2010; online 11 December 2010)

In the title complex, [Zn(C3H2O4)(C12H8N2)2]·5H2O, the ZnII cation displays a distorted octa­hedral geometry, being coordinated by four N atoms from two 1,10-phenanthroline ligands and two O atoms from different carboxyl­ate groups of the chelating malonate dianion. In the crystal, the complexes are linked into a three-dimensional supra­molecular network by both O—H⋯O hydrogen-bonding inter­actions between water mol­ecules and the uncoordinated carboxyl­ate O atoms of neighboring mol­ecules, and aromatic ππ stacking inter­actions between neighboring phenanthroline rings with centroid–centroid distances of 3.4654 (17) and 3.697 (2) Å.

Related literature

For zinc-aliphatic dicarboxyl­ate complexes with 1,10-phenanthroline as co-ligand, see: Fu et al. (2006[Fu, X.-C., Li, M.-T., Wang, C.-G. & Wang, X.-Y. (2006). Acta Cryst. C62, m13-m15.]); Kuang et al. (2007[Kuang, Y. F., Li, C. H., Yang, Y. Q. & Li, W. (2007). Chin. J. Inorg. Chem. 23, 541-544.]); Liu et al. (2004[Liu, Q., Li, Y. Z., Song, Y., Liu, H. J. & Xu, Z. (2004). J.Solid. State. Chem. 177, 4701-4705.]); Yang et al. (2007[Yang, H., Han, X. L., Zhang, Z. H. & Jiang, P. (2007). Chin. J. Inorg. Chem. 23, 513-516.]); Zhang et al. (2005[Zhang, Q. Z., Yang, W. B., Chen, S. M. & Lu, C. Z. (2005). Bull. Korean Chem. Soc. 26, 1631-1634.]); Zheng et al. (2002[Zheng, Y. Q., Liu, W. H. & Lin, J. L. (2002). Z. Anorg. Allg. Chem. 628, 620-624.]). For Zn—O and Zn—N bond lengths, see: Guilera & Steed (1999[Guilera, G. & Steed, J. W. (1999). Chem. Commun. pp. 1563-1564.]); Tao et al. (2000[Tao, J., Tong, M. L. & Chen, X. M. (2000). J. Chem. Soc. Dalton Trans. pp. 3669-3674.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C3H2O4)(C12H8N2)2]·5H2O

  • Mr = 617.90

  • Triclinic, [P \overline 1]

  • a = 10.3802 (15) Å

  • b = 10.580 (3) Å

  • c = 13.059 (2) Å

  • α = 84.682 (2)°

  • β = 76.965 (3)°

  • γ = 72.834 (2)°

  • V = 1334.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 291 K

  • 0.26 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.784, Tmax = 0.843

  • 13993 measured reflections

  • 5236 independent reflections

  • 4851 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.097

  • S = 1.02

  • 5236 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1X⋯O2 0.85 1.85 2.696 (3) 178
O1W—H1Y⋯O5Wi 0.85 2.50 3.085 (3) 127
O2W—H2X⋯O3Wii 0.85 2.18 2.836 (4) 133
O2W—H2Y⋯O4Wiii 0.85 2.09 2.804 (4) 141
O3W—H3X⋯O1iv 0.85 2.21 2.696 (3) 116
O3W—H3Y⋯O3v 0.85 2.27 2.806 (3) 121
O4W—H4X⋯O3W 0.85 2.10 2.953 (3) 180
O4W—H4Y⋯O1Wiv 0.85 2.07 2.854 (3) 153
O5W—H5X⋯O1W 0.85 1.94 2.789 (3) 179
O5W—H5Y⋯O2Wvi 0.85 2.21 2.733 (3) 120
O5W—H5Y⋯O1Wi 0.85 2.57 3.085 (3) 120
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x, -y+1, -z+1; (iii) x, y, z-1; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, there have been a number of reports on zinc-aliphatic dicarboxylate complexes with 1,10-phenanthroline (phen) as co-ligand (Fu et al. 2006; Kuang et al.,2007; Yang et al., 2007; Zheng et al., 2002; Liu et al., 2004; Zhang et al.,2005). In order to continue this research, we have synthesized the title complex [Zn(C3H2O4)(C12H8N2)2].5H2O and have characterized it by elemental analysis and single-crystal X-ray diffraction analysis.

The ZnII cation has a slightly distorted octahedral geometry and is coordinated by four N atoms from two phen ligands and two O atoms from different carboxylate groups of the chelating malonate dianion. The equatorial plane is defined by atoms N1,N2,N3,O2; the apical positions being occupied by N4 and O4. The Zn—O (2.0203–2.0687 (17) Å) and Zn—N (2.141–2.176 (2) Å) bond lengths are in the normal ranges (Guilera et al.,1999; Tao, et al., 2000).

The crystal packing is stabilized by intermolecular π-π interactions between the phenyl rings [for example Cg(5)···Cg(8)a = 3.4654 (17) Å, Cg(7)···Cg(7)b = 3.697 (2) Å, with Cg(5) the centroid of ring N2/C7—C11, Cg(8) of ring C4—C12, Cg(7) of ring N4/C13-C16/C24, symmetry codes: (a) 1 - x,-y, 1 - z, (b) 1 - x,-y, 2 - z], and O—H···O hydrogen bonds (Table 1, Fig. 2).

Related literature top

For zinc-aliphatic dicarboxylate complexes with 1,10-phenanthroline as co-ligand, see: Fu et al. (2006); Kuang et al. (2007); Liu et al. (2004); Yang et al. (2007); Zhang et al. (2005); Zheng et al. (2002). For Zn—O and Zn—N bond lengths, see: Guilera & Steed (1999); Tao et al. (2000).

Experimental top

An ethanol solution (10 ml) of 1,10-phenanthroline (0.397 g, 2 mmol), an aqueous solution (10 ml) of Zn(NO3)2.6H2O (0.297 g, 1 mmol) and an aqueous solution (10 ml) of malonic acid (0.104 g, 1 mmol) were mixed. After refluxing for 4 h, the hot mixture was filtered off. The colorless single crystals suitable for X-ray analysis were obtained by slow evaporation of the filtrate at room temperature after 7 days.

Refinement top

H atoms bonded to C were placed geometrically and treated as riding, (C—H = 0.93–0.97 Å), with Uiso(H) = 1.2Ueq(C). The water H atoms found from Fourier difference maps were refined with restraints for O—H distances (0.8500 Å) and and Uiso(H) = 1.5Ueq(O).

Structure description top

Recently, there have been a number of reports on zinc-aliphatic dicarboxylate complexes with 1,10-phenanthroline (phen) as co-ligand (Fu et al. 2006; Kuang et al.,2007; Yang et al., 2007; Zheng et al., 2002; Liu et al., 2004; Zhang et al.,2005). In order to continue this research, we have synthesized the title complex [Zn(C3H2O4)(C12H8N2)2].5H2O and have characterized it by elemental analysis and single-crystal X-ray diffraction analysis.

The ZnII cation has a slightly distorted octahedral geometry and is coordinated by four N atoms from two phen ligands and two O atoms from different carboxylate groups of the chelating malonate dianion. The equatorial plane is defined by atoms N1,N2,N3,O2; the apical positions being occupied by N4 and O4. The Zn—O (2.0203–2.0687 (17) Å) and Zn—N (2.141–2.176 (2) Å) bond lengths are in the normal ranges (Guilera et al.,1999; Tao, et al., 2000).

The crystal packing is stabilized by intermolecular π-π interactions between the phenyl rings [for example Cg(5)···Cg(8)a = 3.4654 (17) Å, Cg(7)···Cg(7)b = 3.697 (2) Å, with Cg(5) the centroid of ring N2/C7—C11, Cg(8) of ring C4—C12, Cg(7) of ring N4/C13-C16/C24, symmetry codes: (a) 1 - x,-y, 1 - z, (b) 1 - x,-y, 2 - z], and O—H···O hydrogen bonds (Table 1, Fig. 2).

For zinc-aliphatic dicarboxylate complexes with 1,10-phenanthroline as co-ligand, see: Fu et al. (2006); Kuang et al. (2007); Liu et al. (2004); Yang et al. (2007); Zhang et al. (2005); Zheng et al. (2002). For Zn—O and Zn—N bond lengths, see: Guilera & Steed (1999); Tao et al. (2000).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP drawing of the title compound (I). Displacement ellipsoids are drawn at 30% probability level. All hydrogen atoms have been omitted for reasons of clarity.
[Figure 2] Fig. 2. Crystal packing of (I) along bc plane showing H-bonding (yellow dashed lines) and π-π stacking interactions (pink dashed lines).
[Malonato(2-)-κ2O,O']bis(1,10-phenanthroline- κ2N,N')zinc(II) pentahydrate top
Crystal data top
[Zn(C3H2O4)(C12H8N2)2]·5H2OZ = 2
Mr = 617.90F(000) = 640
Triclinic, P1Dx = 1.538 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3802 (15) ÅCell parameters from 6521 reflections
b = 10.580 (3) Åθ = 2.5–28.0°
c = 13.059 (2) ŵ = 0.98 mm1
α = 84.682 (2)°T = 291 K
β = 76.965 (3)°Bolck, colorless
γ = 72.834 (2)°0.26 × 0.20 × 0.18 mm
V = 1334.5 (4) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
5236 independent reflections
Radiation source: sealed tube4851 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
phi and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1212
Tmin = 0.784, Tmax = 0.843k = 1313
13993 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.05P)2 + 1.22P]
where P = (Fo2 + 2Fc2)/3
5236 reflections(Δ/σ)max < 0.001
370 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Zn(C3H2O4)(C12H8N2)2]·5H2Oγ = 72.834 (2)°
Mr = 617.90V = 1334.5 (4) Å3
Triclinic, P1Z = 2
a = 10.3802 (15) ÅMo Kα radiation
b = 10.580 (3) ŵ = 0.98 mm1
c = 13.059 (2) ÅT = 291 K
α = 84.682 (2)°0.26 × 0.20 × 0.18 mm
β = 76.965 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5236 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4851 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 0.843Rint = 0.045
13993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.02Δρmax = 0.32 e Å3
5236 reflectionsΔρmin = 0.80 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8893 (3)0.0210 (3)0.6477 (2)0.0372 (6)
H1A0.93740.02800.67140.045*
C20.9626 (3)0.1418 (3)0.5995 (3)0.0445 (8)
H2A1.05800.17200.59060.053*
C30.8934 (3)0.2128 (3)0.5667 (3)0.0449 (8)
H3A0.94170.29260.53430.054*
C40.7496 (3)0.1694 (2)0.5801 (2)0.0316 (6)
C50.6684 (4)0.2373 (3)0.5447 (2)0.0427 (8)
H5A0.71200.31340.50620.051*
C60.5299 (4)0.1932 (3)0.5660 (2)0.0384 (7)
H6A0.47980.24310.54610.046*
C70.4589 (3)0.0738 (3)0.61756 (19)0.0291 (6)
C80.3162 (3)0.0214 (3)0.6421 (2)0.0396 (7)
H8A0.26040.06780.62590.048*
C90.2576 (3)0.0969 (3)0.6895 (2)0.0379 (7)
H9A0.16220.13090.70640.045*
C100.3413 (3)0.1664 (3)0.7123 (2)0.0321 (6)
H10A0.30020.24890.74220.038*
C110.5355 (3)0.0041 (2)0.64652 (17)0.0228 (5)
C120.6836 (3)0.0471 (2)0.62902 (19)0.0268 (5)
C130.6790 (3)0.0354 (3)0.9213 (2)0.0289 (5)
H13A0.73810.02790.87430.035*
C140.6684 (3)0.0069 (3)1.0273 (2)0.0302 (6)
H14A0.71840.07421.05140.036*
C150.5817 (3)0.1018 (3)1.0975 (2)0.0349 (6)
H15A0.57600.08691.16950.042*
C160.5016 (3)0.2219 (3)1.05814 (18)0.0266 (5)
C170.4076 (3)0.3224 (3)1.1248 (2)0.0366 (6)
H17A0.39550.30901.19740.044*
C180.3351 (3)0.4380 (3)1.0847 (2)0.0373 (6)
H18A0.27220.50141.12990.045*
C190.3548 (3)0.4622 (3)0.9741 (2)0.0281 (5)
C200.2867 (3)0.5812 (3)0.9265 (2)0.0352 (6)
H20A0.22410.64890.96780.042*
C210.3131 (3)0.5961 (3)0.8210 (2)0.0350 (6)
H21A0.26920.67450.78930.042*
C220.4062 (3)0.4940 (3)0.7592 (2)0.0288 (5)
H22A0.42230.50520.68640.035*
C230.4500 (2)0.3641 (2)0.90571 (18)0.0205 (5)
C240.5217 (2)0.2419 (2)0.94922 (18)0.0225 (5)
C250.7182 (2)0.3692 (3)0.5295 (2)0.0279 (5)
C260.7806 (3)0.4298 (3)0.5965 (2)0.0340 (6)
H26A0.70760.49800.63690.041*
H26B0.84330.47310.55070.041*
C270.8586 (3)0.3378 (2)0.6726 (2)0.0272 (5)
N10.7535 (2)0.0252 (2)0.66042 (16)0.0263 (4)
N20.4776 (2)0.1201 (2)0.69320 (15)0.0241 (4)
N30.4729 (2)0.3804 (2)0.80156 (15)0.0223 (4)
N40.6074 (2)0.1510 (2)0.88198 (15)0.0229 (4)
O10.9787 (2)0.3391 (2)0.67131 (18)0.0408 (5)
O20.79835 (18)0.26528 (18)0.73556 (15)0.0295 (4)
O30.7436 (2)0.3892 (2)0.43388 (16)0.0487 (6)
O40.6369 (2)0.30087 (19)0.57407 (13)0.0314 (4)
O1W0.9384 (2)0.16928 (19)0.88973 (17)0.0396 (5)
H1X0.89630.20040.84010.048*
H1Y0.88020.16360.94600.048*
O2W0.0797 (3)0.2733 (3)0.12852 (19)0.0545 (6)
H2X0.01510.34530.13660.065*
H2Y0.12860.27220.06670.065*
O3W0.0798 (2)0.5202 (2)0.73284 (17)0.0471 (5)
H3X0.07960.49570.67270.056*
H3Y0.13890.56290.72660.056*
O4W0.1087 (3)0.3290 (2)0.91176 (19)0.0523 (6)
H4X0.10090.38400.86020.063*
H4Y0.04230.29450.92400.063*
O5W1.0707 (2)0.1012 (2)0.8743 (2)0.0508 (6)
H5X1.02990.01880.87830.061*
H5Y1.02580.14330.92030.061*
Zn10.62469 (3)0.21697 (3)0.720044 (19)0.01839 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0354 (15)0.0360 (15)0.0394 (16)0.0120 (12)0.0069 (12)0.0069 (12)
C20.0302 (15)0.0357 (16)0.0507 (19)0.0058 (12)0.0034 (13)0.0042 (14)
C30.0472 (18)0.0308 (15)0.0412 (17)0.0010 (13)0.0099 (14)0.0046 (12)
C40.0503 (16)0.0192 (12)0.0188 (12)0.0034 (11)0.0040 (11)0.0031 (9)
C50.083 (2)0.0234 (13)0.0221 (13)0.0156 (15)0.0127 (14)0.0061 (10)
C60.077 (2)0.0307 (14)0.0188 (12)0.0303 (15)0.0168 (13)0.0102 (10)
C70.0485 (16)0.0269 (13)0.0206 (12)0.0204 (12)0.0176 (11)0.0137 (10)
C80.0504 (18)0.0525 (18)0.0298 (14)0.0336 (15)0.0190 (13)0.0195 (13)
C90.0294 (14)0.0559 (19)0.0283 (14)0.0158 (13)0.0087 (11)0.0172 (13)
C100.0282 (13)0.0441 (16)0.0210 (12)0.0111 (12)0.0045 (10)0.0145 (11)
C110.0324 (13)0.0266 (12)0.0136 (11)0.0132 (10)0.0097 (9)0.0068 (9)
C120.0384 (14)0.0242 (12)0.0170 (11)0.0093 (10)0.0065 (10)0.0071 (9)
C130.0258 (12)0.0339 (14)0.0271 (13)0.0084 (11)0.0108 (10)0.0115 (10)
C140.0349 (14)0.0361 (14)0.0249 (13)0.0172 (11)0.0133 (11)0.0143 (11)
C150.0445 (16)0.0447 (16)0.0215 (13)0.0233 (13)0.0109 (11)0.0137 (11)
C160.0360 (14)0.0366 (14)0.0126 (11)0.0192 (11)0.0053 (10)0.0024 (9)
C170.0388 (15)0.0521 (18)0.0205 (13)0.0226 (14)0.0028 (11)0.0009 (12)
C180.0362 (15)0.0514 (18)0.0255 (14)0.0190 (13)0.0031 (11)0.0096 (12)
C190.0230 (12)0.0322 (13)0.0316 (14)0.0103 (10)0.0042 (10)0.0090 (11)
C200.0300 (14)0.0326 (14)0.0407 (16)0.0055 (11)0.0020 (12)0.0141 (12)
C210.0273 (13)0.0298 (14)0.0460 (17)0.0000 (11)0.0125 (12)0.0057 (12)
C220.0221 (12)0.0271 (13)0.0361 (14)0.0009 (10)0.0151 (10)0.0016 (11)
C230.0204 (11)0.0206 (11)0.0204 (11)0.0065 (9)0.0009 (9)0.0048 (9)
C240.0243 (12)0.0290 (12)0.0168 (11)0.0092 (10)0.0076 (9)0.0005 (9)
C250.0200 (11)0.0294 (13)0.0251 (13)0.0009 (10)0.0003 (9)0.0082 (10)
C260.0308 (14)0.0235 (13)0.0468 (17)0.0074 (11)0.0114 (12)0.0097 (11)
C270.0264 (13)0.0245 (12)0.0323 (14)0.0081 (10)0.0067 (10)0.0044 (10)
N10.0288 (11)0.0261 (11)0.0213 (10)0.0063 (9)0.0011 (8)0.0016 (8)
N20.0294 (11)0.0265 (10)0.0186 (10)0.0094 (9)0.0083 (8)0.0022 (8)
N30.0238 (10)0.0236 (10)0.0188 (10)0.0035 (8)0.0090 (8)0.0031 (8)
N40.0243 (10)0.0279 (11)0.0184 (10)0.0070 (8)0.0096 (8)0.0022 (8)
O10.0347 (11)0.0441 (12)0.0501 (13)0.0188 (9)0.0134 (9)0.0028 (10)
O20.0279 (9)0.0321 (10)0.0327 (10)0.0140 (8)0.0112 (8)0.0077 (8)
O30.0364 (11)0.0706 (15)0.0292 (11)0.0089 (11)0.0051 (9)0.0235 (10)
O40.0441 (11)0.0458 (11)0.0104 (8)0.0196 (9)0.0109 (7)0.0050 (7)
O1W0.0443 (12)0.0335 (11)0.0426 (12)0.0116 (9)0.0145 (9)0.0064 (9)
O2W0.0491 (14)0.0714 (17)0.0434 (13)0.0173 (12)0.0070 (11)0.0093 (12)
O3W0.0569 (14)0.0598 (14)0.0345 (11)0.0361 (12)0.0054 (10)0.0036 (10)
O4W0.0572 (14)0.0594 (15)0.0488 (14)0.0324 (12)0.0072 (11)0.0004 (11)
O5W0.0500 (13)0.0340 (11)0.0665 (16)0.0121 (10)0.0082 (11)0.0007 (11)
Zn10.02194 (15)0.02086 (15)0.01283 (14)0.00678 (10)0.00444 (10)0.00161 (9)
Geometric parameters (Å, º) top
C1—N11.326 (4)C18—H18A0.9300
C1—C21.403 (4)C19—C201.414 (4)
C1—H1A0.9300C19—C231.422 (3)
C2—C31.334 (5)C20—C211.347 (4)
C2—H2A0.9300C20—H20A0.9300
C3—C41.402 (4)C21—C221.395 (4)
C3—H3A0.9300C21—H21A0.9300
C4—C121.409 (4)C22—N31.337 (3)
C4—C51.426 (4)C22—H22A0.9300
C5—C61.345 (5)C23—N31.331 (3)
C5—H5A0.9300C23—C241.427 (3)
C6—C71.406 (4)C24—N41.336 (3)
C6—H6A0.9300C25—O31.228 (3)
C7—C81.392 (4)C25—O41.278 (3)
C7—C111.427 (3)C25—C261.483 (4)
C8—C91.357 (5)C26—C271.520 (4)
C8—H8A0.9300C26—H26A0.9700
C9—C101.385 (4)C26—H26B0.9700
C9—H9A0.9300C27—O11.247 (3)
C10—N21.327 (3)C27—O21.261 (3)
C10—H10A0.9300N1—Zn12.175 (2)
C11—N21.333 (3)N2—Zn12.176 (2)
C11—C121.444 (4)N3—Zn12.141 (2)
C12—N11.341 (3)N4—Zn12.150 (2)
C13—N41.353 (3)O2—Zn12.0687 (18)
C13—C141.376 (4)O4—Zn12.0203 (17)
C13—H13A0.9300O1W—H1X0.8500
C14—C151.387 (4)O1W—H1Y0.8500
C14—H14A0.9300O2W—H2X0.8500
C15—C161.420 (4)O2W—H2Y0.8501
C15—H15A0.9300O3W—H3X0.8500
C16—C241.396 (3)O3W—H3Y0.8500
C16—C171.420 (4)O4W—H4X0.8500
C17—C181.361 (4)O4W—H4Y0.8500
C17—H17A0.9300O5W—H5X0.8500
C18—C191.423 (4)O5W—H5Y0.8501
N1—C1—C2121.8 (3)C19—C20—H20A120.2
N1—C1—H1A119.1C20—C21—C22120.0 (3)
C2—C1—H1A119.1C20—C21—H21A120.0
C3—C2—C1119.1 (3)C22—C21—H21A120.0
C3—C2—H2A120.5N3—C22—C21121.9 (3)
C1—C2—H2A120.5N3—C22—H22A119.0
C2—C3—C4121.3 (3)C21—C22—H22A119.0
C2—C3—H3A119.3N3—C23—C19122.4 (2)
C4—C3—H3A119.3N3—C23—C24118.2 (2)
C3—C4—C12116.2 (3)C19—C23—C24119.4 (2)
C3—C4—C5124.8 (3)N4—C24—C16122.8 (2)
C12—C4—C5119.0 (3)N4—C24—C23117.4 (2)
C6—C5—C4121.2 (3)C16—C24—C23119.8 (2)
C6—C5—H5A119.4O3—C25—O4122.5 (3)
C4—C5—H5A119.4O3—C25—C26119.0 (2)
C5—C6—C7121.8 (3)O4—C25—C26118.5 (2)
C5—C6—H6A119.1C25—C26—C27117.0 (2)
C7—C6—H6A119.1C25—C26—H26A108.0
C8—C7—C6125.3 (3)C27—C26—H26A108.0
C8—C7—C11115.5 (3)C25—C26—H26B108.0
C6—C7—C11119.3 (3)C27—C26—H26B108.0
C9—C8—C7120.7 (3)H26A—C26—H26B107.3
C9—C8—H8A119.6O1—C27—O2122.8 (3)
C7—C8—H8A119.6O1—C27—C26118.5 (2)
C8—C9—C10119.4 (3)O2—C27—C26118.6 (2)
C8—C9—H9A120.3C1—N1—C12119.2 (2)
C10—C9—H9A120.3C1—N1—Zn1127.06 (19)
N2—C10—C9122.7 (3)C12—N1—Zn1113.63 (17)
N2—C10—H10A118.7C10—N2—C11118.1 (2)
C9—C10—H10A118.7C10—N2—Zn1127.68 (19)
N2—C11—C7123.7 (2)C11—N2—Zn1114.13 (16)
N2—C11—C12117.5 (2)C23—N3—C22119.2 (2)
C7—C11—C12118.7 (2)C23—N3—Zn1113.65 (15)
N1—C12—C4122.4 (3)C22—N3—Zn1127.12 (18)
N1—C12—C11117.9 (2)C24—N4—C13118.5 (2)
C4—C12—C11119.6 (2)C24—N4—Zn1113.60 (16)
N4—C13—C14123.2 (3)C13—N4—Zn1127.68 (17)
N4—C13—H13A118.4C27—O2—Zn1125.77 (17)
C14—C13—H13A118.4C25—O4—Zn1126.93 (16)
C13—C14—C15118.5 (2)H1X—O1W—H1Y109.5
C13—C14—H14A120.7H2X—O2W—H2Y109.5
C15—C14—H14A120.7H3X—O3W—H3Y109.5
C14—C15—C16119.2 (2)H4X—O4W—H4Y109.5
C14—C15—H15A120.4H5X—O5W—H5Y109.5
C16—C15—H15A120.4O4—Zn1—O290.76 (7)
C24—C16—C17119.7 (2)O4—Zn1—N397.33 (8)
C24—C16—C15117.6 (2)O2—Zn1—N397.98 (8)
C17—C16—C15122.7 (2)O4—Zn1—N4173.14 (8)
C18—C17—C16121.3 (2)O2—Zn1—N486.27 (7)
C18—C17—H17A119.3N3—Zn1—N476.99 (8)
C16—C17—H17A119.3O4—Zn1—N192.29 (8)
C17—C18—C19120.4 (3)O2—Zn1—N189.90 (8)
C17—C18—H18A119.8N3—Zn1—N1167.45 (8)
C19—C18—H18A119.8N4—Zn1—N193.89 (8)
C20—C19—C23116.8 (2)O4—Zn1—N290.97 (7)
C20—C19—C18123.8 (3)O2—Zn1—N2166.13 (8)
C23—C19—C18119.4 (2)N3—Zn1—N295.45 (8)
C21—C20—C19119.7 (2)N4—Zn1—N293.38 (8)
C21—C20—H20A120.2N1—Zn1—N276.28 (8)
N1—C1—C2—C30.8 (5)C12—C11—N2—Zn15.5 (3)
C1—C2—C3—C40.4 (5)C19—C23—N3—C221.3 (4)
C2—C3—C4—C120.5 (4)C24—C23—N3—C22179.6 (2)
C2—C3—C4—C5178.1 (3)C19—C23—N3—Zn1178.89 (18)
C3—C4—C5—C6176.1 (3)C24—C23—N3—Zn12.8 (3)
C12—C4—C5—C66.4 (4)C21—C22—N3—C230.0 (4)
C4—C5—C6—C74.5 (4)C21—C22—N3—Zn1177.25 (19)
C5—C6—C7—C8179.8 (3)C16—C24—N4—C130.8 (4)
C5—C6—C7—C111.1 (4)C23—C24—N4—C13178.6 (2)
C6—C7—C8—C9178.1 (2)C16—C24—N4—Zn1176.35 (19)
C11—C7—C8—C90.6 (4)C23—C24—N4—Zn13.0 (3)
C7—C8—C9—C100.8 (4)C14—C13—N4—C240.4 (4)
C8—C9—C10—N22.5 (4)C14—C13—N4—Zn1174.43 (19)
C8—C7—C11—N20.5 (3)O1—C27—O2—Zn1162.6 (2)
C6—C7—C11—N2178.3 (2)C26—C27—O2—Zn118.8 (3)
C8—C7—C11—C12176.6 (2)O3—C25—O4—Zn1161.7 (2)
C6—C7—C11—C124.6 (3)C26—C25—O4—Zn120.2 (3)
C3—C4—C12—N10.6 (4)C25—O4—Zn1—O28.0 (2)
C5—C4—C12—N1177.1 (2)C25—O4—Zn1—N390.2 (2)
C3—C4—C12—C11179.5 (2)C25—O4—Zn1—N197.9 (2)
C5—C4—C12—C112.8 (3)C25—O4—Zn1—N2174.2 (2)
N2—C11—C12—N10.2 (3)C27—O2—Zn1—O48.4 (2)
C7—C11—C12—N1177.5 (2)C27—O2—Zn1—N389.1 (2)
N2—C11—C12—C4179.9 (2)C27—O2—Zn1—N4165.4 (2)
C7—C11—C12—C42.6 (3)C27—O2—Zn1—N1100.7 (2)
N4—C13—C14—C150.8 (4)C27—O2—Zn1—N2105.6 (3)
C13—C14—C15—C163.2 (4)C23—N3—Zn1—O4172.87 (16)
C14—C15—C16—C244.2 (4)C22—N3—Zn1—O44.5 (2)
C14—C15—C16—C17178.3 (3)C23—N3—Zn1—O281.06 (17)
C24—C16—C17—C180.8 (4)C22—N3—Zn1—O296.3 (2)
C15—C16—C17—C18178.2 (3)C23—N3—Zn1—N43.22 (16)
C16—C17—C18—C191.8 (4)C22—N3—Zn1—N4179.4 (2)
C17—C18—C19—C20177.9 (3)C23—N3—Zn1—N147.4 (4)
C17—C18—C19—C230.6 (4)C22—N3—Zn1—N1135.2 (3)
C23—C19—C20—C210.6 (4)C23—N3—Zn1—N295.44 (17)
C18—C19—C20—C21179.2 (3)C22—N3—Zn1—N287.2 (2)
C19—C20—C21—C220.6 (4)C24—N4—Zn1—O295.76 (17)
C20—C21—C22—N31.0 (4)C13—N4—Zn1—O279.3 (2)
C20—C19—C23—N31.6 (4)C24—N4—Zn1—N33.32 (16)
C18—C19—C23—N3179.8 (2)C13—N4—Zn1—N3178.4 (2)
C20—C19—C23—C24179.9 (2)C24—N4—Zn1—N1174.59 (17)
C18—C19—C23—C241.4 (4)C13—N4—Zn1—N110.4 (2)
C17—C16—C24—N4179.3 (2)C24—N4—Zn1—N298.13 (17)
C15—C16—C24—N43.1 (4)C13—N4—Zn1—N286.8 (2)
C17—C16—C24—C231.3 (4)C1—N1—Zn1—O491.7 (2)
C15—C16—C24—C23176.2 (2)C12—N1—Zn1—O484.51 (17)
N3—C23—C24—N40.2 (3)C1—N1—Zn1—O20.9 (2)
C19—C23—C24—N4178.2 (2)C12—N1—Zn1—O2175.27 (17)
N3—C23—C24—C16179.2 (2)C1—N1—Zn1—N3128.2 (4)
C19—C23—C24—C162.4 (3)C12—N1—Zn1—N355.6 (4)
O3—C25—C26—C27127.4 (3)C1—N1—Zn1—N485.4 (2)
O4—C25—C26—C2754.4 (3)C12—N1—Zn1—N498.47 (17)
C25—C26—C27—O1127.6 (3)C1—N1—Zn1—N2177.9 (2)
C25—C26—C27—O253.7 (4)C12—N1—Zn1—N25.93 (16)
C2—C1—N1—C121.9 (4)C10—N2—Zn1—O489.9 (2)
C2—C1—N1—Zn1174.1 (2)C11—N2—Zn1—O486.02 (16)
C4—C12—N1—C11.8 (4)C10—N2—Zn1—O2173.0 (3)
C11—C12—N1—C1178.3 (2)C11—N2—Zn1—O211.1 (4)
C4—C12—N1—Zn1174.74 (18)C10—N2—Zn1—N37.6 (2)
C11—C12—N1—Zn15.2 (3)C11—N2—Zn1—N3176.52 (16)
C9—C10—N2—C112.6 (3)C10—N2—Zn1—N484.9 (2)
C9—C10—N2—Zn1178.34 (18)C11—N2—Zn1—N499.28 (16)
C7—C11—N2—C101.1 (3)C10—N2—Zn1—N1178.0 (2)
C12—C11—N2—C10178.2 (2)C11—N2—Zn1—N16.10 (15)
C7—C11—N2—Zn1177.38 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1X···O20.851.852.696 (3)178
O1W—H1Y···O5Wi0.852.503.085 (3)127
O2W—H2X···O3Wii0.852.182.836 (4)133
O2W—H2Y···O4Wiii0.852.092.804 (4)141
O3W—H3X···O1iv0.852.212.696 (3)116
O3W—H3Y···O3v0.852.272.806 (3)121
O4W—H4X···O3W0.852.102.953 (3)180
O4W—H4Y···O1Wiv0.852.072.854 (3)153
O5W—H5X···O1W0.851.942.789 (3)179
O5W—H5Y···O2Wvi0.852.212.733 (3)120
O5W—H5Y···O1Wi0.852.573.085 (3)120
Symmetry codes: (i) x+2, y, z+2; (ii) x, y+1, z+1; (iii) x, y, z1; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C3H2O4)(C12H8N2)2]·5H2O
Mr617.90
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)10.3802 (15), 10.580 (3), 13.059 (2)
α, β, γ (°)84.682 (2), 76.965 (3), 72.834 (2)
V3)1334.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.26 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.784, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
13993, 5236, 4851
Rint0.045
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 1.02
No. of reflections5236
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.80

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1X···O20.851.852.696 (3)178
O1W—H1Y···O5Wi0.852.503.085 (3)127
O2W—H2X···O3Wii0.852.182.836 (4)133
O2W—H2Y···O4Wiii0.852.092.804 (4)141
O3W—H3X···O1iv0.852.212.696 (3)116
O3W—H3Y···O3v0.852.272.806 (3)121
O4W—H4X···O3W0.852.102.953 (3)180
O4W—H4Y···O1Wiv0.852.072.854 (3)153
O5W—H5X···O1W0.851.942.789 (3)179
O5W—H5Y···O2Wvi0.852.212.733 (3)120
O5W—H5Y···O1Wi0.852.573.085 (3)120
Symmetry codes: (i) x+2, y, z+2; (ii) x, y+1, z+1; (iii) x, y, z1; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x+1, y, z+1.
 

Acknowledgements

This work was supported by the Education Department Foundation of Fujian Province of China (grant Nos. JA08212 and 2008 F5053) and the Master Construction Project of Quanzhou Normal University.

References

First citationBruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFu, X.-C., Li, M.-T., Wang, C.-G. & Wang, X.-Y. (2006). Acta Cryst. C62, m13–m15.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGuilera, G. & Steed, J. W. (1999). Chem. Commun. pp. 1563–1564.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuang, Y. F., Li, C. H., Yang, Y. Q. & Li, W. (2007). Chin. J. Inorg. Chem. 23, 541–544.  CAS Google Scholar
First citationLiu, Q., Li, Y. Z., Song, Y., Liu, H. J. & Xu, Z. (2004). J.Solid. State. Chem. 177, 4701–4705.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, J., Tong, M. L. & Chen, X. M. (2000). J. Chem. Soc. Dalton Trans. pp. 3669–3674.  Web of Science CSD CrossRef Google Scholar
First citationYang, H., Han, X. L., Zhang, Z. H. & Jiang, P. (2007). Chin. J. Inorg. Chem. 23, 513–516.  CAS Google Scholar
First citationZhang, Q. Z., Yang, W. B., Chen, S. M. & Lu, C. Z. (2005). Bull. Korean Chem. Soc. 26, 1631–1634.  CAS Google Scholar
First citationZheng, Y. Q., Liu, W. H. & Lin, J. L. (2002). Z. Anorg. Allg. Chem. 628, 620–624.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds