organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(1H-1,2,3-benzotriazol-1-yl)acetate

aInstitute of Functional Materials, Jiangxi University of Finance & Economics, Nanchang 330013, People's Republic of China
*Correspondence e-mail: xiaoxialichen@yahoo.cn

(Received 17 November 2010; accepted 7 December 2010; online 15 December 2010)

The title compound, C10H11N3O2, was synthesized by the reaction of 1H-benzotriazole with ethyl 2-chloro­acetate in ethanol. The non-H atoms, excluding the benzotriazol-1-yl group, are almost coplanar (r.m.s. deviation of the non-H atoms = 0.0409 Å). The dihedral angle formed between this plane and the benzotriazole ring is 79.12 (5)° In the crystal, weak inter­molecular C—H⋯N and C—H⋯O inter­actions help to consolidate the three-dimensional network.

Related literature

For related structures, see: Shi et al. (2007a[Shi, Z.-Q., Ji, N.-N., Zheng, Z.-B. & Li, J.-K. (2007a). Acta Cryst. E63, o4561.],b[Shi, Z.-Q., Ji, N.-N., Zheng, Z.-B. & Li, J.-K. (2007b). Acta Cryst. E63, o4642.]); Ji et al. (2008[Ji, N.-N. & Shi, Z.-Q. (2008). Acta Cryst. E64, o655.]); Zhang et al. (2009[Zhang, Y.-X. & Shi, Z.-Q. (2009). Acta Cryst. E65, o1538.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N3O2

  • Mr = 205.22

  • Monoclinic, C 2/c

  • a = 20.6734 (9) Å

  • b = 11.9284 (5) Å

  • c = 9.3420 (4) Å

  • β = 111.770 (3)°

  • V = 2139.44 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.23 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .]) Tmin = 0.980, Tmax = 0.985

  • 9605 measured reflections

  • 2551 independent reflections

  • 1360 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.231

  • S = 1.07

  • 2551 reflections

  • 137 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯N2i 0.93 2.57 3.457 (3) 159
C7—H7A⋯N3i 0.97 2.51 3.387 (3) 150
C7—H7B⋯O1ii 0.97 2.49 3.451 (3) 173
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Schiff-bases derived from benzotriazol-1-yl-acetic acid hydrazide with a relevant aldehyde or ketone have been widely investigated in recent years (Shi et al., 2007a; Shi et al., 2007b; Ji et al., 2008). As an important intermediate in the synthesis procedure of benzotriazol-1-yl-acetic acid hydrazide (Zhang et al., 2009), the title compound, (I), was synthesized and characterized by X-ray diffraction. The asymmetric unit of (I) comprises one independent molecule (Fig. 1). All the bond lengths are comparable with those observed in benzotriazol-1-yl-acetic acid hydrazide. In the crystal, weak intermolecular C—H···N and C—H···O interactions are helpful to consolidate the three-dimensional network (Fig. 2, Table 1).

Related literature top

For related structures, see: Shi et al. (2007a,b); Ji et al. (2008); Zhang et al. (2009).

Experimental top

1H-benzotriazole (1 mmol) and sodium hydroxide (1 mmol) were dissolved in ethanol (10 ml), and an ethanol (5 ml) solution of ethyl 2-chloroacetate (1 mmol) was added dropwise. After stirring for 4 h at room temperature, the mixture was filtered and set aside to crystallize at room temperature for several days, giving colourless block crystals.

Refinement top

The C7—C8 bond length was restrainted to a reasonable distance: C7—C8 = 1.501 (4) Å (command DFIX). All H atoms were situated at idealized positions with the carrier atom-H distances = 0.93 Å for aryl, 0.97 for methylene, 0.96 Å for the methyl. The Uiso values were constrained to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq for the remaining H.

Structure description top

The Schiff-bases derived from benzotriazol-1-yl-acetic acid hydrazide with a relevant aldehyde or ketone have been widely investigated in recent years (Shi et al., 2007a; Shi et al., 2007b; Ji et al., 2008). As an important intermediate in the synthesis procedure of benzotriazol-1-yl-acetic acid hydrazide (Zhang et al., 2009), the title compound, (I), was synthesized and characterized by X-ray diffraction. The asymmetric unit of (I) comprises one independent molecule (Fig. 1). All the bond lengths are comparable with those observed in benzotriazol-1-yl-acetic acid hydrazide. In the crystal, weak intermolecular C—H···N and C—H···O interactions are helpful to consolidate the three-dimensional network (Fig. 2, Table 1).

For related structures, see: Shi et al. (2007a,b); Ji et al. (2008); Zhang et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipsoids shown at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing for the title compound via C—H···O and C—H···N weak interactions shown as dashed lines.
Ethyl 2-(1H-1,2,3-benzotriazol-1-yl)acetate top
Crystal data top
C10H11N3O2F(000) = 864
Mr = 205.22Dx = 1.274 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1764 reflections
a = 20.6734 (9) Åθ = 2.8–21.8°
b = 11.9284 (5) ŵ = 0.09 mm1
c = 9.3420 (4) ÅT = 296 K
β = 111.770 (3)°Block, colourless
V = 2139.44 (16) Å30.23 × 0.18 × 0.16 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
2551 independent reflections
Radiation source: fine-focus sealed tube1360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 27.9°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2427
Tmin = 0.980, Tmax = 0.985k = 1513
9605 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.231 w = 1/[σ2(Fo2) + (0.1115P)2 + 0.7271P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2551 reflectionsΔρmax = 0.50 e Å3
137 parametersΔρmin = 0.24 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0044 (15)
Crystal data top
C10H11N3O2V = 2139.44 (16) Å3
Mr = 205.22Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.6734 (9) ŵ = 0.09 mm1
b = 11.9284 (5) ÅT = 296 K
c = 9.3420 (4) Å0.23 × 0.18 × 0.16 mm
β = 111.770 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2551 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1360 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.985Rint = 0.039
9605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0671 restraint
wR(F2) = 0.231H-atom parameters constrained
S = 1.07Δρmax = 0.50 e Å3
2551 reflectionsΔρmin = 0.24 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22410 (13)0.01039 (19)0.6218 (3)0.0558 (6)
C20.19757 (14)0.1116 (2)0.5489 (3)0.0682 (7)
H2A0.21480.18050.59340.082*
C30.14480 (17)0.1032 (3)0.4084 (3)0.0850 (9)
H3A0.12540.16850.35540.102*
C40.11878 (19)0.0009 (3)0.3412 (4)0.0953 (11)
H4A0.08290.00260.24480.114*
C50.14479 (17)0.0994 (3)0.4138 (3)0.0847 (9)
H5A0.12730.16830.36950.102*
C60.19825 (14)0.0923 (2)0.5557 (3)0.0646 (7)
C70.31980 (13)0.0550 (2)0.8782 (3)0.0599 (7)
H7A0.29380.12000.88930.072*
H7B0.33560.01430.97510.072*
C80.38177 (14)0.0931 (2)0.8442 (3)0.0656 (7)
C90.4915 (2)0.1815 (5)0.9535 (4)0.1336 (18)
H9A0.48110.24360.88140.160*
H9B0.51210.12190.91410.160*
C100.5370 (3)0.2152 (7)1.0919 (6)0.193 (3)
H10A0.57900.24081.08140.289*
H10B0.51680.27531.12990.289*
H10C0.54740.15361.16300.289*
N10.27471 (10)0.01616 (16)0.7579 (2)0.0587 (6)
N20.28073 (12)0.12909 (18)0.7742 (3)0.0746 (7)
N30.23544 (14)0.17555 (18)0.6542 (3)0.0791 (7)
O10.39013 (12)0.0827 (2)0.7269 (2)0.1030 (8)
O20.42674 (10)0.1412 (2)0.9665 (2)0.0926 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0550 (14)0.0542 (14)0.0614 (14)0.0012 (11)0.0252 (11)0.0022 (11)
C20.0740 (18)0.0594 (15)0.0700 (16)0.0027 (13)0.0252 (14)0.0003 (12)
C30.086 (2)0.088 (2)0.0721 (18)0.0117 (17)0.0185 (16)0.0098 (16)
C40.079 (2)0.122 (3)0.0710 (19)0.005 (2)0.0117 (16)0.0104 (19)
C50.086 (2)0.085 (2)0.0772 (19)0.0188 (17)0.0246 (17)0.0170 (16)
C60.0655 (16)0.0586 (15)0.0730 (16)0.0084 (12)0.0295 (14)0.0083 (12)
C70.0588 (15)0.0603 (15)0.0571 (13)0.0023 (11)0.0173 (11)0.0007 (11)
C80.0630 (16)0.0714 (17)0.0584 (15)0.0066 (13)0.0179 (12)0.0009 (12)
C90.088 (3)0.212 (5)0.099 (3)0.066 (3)0.032 (2)0.013 (3)
C100.095 (3)0.328 (8)0.153 (4)0.078 (4)0.043 (3)0.042 (5)
N10.0619 (13)0.0470 (11)0.0653 (12)0.0005 (9)0.0214 (10)0.0025 (9)
N20.0837 (16)0.0490 (12)0.0866 (16)0.0008 (11)0.0264 (13)0.0048 (11)
N30.0919 (18)0.0531 (13)0.0878 (16)0.0087 (12)0.0282 (14)0.0035 (12)
O10.0971 (17)0.151 (2)0.0722 (13)0.0321 (14)0.0445 (12)0.0153 (13)
O20.0721 (13)0.1303 (19)0.0729 (12)0.0370 (13)0.0240 (10)0.0187 (12)
Geometric parameters (Å, º) top
C1—N11.351 (3)C7—H7A0.9700
C1—C61.387 (3)C7—H7B0.9700
C1—C21.395 (3)C8—O11.177 (3)
C2—C31.364 (4)C8—O21.309 (3)
C2—H2A0.9300C9—C101.348 (5)
C3—C41.405 (5)C9—O21.468 (4)
C3—H3A0.9300C9—H9A0.9700
C4—C51.364 (5)C9—H9B0.9700
C4—H4A0.9300C10—H10A0.9600
C5—C61.378 (4)C10—H10B0.9600
C5—H5A0.9300C10—H10C0.9600
C6—N31.378 (3)N1—N21.356 (3)
C7—N11.441 (3)N2—N31.289 (3)
C7—C81.501 (4)
N1—C1—C6104.3 (2)H7A—C7—H7B107.9
N1—C1—C2133.6 (2)O1—C8—O2123.9 (3)
C6—C1—C2122.1 (2)O1—C8—C7126.7 (3)
C3—C2—C1115.8 (3)O2—C8—C7109.5 (2)
C3—C2—H2A122.1C10—C9—O2110.6 (3)
C1—C2—H2A122.1C10—C9—H9A109.5
C2—C3—C4122.1 (3)O2—C9—H9A109.5
C2—C3—H3A118.9C10—C9—H9B109.5
C4—C3—H3A118.9O2—C9—H9B109.5
C5—C4—C3121.6 (3)H9A—C9—H9B108.1
C5—C4—H4A119.2C9—C10—H10A109.5
C3—C4—H4A119.2C9—C10—H10B109.5
C4—C5—C6116.9 (3)H10A—C10—H10B109.5
C4—C5—H5A121.5C9—C10—H10C109.5
C6—C5—H5A121.5H10A—C10—H10C109.5
N3—C6—C5130.4 (3)H10B—C10—H10C109.5
N3—C6—C1108.2 (2)C1—N1—N2110.22 (19)
C5—C6—C1121.4 (3)C1—N1—C7130.4 (2)
N1—C7—C8111.7 (2)N2—N1—C7119.4 (2)
N1—C7—H7A109.3N3—N2—N1108.8 (2)
C8—C7—H7A109.3N2—N3—C6108.5 (2)
N1—C7—H7B109.3C8—O2—C9116.4 (2)
C8—C7—H7B109.3
N1—C1—C2—C3179.7 (3)C2—C1—N1—N2179.5 (3)
C6—C1—C2—C30.3 (4)C6—C1—N1—C7179.3 (2)
C1—C2—C3—C40.0 (5)C2—C1—N1—C70.2 (5)
C2—C3—C4—C50.4 (5)C8—C7—N1—C183.0 (3)
C3—C4—C5—C60.5 (5)C8—C7—N1—N296.6 (3)
C4—C5—C6—N3178.7 (3)C1—N1—N2—N30.6 (3)
C4—C5—C6—C10.3 (4)C7—N1—N2—N3179.7 (2)
N1—C1—C6—N31.1 (3)N1—N2—N3—C60.1 (3)
C2—C1—C6—N3179.3 (2)C5—C6—N3—N2179.9 (3)
N1—C1—C6—C5179.7 (2)C1—C6—N3—N20.8 (3)
C2—C1—C6—C50.1 (4)O1—C8—O2—C91.3 (5)
N1—C7—C8—O110.6 (4)C7—C8—O2—C9178.8 (3)
N1—C7—C8—O2169.5 (2)C10—C9—O2—C8171.7 (5)
C6—C1—N1—N21.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N2i0.932.573.457 (3)159
C7—H7A···N3i0.972.513.387 (3)150
C7—H7B···O1ii0.972.493.451 (3)173
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H11N3O2
Mr205.22
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)20.6734 (9), 11.9284 (5), 9.3420 (4)
β (°) 111.770 (3)
V3)2139.44 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.980, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
9605, 2551, 1360
Rint0.039
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.231, 1.07
No. of reflections2551
No. of parameters137
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N2i0.932.573.457 (3)159
C7—H7A···N3i0.972.513.387 (3)150
C7—H7B···O1ii0.972.493.451 (3)173
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y, z+1/2.
 

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .  Google Scholar
First citationJi, N.-N. & Shi, Z.-Q. (2008). Acta Cryst. E64, o655.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Z.-Q., Ji, N.-N., Zheng, Z.-B. & Li, J.-K. (2007a). Acta Cryst. E63, o4561.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShi, Z.-Q., Ji, N.-N., Zheng, Z.-B. & Li, J.-K. (2007b). Acta Cryst. E63, o4642.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Y.-X. & Shi, Z.-Q. (2009). Acta Cryst. E65, o1538.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds