metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-ethyl-1H-imidazol-3-ium) tetra­chloridocuprate(II)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhurunqiang@163.com

(Received 9 December 2010; accepted 15 December 2010; online 24 December 2010)

In the crystal structure of the title salt, (C5H9N2)2[CuCl4], the organic cations and the tetrahedral [CuCl4] anions are linked into a three-dimensional network by N—H⋯Cl hydrogen bonds. The two 2-ethyl imidazolium cations in the asymmetric unit differ in the orientation of the ethyl group, with N—C—C—C torsion angles of −170.0 (4) and −87.6 (5)°.

Related literature

For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H9N2)2[CuCl4]

  • Mr = 399.63

  • Triclinic, [P \overline 1]

  • a = 7.992 (4) Å

  • b = 9.003 (4) Å

  • c = 12.216 (6) Å

  • α = 79.641 (14)°

  • β = 84.646 (14)°

  • γ = 72.154 (12)°

  • V = 822.4 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.97 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.559, Tmax = 0.674

  • 9065 measured reflections

  • 3775 independent reflections

  • 3124 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.123

  • S = 1.17

  • 3775 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.86 2.39 3.217 (3) 160
N2—H2A⋯Cl2 0.86 2.39 3.195 (3) 157
N3—H3A⋯Cl3 0.86 2.46 3.178 (3) 142
N4—H4C⋯Cl4ii 0.86 2.32 3.149 (3) 164
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dielectric constant measurements of compounds as a function of temperature is the basic method to find the materials which possess potential ferroelectric phase changes (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010). The dielectric constant of the title compound has been measured, but showed no dielectric disuniformity in the range 93–365 K (m.p. 374–381 K).

X-ray crystallographic studies have been carried out for the complex 2[C5N2H9] +.CuCl42- at 123 K. An view of the complex is shown in Fig. 1. The structure is consolidated by extensive intermolecular and intramolecular hydrogen bonds between Cl and N. This hydrogen bonding (Table 1, Fig. 2) produces a three-dimensional network. Within the CuCl42- tetrahedra the Cu-Cl distances are: Cu1—Cl1 = 2.2287 (13) Å, Cu1—Cl2 = 2.2625 Å,Cu1—Cl3 = 2.2688 (12) Å, Cu1—Cl4 = 2.2501 (13) Å.

The two 2-ethyl imidazolium cations in the asymmetric unit differ in the orientation of the ethyl group. In one cation all atoms except H atoms are situated in the same plane(dihedral angle N1—C3—C4—C5 = -170.0 (4)°), while in the other cation the dihedral angle N3—C8—C9—C10 is -87.6 (5) °.

Related literature top

For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).

Experimental top

A mixture of CuCl2 (4.26 g, 25 mmol), hydrochloric acid (50 mmol), and 2-ethyl imidazole (4.8 g, 50 mmol) in water was stirred for several days at room temperature, yellow block crystals were obtained.

Refinement top

Hydrogen atom positions were calculated and allowed to ride on their respective C atoms and N atoms with C–H distances of 0.93–0.97Å and N–H = 0.86 Å, and with Uiso(H)=1.2Ueq(C or N).

Structure description top

Dielectric constant measurements of compounds as a function of temperature is the basic method to find the materials which possess potential ferroelectric phase changes (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010). The dielectric constant of the title compound has been measured, but showed no dielectric disuniformity in the range 93–365 K (m.p. 374–381 K).

X-ray crystallographic studies have been carried out for the complex 2[C5N2H9] +.CuCl42- at 123 K. An view of the complex is shown in Fig. 1. The structure is consolidated by extensive intermolecular and intramolecular hydrogen bonds between Cl and N. This hydrogen bonding (Table 1, Fig. 2) produces a three-dimensional network. Within the CuCl42- tetrahedra the Cu-Cl distances are: Cu1—Cl1 = 2.2287 (13) Å, Cu1—Cl2 = 2.2625 Å,Cu1—Cl3 = 2.2688 (12) Å, Cu1—Cl4 = 2.2501 (13) Å.

The two 2-ethyl imidazolium cations in the asymmetric unit differ in the orientation of the ethyl group. In one cation all atoms except H atoms are situated in the same plane(dihedral angle N1—C3—C4—C5 = -170.0 (4)°), while in the other cation the dihedral angle N3—C8—C9—C10 is -87.6 (5) °.

For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the displacement ellipsoids drawn at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing the structure along the b axis. Hydrogen bonds are shown as dashed lines.
Bis(2-ethyl-1H-imidazol-3-ium) tetrachloridocuprate(II) top
Crystal data top
(C5H9N2)2[CuCl4]Z = 2
Mr = 399.63F(000) = 406
Triclinic, P1Dx = 1.614 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.992 (4) ÅCell parameters from 2088 reflections
b = 9.003 (4) Åθ = 2.4–27.5°
c = 12.216 (6) ŵ = 1.97 mm1
α = 79.641 (14)°T = 293 K
β = 84.646 (14)°Block, yellow
γ = 72.154 (12)°0.30 × 0.25 × 0.20 mm
V = 822.4 (7) Å3
Data collection top
Rigaku SCXmini
diffractometer
3775 independent reflections
Radiation source: fine-focus sealed tube3124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
CCD_Profile_fitting scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1010
Tmin = 0.559, Tmax = 0.674k = 1111
9065 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0636P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max = 0.001
3775 reflectionsΔρmax = 0.59 e Å3
174 parametersΔρmin = 0.66 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (1)
Crystal data top
(C5H9N2)2[CuCl4]γ = 72.154 (12)°
Mr = 399.63V = 822.4 (7) Å3
Triclinic, P1Z = 2
a = 7.992 (4) ÅMo Kα radiation
b = 9.003 (4) ŵ = 1.97 mm1
c = 12.216 (6) ÅT = 293 K
α = 79.641 (14)°0.30 × 0.25 × 0.20 mm
β = 84.646 (14)°
Data collection top
Rigaku SCXmini
diffractometer
3775 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3124 reflections with I > 2σ(I)
Tmin = 0.559, Tmax = 0.674Rint = 0.035
9065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.17Δρmax = 0.59 e Å3
3775 reflectionsΔρmin = 0.66 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.91120 (5)0.05748 (5)0.21071 (3)0.01639 (14)
C10.8790 (5)0.4965 (4)0.1245 (3)0.0203 (7)
H10.94900.49050.18970.024*
C20.8332 (5)0.3759 (4)0.0584 (3)0.0192 (7)
H20.86570.27090.06910.023*
C30.7099 (4)0.5947 (4)0.0167 (3)0.0183 (7)
C40.6042 (5)0.7072 (4)0.0911 (3)0.0250 (8)
H4A0.50230.77820.05230.030*
H4B0.67470.77040.10760.030*
C50.5432 (5)0.6239 (5)0.1994 (3)0.0285 (9)
H5A0.47600.55880.18350.043*
H5B0.47130.70100.24260.043*
H5C0.64360.55910.24060.043*
C60.7322 (5)0.0989 (4)0.5488 (3)0.0223 (8)
H60.85450.06690.54830.027*
C70.6228 (5)0.0601 (4)0.6319 (3)0.0208 (7)
H70.65440.00450.69980.025*
C80.4588 (5)0.2168 (4)0.4944 (3)0.0177 (7)
C90.3058 (5)0.3210 (4)0.4307 (3)0.0257 (8)
H9A0.20710.27830.44870.031*
H9B0.33470.32310.35170.031*
C100.2529 (6)0.4888 (5)0.4567 (4)0.0397 (11)
H10A0.21910.48770.53430.060*
H10B0.15570.55350.41260.060*
H10C0.35070.53110.43970.060*
Cl11.16150 (11)0.01933 (9)0.10773 (7)0.01903 (19)
Cl20.61789 (11)0.16204 (10)0.18983 (7)0.0194 (2)
Cl30.94259 (11)0.24838 (10)0.29860 (7)0.0204 (2)
Cl40.91629 (11)0.19331 (10)0.27848 (8)0.0233 (2)
N10.8018 (4)0.6294 (3)0.0763 (2)0.0193 (6)
H1A0.81130.72190.10240.023*
N20.7279 (4)0.4409 (3)0.0285 (2)0.0187 (6)
H2A0.68110.38910.08230.022*
N30.6284 (4)0.1948 (3)0.4648 (2)0.0201 (6)
H3A0.66730.23500.40200.024*
N40.4552 (4)0.1350 (3)0.5963 (2)0.0186 (6)
H4C0.36080.12980.63470.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0145 (2)0.0147 (2)0.0195 (2)0.00468 (17)0.00088 (16)0.00158 (16)
C10.0197 (18)0.0200 (17)0.0211 (18)0.0069 (14)0.0028 (14)0.0008 (14)
C20.0228 (18)0.0141 (16)0.0215 (18)0.0061 (14)0.0004 (14)0.0046 (13)
C30.0176 (17)0.0170 (16)0.0219 (18)0.0063 (14)0.0059 (14)0.0029 (13)
C40.029 (2)0.0196 (18)0.027 (2)0.0036 (16)0.0039 (16)0.0077 (15)
C50.029 (2)0.029 (2)0.025 (2)0.0003 (17)0.0018 (16)0.0111 (16)
C60.0176 (17)0.0208 (18)0.026 (2)0.0031 (14)0.0002 (15)0.0040 (15)
C70.0209 (18)0.0199 (17)0.0191 (18)0.0021 (14)0.0051 (14)0.0012 (14)
C80.0213 (18)0.0142 (16)0.0181 (17)0.0053 (14)0.0002 (14)0.0046 (13)
C90.0232 (19)0.0235 (19)0.028 (2)0.0009 (16)0.0101 (16)0.0062 (16)
C100.042 (3)0.023 (2)0.048 (3)0.0048 (19)0.020 (2)0.0072 (19)
Cl10.0178 (4)0.0166 (4)0.0227 (4)0.0061 (3)0.0043 (3)0.0042 (3)
Cl20.0147 (4)0.0207 (4)0.0209 (4)0.0052 (3)0.0015 (3)0.0019 (3)
Cl30.0213 (4)0.0221 (4)0.0206 (4)0.0103 (3)0.0030 (3)0.0061 (3)
Cl40.0208 (4)0.0152 (4)0.0293 (5)0.0035 (3)0.0054 (4)0.0017 (3)
N10.0217 (15)0.0157 (14)0.0206 (15)0.0080 (12)0.0038 (12)0.0027 (12)
N20.0195 (15)0.0158 (14)0.0195 (15)0.0052 (12)0.0007 (12)0.0006 (11)
N30.0221 (16)0.0188 (14)0.0177 (15)0.0058 (12)0.0012 (12)0.0000 (12)
N40.0161 (14)0.0221 (15)0.0181 (15)0.0067 (12)0.0034 (12)0.0048 (12)
Geometric parameters (Å, º) top
Cu1—Cl12.2287 (13)C6—C71.346 (5)
Cu1—Cl42.2501 (13)C6—N31.374 (4)
Cu1—Cl22.2625 (14)C6—H60.9300
Cu1—Cl32.2688 (12)C7—N41.374 (4)
C1—C21.355 (5)C7—H70.9300
C1—N11.375 (5)C8—N41.330 (4)
C1—H10.9300C8—N31.333 (4)
C2—N21.391 (4)C8—C91.481 (5)
C2—H20.9300C9—C101.523 (5)
C3—N21.330 (4)C9—H9A0.9700
C3—N11.335 (5)C9—H9B0.9700
C3—C41.493 (5)C10—H10A0.9600
C4—C51.516 (6)C10—H10B0.9600
C4—H4A0.9700C10—H10C0.9600
C4—H4B0.9700N1—H1A0.8600
C5—H5A0.9600N2—H2A0.8600
C5—H5B0.9600N3—H3A0.8600
C5—H5C0.9600N4—H4C0.8600
Cl1—Cu1—Cl4101.08 (4)C6—C7—N4106.2 (3)
Cl1—Cu1—Cl2139.56 (4)C6—C7—H7126.9
Cl4—Cu1—Cl298.32 (4)N4—C7—H7126.9
Cl1—Cu1—Cl397.91 (4)N4—C8—N3105.9 (3)
Cl4—Cu1—Cl3130.13 (5)N4—C8—C9126.9 (3)
Cl2—Cu1—Cl396.09 (4)N3—C8—C9127.0 (3)
C2—C1—N1106.7 (3)C8—C9—C10111.8 (3)
C2—C1—H1126.7C8—C9—H9A109.3
N1—C1—H1126.7C10—C9—H9A109.3
C1—C2—N2106.1 (3)C8—C9—H9B109.3
C1—C2—H2127.0C10—C9—H9B109.3
N2—C2—H2127.0H9A—C9—H9B107.9
N2—C3—N1106.5 (3)C9—C10—H10A109.5
N2—C3—C4126.7 (3)C9—C10—H10B109.5
N1—C3—C4126.8 (3)H10A—C10—H10B109.5
C3—C4—C5112.6 (3)C9—C10—H10C109.5
C3—C4—H4A109.1H10A—C10—H10C109.5
C5—C4—H4A109.1H10B—C10—H10C109.5
C3—C4—H4B109.1C3—N1—C1110.5 (3)
C5—C4—H4B109.1C3—N1—H1A124.7
H4A—C4—H4B107.8C1—N1—H1A124.7
C4—C5—H5A109.5C3—N2—C2110.3 (3)
C4—C5—H5B109.5C3—N2—H2A124.9
H5A—C5—H5B109.5C2—N2—H2A124.9
C4—C5—H5C109.5C8—N3—C6110.3 (3)
H5A—C5—H5C109.5C8—N3—H3A124.8
H5B—C5—H5C109.5C6—N3—H3A124.8
C7—C6—N3106.8 (3)C8—N4—C7110.8 (3)
C7—C6—H6126.6C8—N4—H4C124.6
N3—C6—H6126.6C7—N4—H4C124.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.393.217 (3)160
N2—H2A···Cl20.862.393.195 (3)157
N3—H3A···Cl30.862.463.178 (3)142
N4—H4C···Cl4ii0.862.323.149 (3)164
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula(C5H9N2)2[CuCl4]
Mr399.63
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.992 (4), 9.003 (4), 12.216 (6)
α, β, γ (°)79.641 (14), 84.646 (14), 72.154 (12)
V3)822.4 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.97
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.559, 0.674
No. of measured, independent and
observed [I > 2σ(I)] reflections
9065, 3775, 3124
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.123, 1.17
No. of reflections3775
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.66

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.393.217 (3)160
N2—H2A···Cl20.862.393.195 (3)157
N3—H3A···Cl30.862.463.178 (3)142
N4—H4C···Cl4ii0.862.323.149 (3)164
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z+1.
 

Acknowledgements

This work was supported by Southeast University.

References

First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds