metal-organic compounds
Bis(2-ethyl-1H-imidazol-3-ium) tetrachloridocuprate(II)
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhurunqiang@163.com
In the 5H9N2)2[CuCl4], the organic cations and the tetrahedral [CuCl4] anions are linked into a three-dimensional network by N—H⋯Cl hydrogen bonds. The two 2-ethyl imidazolium cations in the differ in the orientation of the ethyl group, with N—C—C—C torsion angles of −170.0 (4) and −87.6 (5)°.
of the title salt, (CRelated literature
For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S160053681005261X/vm2067sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681005261X/vm2067Isup2.hkl
A mixture of CuCl2 (4.26 g, 25 mmol), hydrochloric acid (50 mmol), and 2-ethyl imidazole (4.8 g, 50 mmol) in water was stirred for several days at room temperature, yellow block crystals were obtained.
Hydrogen atom positions were calculated and allowed to ride on their respective C atoms and N atoms with C–H distances of 0.93–0.97Å and N–H = 0.86 Å, and with Uiso(H)=1.2Ueq(C or N).
Dielectric constant measurements of compounds as a function of temperature is the basic method to find the materials which possess potential ferroelectric phase changes (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010). The
of the title compound has been measured, but showed no dielectric disuniformity in the range 93–365 K (m.p. 374–381 K).X-ray crystallographic studies have been carried out for the complex 2[C5N2H9] +.CuCl42- at 123 K. An view of the complex is shown in Fig. 1. The structure is consolidated by extensive intermolecular and intramolecular hydrogen bonds between Cl and N. This hydrogen bonding (Table 1, Fig. 2) produces a three-dimensional network. Within the CuCl42- tetrahedra the Cu-Cl distances are: Cu1—Cl1 = 2.2287 (13) Å, Cu1—Cl2 = 2.2625 Å,Cu1—Cl3 = 2.2688 (12) Å, Cu1—Cl4 = 2.2501 (13) Å.
The two 2-ethyl imidazolium cations in the
differ in the orientation of the ethyl group. In one cation all atoms except H atoms are situated in the same plane(dihedral angle N1—C3—C4—C5 = -170.0 (4)°), while in the other cation the dihedral angle N3—C8—C9—C10 is -87.6 (5) °.For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).(C5H9N2)2[CuCl4] | Z = 2 |
Mr = 399.63 | F(000) = 406 |
Triclinic, P1 | Dx = 1.614 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.992 (4) Å | Cell parameters from 2088 reflections |
b = 9.003 (4) Å | θ = 2.4–27.5° |
c = 12.216 (6) Å | µ = 1.97 mm−1 |
α = 79.641 (14)° | T = 293 K |
β = 84.646 (14)° | Block, yellow |
γ = 72.154 (12)° | 0.30 × 0.25 × 0.20 mm |
V = 822.4 (7) Å3 |
Rigaku SCXmini diffractometer | 3775 independent reflections |
Radiation source: fine-focus sealed tube | 3124 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
CCD_Profile_fitting scans | θmax = 27.5°, θmin = 1.7° |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | h = −10→10 |
Tmin = 0.559, Tmax = 0.674 | k = −11→11 |
9065 measured reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.123 | w = 1/[σ2(Fo2) + (0.0636P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max = 0.001 |
3775 reflections | Δρmax = 0.59 e Å−3 |
174 parameters | Δρmin = −0.66 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008) |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0014 (1) |
(C5H9N2)2[CuCl4] | γ = 72.154 (12)° |
Mr = 399.63 | V = 822.4 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.992 (4) Å | Mo Kα radiation |
b = 9.003 (4) Å | µ = 1.97 mm−1 |
c = 12.216 (6) Å | T = 293 K |
α = 79.641 (14)° | 0.30 × 0.25 × 0.20 mm |
β = 84.646 (14)° |
Rigaku SCXmini diffractometer | 3775 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 3124 reflections with I > 2σ(I) |
Tmin = 0.559, Tmax = 0.674 | Rint = 0.035 |
9065 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.17 | Δρmax = 0.59 e Å−3 |
3775 reflections | Δρmin = −0.66 e Å−3 |
174 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.91120 (5) | 0.05748 (5) | 0.21071 (3) | 0.01639 (14) | |
C1 | 0.8790 (5) | 0.4965 (4) | −0.1245 (3) | 0.0203 (7) | |
H1 | 0.9490 | 0.4905 | −0.1897 | 0.024* | |
C2 | 0.8332 (5) | 0.3759 (4) | −0.0584 (3) | 0.0192 (7) | |
H2 | 0.8657 | 0.2709 | −0.0691 | 0.023* | |
C3 | 0.7099 (4) | 0.5947 (4) | 0.0167 (3) | 0.0183 (7) | |
C4 | 0.6042 (5) | 0.7072 (4) | 0.0911 (3) | 0.0250 (8) | |
H4A | 0.5023 | 0.7782 | 0.0523 | 0.030* | |
H4B | 0.6747 | 0.7704 | 0.1076 | 0.030* | |
C5 | 0.5432 (5) | 0.6239 (5) | 0.1994 (3) | 0.0285 (9) | |
H5A | 0.4760 | 0.5588 | 0.1835 | 0.043* | |
H5B | 0.4713 | 0.7010 | 0.2426 | 0.043* | |
H5C | 0.6436 | 0.5591 | 0.2406 | 0.043* | |
C6 | 0.7322 (5) | 0.0989 (4) | 0.5488 (3) | 0.0223 (8) | |
H6 | 0.8545 | 0.0669 | 0.5483 | 0.027* | |
C7 | 0.6228 (5) | 0.0601 (4) | 0.6319 (3) | 0.0208 (7) | |
H7 | 0.6544 | −0.0045 | 0.6998 | 0.025* | |
C8 | 0.4588 (5) | 0.2168 (4) | 0.4944 (3) | 0.0177 (7) | |
C9 | 0.3058 (5) | 0.3210 (4) | 0.4307 (3) | 0.0257 (8) | |
H9A | 0.2071 | 0.2783 | 0.4487 | 0.031* | |
H9B | 0.3347 | 0.3231 | 0.3517 | 0.031* | |
C10 | 0.2529 (6) | 0.4888 (5) | 0.4567 (4) | 0.0397 (11) | |
H10A | 0.2191 | 0.4877 | 0.5343 | 0.060* | |
H10B | 0.1557 | 0.5535 | 0.4126 | 0.060* | |
H10C | 0.3507 | 0.5311 | 0.4397 | 0.060* | |
Cl1 | 1.16150 (11) | 0.01933 (9) | 0.10773 (7) | 0.01903 (19) | |
Cl2 | 0.61789 (11) | 0.16204 (10) | 0.18983 (7) | 0.0194 (2) | |
Cl3 | 0.94259 (11) | 0.24838 (10) | 0.29860 (7) | 0.0204 (2) | |
Cl4 | 0.91629 (11) | −0.19331 (10) | 0.27848 (8) | 0.0233 (2) | |
N1 | 0.8018 (4) | 0.6294 (3) | −0.0763 (2) | 0.0193 (6) | |
H1A | 0.8113 | 0.7219 | −0.1024 | 0.023* | |
N2 | 0.7279 (4) | 0.4409 (3) | 0.0285 (2) | 0.0187 (6) | |
H2A | 0.6811 | 0.3891 | 0.0823 | 0.022* | |
N3 | 0.6284 (4) | 0.1948 (3) | 0.4648 (2) | 0.0201 (6) | |
H3A | 0.6673 | 0.2350 | 0.4020 | 0.024* | |
N4 | 0.4552 (4) | 0.1350 (3) | 0.5963 (2) | 0.0186 (6) | |
H4C | 0.3608 | 0.1298 | 0.6347 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0145 (2) | 0.0147 (2) | 0.0195 (2) | −0.00468 (17) | 0.00088 (16) | −0.00158 (16) |
C1 | 0.0197 (18) | 0.0200 (17) | 0.0211 (18) | −0.0069 (14) | −0.0028 (14) | −0.0008 (14) |
C2 | 0.0228 (18) | 0.0141 (16) | 0.0215 (18) | −0.0061 (14) | 0.0004 (14) | −0.0046 (13) |
C3 | 0.0176 (17) | 0.0170 (16) | 0.0219 (18) | −0.0063 (14) | −0.0059 (14) | −0.0029 (13) |
C4 | 0.029 (2) | 0.0196 (18) | 0.027 (2) | −0.0036 (16) | −0.0039 (16) | −0.0077 (15) |
C5 | 0.029 (2) | 0.029 (2) | 0.025 (2) | 0.0003 (17) | −0.0018 (16) | −0.0111 (16) |
C6 | 0.0176 (17) | 0.0208 (18) | 0.026 (2) | −0.0031 (14) | 0.0002 (15) | −0.0040 (15) |
C7 | 0.0209 (18) | 0.0199 (17) | 0.0191 (18) | −0.0021 (14) | −0.0051 (14) | −0.0012 (14) |
C8 | 0.0213 (18) | 0.0142 (16) | 0.0181 (17) | −0.0053 (14) | 0.0002 (14) | −0.0046 (13) |
C9 | 0.0232 (19) | 0.0235 (19) | 0.028 (2) | 0.0009 (16) | −0.0101 (16) | −0.0062 (16) |
C10 | 0.042 (3) | 0.023 (2) | 0.048 (3) | 0.0048 (19) | −0.020 (2) | −0.0072 (19) |
Cl1 | 0.0178 (4) | 0.0166 (4) | 0.0227 (4) | −0.0061 (3) | 0.0043 (3) | −0.0042 (3) |
Cl2 | 0.0147 (4) | 0.0207 (4) | 0.0209 (4) | −0.0052 (3) | −0.0015 (3) | 0.0019 (3) |
Cl3 | 0.0213 (4) | 0.0221 (4) | 0.0206 (4) | −0.0103 (3) | 0.0030 (3) | −0.0061 (3) |
Cl4 | 0.0208 (4) | 0.0152 (4) | 0.0293 (5) | −0.0035 (3) | 0.0054 (4) | 0.0017 (3) |
N1 | 0.0217 (15) | 0.0157 (14) | 0.0206 (15) | −0.0080 (12) | −0.0038 (12) | 0.0027 (12) |
N2 | 0.0195 (15) | 0.0158 (14) | 0.0195 (15) | −0.0052 (12) | −0.0007 (12) | 0.0006 (11) |
N3 | 0.0221 (16) | 0.0188 (14) | 0.0177 (15) | −0.0058 (12) | 0.0012 (12) | 0.0000 (12) |
N4 | 0.0161 (14) | 0.0221 (15) | 0.0181 (15) | −0.0067 (12) | 0.0034 (12) | −0.0048 (12) |
Cu1—Cl1 | 2.2287 (13) | C6—C7 | 1.346 (5) |
Cu1—Cl4 | 2.2501 (13) | C6—N3 | 1.374 (4) |
Cu1—Cl2 | 2.2625 (14) | C6—H6 | 0.9300 |
Cu1—Cl3 | 2.2688 (12) | C7—N4 | 1.374 (4) |
C1—C2 | 1.355 (5) | C7—H7 | 0.9300 |
C1—N1 | 1.375 (5) | C8—N4 | 1.330 (4) |
C1—H1 | 0.9300 | C8—N3 | 1.333 (4) |
C2—N2 | 1.391 (4) | C8—C9 | 1.481 (5) |
C2—H2 | 0.9300 | C9—C10 | 1.523 (5) |
C3—N2 | 1.330 (4) | C9—H9A | 0.9700 |
C3—N1 | 1.335 (5) | C9—H9B | 0.9700 |
C3—C4 | 1.493 (5) | C10—H10A | 0.9600 |
C4—C5 | 1.516 (6) | C10—H10B | 0.9600 |
C4—H4A | 0.9700 | C10—H10C | 0.9600 |
C4—H4B | 0.9700 | N1—H1A | 0.8600 |
C5—H5A | 0.9600 | N2—H2A | 0.8600 |
C5—H5B | 0.9600 | N3—H3A | 0.8600 |
C5—H5C | 0.9600 | N4—H4C | 0.8600 |
Cl1—Cu1—Cl4 | 101.08 (4) | C6—C7—N4 | 106.2 (3) |
Cl1—Cu1—Cl2 | 139.56 (4) | C6—C7—H7 | 126.9 |
Cl4—Cu1—Cl2 | 98.32 (4) | N4—C7—H7 | 126.9 |
Cl1—Cu1—Cl3 | 97.91 (4) | N4—C8—N3 | 105.9 (3) |
Cl4—Cu1—Cl3 | 130.13 (5) | N4—C8—C9 | 126.9 (3) |
Cl2—Cu1—Cl3 | 96.09 (4) | N3—C8—C9 | 127.0 (3) |
C2—C1—N1 | 106.7 (3) | C8—C9—C10 | 111.8 (3) |
C2—C1—H1 | 126.7 | C8—C9—H9A | 109.3 |
N1—C1—H1 | 126.7 | C10—C9—H9A | 109.3 |
C1—C2—N2 | 106.1 (3) | C8—C9—H9B | 109.3 |
C1—C2—H2 | 127.0 | C10—C9—H9B | 109.3 |
N2—C2—H2 | 127.0 | H9A—C9—H9B | 107.9 |
N2—C3—N1 | 106.5 (3) | C9—C10—H10A | 109.5 |
N2—C3—C4 | 126.7 (3) | C9—C10—H10B | 109.5 |
N1—C3—C4 | 126.8 (3) | H10A—C10—H10B | 109.5 |
C3—C4—C5 | 112.6 (3) | C9—C10—H10C | 109.5 |
C3—C4—H4A | 109.1 | H10A—C10—H10C | 109.5 |
C5—C4—H4A | 109.1 | H10B—C10—H10C | 109.5 |
C3—C4—H4B | 109.1 | C3—N1—C1 | 110.5 (3) |
C5—C4—H4B | 109.1 | C3—N1—H1A | 124.7 |
H4A—C4—H4B | 107.8 | C1—N1—H1A | 124.7 |
C4—C5—H5A | 109.5 | C3—N2—C2 | 110.3 (3) |
C4—C5—H5B | 109.5 | C3—N2—H2A | 124.9 |
H5A—C5—H5B | 109.5 | C2—N2—H2A | 124.9 |
C4—C5—H5C | 109.5 | C8—N3—C6 | 110.3 (3) |
H5A—C5—H5C | 109.5 | C8—N3—H3A | 124.8 |
H5B—C5—H5C | 109.5 | C6—N3—H3A | 124.8 |
C7—C6—N3 | 106.8 (3) | C8—N4—C7 | 110.8 (3) |
C7—C6—H6 | 126.6 | C8—N4—H4C | 124.6 |
N3—C6—H6 | 126.6 | C7—N4—H4C | 124.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1i | 0.86 | 2.39 | 3.217 (3) | 160 |
N2—H2A···Cl2 | 0.86 | 2.39 | 3.195 (3) | 157 |
N3—H3A···Cl3 | 0.86 | 2.46 | 3.178 (3) | 142 |
N4—H4C···Cl4ii | 0.86 | 2.32 | 3.149 (3) | 164 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | (C5H9N2)2[CuCl4] |
Mr | 399.63 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.992 (4), 9.003 (4), 12.216 (6) |
α, β, γ (°) | 79.641 (14), 84.646 (14), 72.154 (12) |
V (Å3) | 822.4 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.97 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Rigaku SCXmini |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.559, 0.674 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9065, 3775, 3124 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.123, 1.17 |
No. of reflections | 3775 |
No. of parameters | 174 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.59, −0.66 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1i | 0.86 | 2.39 | 3.217 (3) | 160 |
N2—H2A···Cl2 | 0.86 | 2.39 | 3.195 (3) | 157 |
N3—H3A···Cl3 | 0.86 | 2.46 | 3.178 (3) | 142 |
N4—H4C···Cl4ii | 0.86 | 2.32 | 3.149 (3) | 164 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+1, −y, −z+1. |
Acknowledgements
This work was supported by Southeast University.
References
Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dielectric constant measurements of compounds as a function of temperature is the basic method to find the materials which possess potential ferroelectric phase changes (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010). The dielectric constant of the title compound has been measured, but showed no dielectric disuniformity in the range 93–365 K (m.p. 374–381 K).
X-ray crystallographic studies have been carried out for the complex 2[C5N2H9] +.CuCl42- at 123 K. An view of the complex is shown in Fig. 1. The structure is consolidated by extensive intermolecular and intramolecular hydrogen bonds between Cl and N. This hydrogen bonding (Table 1, Fig. 2) produces a three-dimensional network. Within the CuCl42- tetrahedra the Cu-Cl distances are: Cu1—Cl1 = 2.2287 (13) Å, Cu1—Cl2 = 2.2625 Å,Cu1—Cl3 = 2.2688 (12) Å, Cu1—Cl4 = 2.2501 (13) Å.
The two 2-ethyl imidazolium cations in the asymmetric unit differ in the orientation of the ethyl group. In one cation all atoms except H atoms are situated in the same plane(dihedral angle N1—C3—C4—C5 = -170.0 (4)°), while in the other cation the dihedral angle N3—C8—C9—C10 is -87.6 (5) °.