metal-organic compounds
Tetraethylammonium (acetylacetonato)bromidotricarbonylrhenate(I)
aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: alice.brink@gmail.com
In the title compound, (C8H20N)[ReBr(C5H7O2)(CO)3], the ReI atom in the rhenate anion is surrounded by three carbonyl ligands orientated in a facial arrangement, a bromide ligand and an acetylacetonate ligand, leading to a distorted octahedral ReC3BrO2 coordination with a O—Re—O bite angle of 85.66 (7)°. An array of C—H⋯O and C—H⋯Br hydrogen-bonding interactions between the cations and the surrounding rhenate anions stabilize the crystal structure.
Related literature
For the synthesis of the Re(I)–tricarbonyl synthon, see: Alberto et al. (1996). For related rhenium–tricarbonyl complexes, see: Mundwiler et al. (2004); Wang et al. (2003); Saw et al. (2006). For studies of related rhenium(V) compounds, see: Roodt et al. (1992); Purcell et al. (1989). For acetylacetonato complexes and related structures, see: Brink et al. (2007a,b; 2010); Steyl & Hill (2009); Herbst et al. (2010). For a rhenium complex with pyridine and acetylacetonato ligands, see: Benny et al. (2008). For related structures, see: Schutte et al. (2009, 2010).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810050105/wm2432sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810050105/wm2432Isup2.hkl
[NEt4]2[Re(CO)3Br3] (0.13 mmol) (synthesized according to Alberto et al. (1996)) was dissolved in 6 ml methanol. Acetylacetone (0.14 mmol), dissolved in 6 ml methanol was slowly added. The reaction mixture was heated to 329 K for 24 h. Crystals of the title complex were obtained by the slow evaporation of the solvent. Colourless crystals were stable in air for several months.
The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C) for the methine, methylene and methyl carbon atoms, respectively. The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors. The highest peak and deepest hole in the final difference map are located 1.12Å and 0.61Å from Br1 and H33a, respectively.
The title compound forms part of an ongoing investigation aimed at determining the crystallographic and kinetic effects experienced by Re(I) and Re(V) complexes (Roodt et al., 1992, Purcell et al., 1989), in particular the manner which various O, O'-bidentate ligands have on rhenium tricarbonyl complexes as well as other transition group metals such as rhodium (Brink et al., 2010), silver (Steyl & Hill, 2009) and niobium (Herbst et al., 2010). Various rhenium tricarbonyl bidentate ligands have been synthesized (Mundwiler et al., 2004, Wang et al., 2003, Saw et al., 2006), however few O, O'-bidentate ligands are reported in literature (Schutte et al., 2010).
The octahedral geometry around the Re(I) metal atom in the rhenate anion shows little distortion (Fig. 1) with an O1—Re—O2 bite angle of 85.66 (7)°, which correlates well with a pyridine-coordinated rhenium acetylacetonato complex (85.07 (8)°; Benny et al., 2008) and is similar to rhodium acetylacetonato complexes (88.69 (8)° and 88.20 (6)°; Brink et al., 2007a,b). The Re—Oacac bond lengths (acac is acetylacetonate) of the title compound (2.1248 (18) Å and 2.1265 (19) Å) are slightly longer than that found in the pyridine analogue (2.1189 (19) Å and 2.1226 (19) Å; Benny et al., 2008). The Re—Br bond lengths of 2.6448 (3) Å compares well with related structures (Schutte et al., 2009, 2010). Intermolecular C—H···O and C—H···Br hydrogen-bonding interactions are observed between rhenate anions and neighboring cations (Table 1 and Fig. 2)
For the synthesis of the Re(I)–tricarbonyl synthon, see: Alberto et al. (1996). For related rhenium–tricarbonyl complexes, see: Mundwiler et al. (2004); Wang et al. (2003); Saw et al. (2006). For studies of related rhenium(V) compounds, see: Roodt et al. (1992); Purcell et al. (1989). For acetylacetonato complexes and related structures, see: Brink et al. (2007a,b; 2010); Steyl & Hill (2009); Herbst et al. (2010). For a rhenium complex with pyridine and acetylacetonato ligands, see: Benny et al. (2008). For related structures, see: Schutte et al. (2009, 2010).
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999).(C8H20N)[ReBr(C5H7O2)(CO)3] | F(000) = 2240 |
Mr = 579.5 | Dx = 1.931 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 16272 reflections |
a = 13.0931 (1) Å | θ = 2.3–33.0° |
b = 14.5865 (1) Å | µ = 8.12 mm−1 |
c = 20.8724 (2) Å | T = 100 K |
V = 3986.26 (6) Å3 | Parallelepiped, colourless |
Z = 8 | 0.26 × 0.13 × 0.08 mm |
Oxford Diffraction Xcalibur3 CCD diffractometer | 4819 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3641 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 16.1829 pixels mm-1 | θmax = 28°, θmin = 2.3° |
ω–scans | h = −17→16 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | k = −19→15 |
Tmin = 0.227, Tmax = 0.563 | l = −27→27 |
30330 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.019 | w = 1/[σ2(Fo2) + (0.0251P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.047 | (Δ/σ)max = 0.002 |
S = 1.02 | Δρmax = 1.35 e Å−3 |
4819 reflections | Δρmin = −0.71 e Å−3 |
223 parameters |
(C8H20N)[ReBr(C5H7O2)(CO)3] | V = 3986.26 (6) Å3 |
Mr = 579.5 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 13.0931 (1) Å | µ = 8.12 mm−1 |
b = 14.5865 (1) Å | T = 100 K |
c = 20.8724 (2) Å | 0.26 × 0.13 × 0.08 mm |
Oxford Diffraction Xcalibur3 CCD diffractometer | 4819 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | 3641 reflections with I > 2σ(I) |
Tmin = 0.227, Tmax = 0.563 | Rint = 0.031 |
30330 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | 0 restraints |
wR(F2) = 0.047 | H-atom parameters constrained |
S = 1.02 | Δρmax = 1.35 e Å−3 |
4819 reflections | Δρmin = −0.71 e Å−3 |
223 parameters |
Experimental. The intensity data was collected on a Oxford Diffraction Xcalibur 3 area detector diffractometer using an exposure time of 10 s/frame. A total of 552 frames were collected with a frame width of 0.75° covering up to θ = 28.00° with 100.0% completeness accomplished. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6479 (2) | 0.59694 (18) | 0.79693 (14) | 0.0171 (6) | |
C02 | 0.4190 (2) | 0.79609 (18) | 0.82159 (14) | 0.0178 (6) | |
C01 | 0.5566 (2) | 0.91066 (19) | 0.86140 (14) | 0.0170 (6) | |
C2 | 0.7475 (2) | 0.62159 (19) | 0.81179 (14) | 0.0198 (6) | |
H2 | 0.7987 | 0.5764 | 0.8052 | 0.024* | |
C3 | 0.7799 (2) | 0.70650 (19) | 0.83555 (14) | 0.0186 (6) | |
C03 | 0.5822 (2) | 0.82991 (18) | 0.74731 (16) | 0.0174 (6) | |
C4 | 0.8919 (2) | 0.7204 (2) | 0.84831 (16) | 0.0253 (7) | |
H4A | 0.9119 | 0.7822 | 0.8349 | 0.038* | |
H4B | 0.9315 | 0.675 | 0.8242 | 0.038* | |
H4C | 0.9054 | 0.713 | 0.8942 | 0.038* | |
C5 | 0.6255 (2) | 0.50244 (18) | 0.77154 (16) | 0.0231 (7) | |
H5A | 0.5809 | 0.4699 | 0.8016 | 0.035* | |
H5B | 0.6896 | 0.4685 | 0.7666 | 0.035* | |
H5C | 0.5915 | 0.5074 | 0.7299 | 0.035* | |
C31 | 0.3312 (2) | 0.9931 (2) | 0.97904 (15) | 0.0247 (7) | |
H31A | 0.3463 | 1.0204 | 1.0214 | 0.03* | |
H31B | 0.391 | 1.0043 | 0.9511 | 0.03* | |
C32 | 0.3183 (3) | 0.88969 (19) | 0.98731 (17) | 0.0318 (8) | |
H32A | 0.2625 | 0.8776 | 1.0175 | 0.048* | |
H32B | 0.3818 | 0.8633 | 1.004 | 0.048* | |
H32C | 0.3022 | 0.8618 | 0.9458 | 0.048* | |
C33 | 0.2623 (2) | 1.14451 (18) | 0.94940 (15) | 0.0214 (6) | |
H33A | 0.1989 | 1.1775 | 0.9377 | 0.026* | |
H33B | 0.2816 | 1.1642 | 0.9931 | 0.026* | |
C34 | 0.3465 (2) | 1.1732 (2) | 0.90338 (17) | 0.0304 (8) | |
H34A | 0.4098 | 1.141 | 0.9144 | 0.046* | |
H34B | 0.3574 | 1.2395 | 0.9066 | 0.046* | |
H34C | 0.3265 | 1.1576 | 0.8595 | 0.046* | |
C35 | 0.2202 (2) | 1.00610 (19) | 0.88378 (14) | 0.0191 (6) | |
H35A | 0.2853 | 1.0071 | 0.8597 | 0.023* | |
H35B | 0.1979 | 0.9414 | 0.887 | 0.023* | |
C36 | 0.1410 (3) | 1.0589 (2) | 0.84595 (15) | 0.0273 (7) | |
H36A | 0.0767 | 1.0606 | 0.87 | 0.041* | |
H36B | 0.1297 | 1.0286 | 0.8046 | 0.041* | |
H36C | 0.1652 | 1.1216 | 0.8387 | 0.041* | |
C37 | 0.1443 (2) | 1.02603 (19) | 0.99096 (14) | 0.0190 (6) | |
H37A | 0.0881 | 1.0637 | 0.9733 | 0.023* | |
H37B | 0.1242 | 0.9609 | 0.9868 | 0.023* | |
C38 | 0.1560 (3) | 1.0482 (2) | 1.06086 (15) | 0.0302 (8) | |
H38A | 0.2073 | 1.0075 | 1.0799 | 0.045* | |
H38B | 0.0904 | 1.0394 | 1.0826 | 0.045* | |
H38C | 0.1779 | 1.1121 | 1.0656 | 0.045* | |
N1 | 0.23955 (16) | 1.04213 (14) | 0.95068 (11) | 0.0148 (5) | |
O1 | 0.56968 (13) | 0.64852 (12) | 0.80201 (11) | 0.0186 (4) | |
O02 | 0.33086 (15) | 0.80287 (13) | 0.81550 (11) | 0.0234 (5) | |
O2 | 0.72326 (14) | 0.77461 (13) | 0.84811 (10) | 0.0201 (5) | |
O01 | 0.54896 (15) | 0.98593 (13) | 0.87843 (11) | 0.0240 (5) | |
O03 | 0.59154 (15) | 0.85547 (14) | 0.69515 (11) | 0.0240 (5) | |
Re1 | 0.563458 (8) | 0.787480 (7) | 0.832299 (6) | 0.01437 (4) | |
Br1 | 0.54691 (2) | 0.718131 (18) | 0.948917 (14) | 0.01961 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0202 (15) | 0.0158 (14) | 0.0154 (16) | −0.0001 (11) | 0.0013 (12) | 0.0039 (11) |
C02 | 0.0237 (16) | 0.0141 (14) | 0.0155 (16) | −0.0029 (11) | 0.0002 (12) | 0.0010 (11) |
C01 | 0.0139 (14) | 0.0209 (15) | 0.0162 (15) | −0.0023 (12) | −0.0018 (12) | 0.0059 (12) |
C2 | 0.0169 (14) | 0.0190 (14) | 0.0235 (17) | 0.0062 (12) | 0.0028 (13) | 0.0006 (12) |
C3 | 0.0140 (13) | 0.0214 (15) | 0.0206 (16) | −0.0013 (11) | 0.0009 (12) | 0.0064 (13) |
C03 | 0.0118 (14) | 0.0137 (13) | 0.0267 (18) | 0.0000 (11) | −0.0001 (12) | −0.0026 (13) |
C4 | 0.0136 (14) | 0.0275 (17) | 0.035 (2) | 0.0016 (13) | −0.0001 (13) | 0.0016 (14) |
C5 | 0.0241 (16) | 0.0174 (15) | 0.0277 (18) | 0.0004 (12) | 0.0030 (13) | −0.0031 (13) |
C31 | 0.0179 (15) | 0.0329 (17) | 0.0233 (18) | 0.0056 (13) | −0.0029 (13) | 0.0012 (13) |
C32 | 0.0355 (19) | 0.0301 (17) | 0.0298 (19) | 0.0142 (15) | −0.0017 (16) | 0.0071 (14) |
C33 | 0.0214 (15) | 0.0176 (14) | 0.0253 (18) | −0.0068 (12) | 0.0006 (13) | −0.0039 (13) |
C34 | 0.0313 (19) | 0.0287 (17) | 0.031 (2) | −0.0122 (14) | 0.0023 (15) | 0.0035 (14) |
C35 | 0.0246 (15) | 0.0176 (14) | 0.0152 (16) | 0.0018 (12) | −0.0013 (13) | −0.0023 (12) |
C36 | 0.0371 (19) | 0.0215 (16) | 0.0233 (19) | −0.0005 (14) | −0.0082 (14) | 0.0029 (13) |
C37 | 0.0164 (14) | 0.0196 (14) | 0.0210 (16) | −0.0005 (11) | 0.0043 (12) | 0.0015 (12) |
C38 | 0.0336 (19) | 0.0355 (19) | 0.0213 (19) | 0.0006 (15) | 0.0078 (14) | 0.0000 (14) |
N1 | 0.0144 (12) | 0.0151 (11) | 0.0148 (13) | −0.0007 (9) | −0.0016 (10) | 0.0001 (10) |
O1 | 0.0115 (10) | 0.0127 (9) | 0.0317 (12) | −0.0014 (8) | −0.0013 (9) | −0.0057 (9) |
O02 | 0.0139 (11) | 0.0205 (11) | 0.0360 (14) | 0.0040 (8) | −0.0083 (9) | −0.0017 (9) |
O2 | 0.0102 (9) | 0.0186 (10) | 0.0316 (13) | −0.0001 (8) | −0.0021 (8) | −0.0019 (9) |
O01 | 0.0265 (12) | 0.0162 (10) | 0.0294 (13) | −0.0013 (9) | −0.0042 (10) | −0.0018 (9) |
O03 | 0.0256 (11) | 0.0230 (11) | 0.0236 (12) | −0.0028 (9) | 0.0054 (10) | −0.0003 (10) |
Re1 | 0.01154 (6) | 0.01270 (6) | 0.01887 (7) | −0.00035 (4) | −0.00109 (4) | −0.00012 (5) |
Br1 | 0.02132 (15) | 0.01855 (13) | 0.01895 (16) | −0.00067 (12) | −0.00405 (11) | 0.00209 (12) |
C1—O1 | 1.275 (3) | C32—H32C | 0.98 |
C1—C2 | 1.388 (4) | C33—C34 | 1.521 (4) |
C1—C5 | 1.505 (4) | C33—N1 | 1.523 (3) |
C02—O02 | 1.165 (3) | C33—H33A | 0.99 |
C02—Re1 | 1.909 (3) | C33—H33B | 0.99 |
C01—O01 | 1.158 (3) | C34—H34A | 0.98 |
C01—O01 | 1.158 (3) | C34—H34B | 0.98 |
C01—Re1 | 1.899 (3) | C34—H34C | 0.98 |
C2—C3 | 1.400 (4) | C35—C36 | 1.513 (4) |
C2—H2 | 0.95 | C35—N1 | 1.513 (4) |
C3—O2 | 1.267 (3) | C35—H35A | 0.99 |
C3—C4 | 1.504 (4) | C35—H35B | 0.99 |
C03—O03 | 1.157 (4) | C36—H36A | 0.98 |
C03—Re1 | 1.895 (3) | C36—H36B | 0.98 |
C4—H4A | 0.98 | C36—H36C | 0.98 |
C4—H4B | 0.98 | C37—C38 | 1.502 (4) |
C4—H4C | 0.98 | C37—N1 | 1.522 (3) |
C5—H5A | 0.98 | C37—H37A | 0.99 |
C5—H5B | 0.98 | C37—H37B | 0.99 |
C5—H5C | 0.98 | C38—H38A | 0.98 |
C31—N1 | 1.517 (3) | C38—H38B | 0.98 |
C31—C32 | 1.528 (4) | C38—H38C | 0.98 |
C31—H31A | 0.99 | O1—Re1 | 2.1248 (18) |
C31—H31B | 0.99 | O2—Re1 | 2.1265 (19) |
C32—H32A | 0.98 | Re1—Br1 | 2.6448 (3) |
C32—H32B | 0.98 | ||
O1—C1—C2 | 125.7 (3) | H34B—C34—H34C | 109.5 |
O1—C1—C5 | 114.4 (2) | C36—C35—N1 | 114.8 (2) |
C2—C1—C5 | 119.9 (3) | C36—C35—H35A | 108.6 |
O02—C02—Re1 | 178.8 (2) | N1—C35—H35A | 108.6 |
O01—C01—Re1 | 177.7 (2) | C36—C35—H35B | 108.6 |
O01—C01—Re1 | 177.7 (2) | N1—C35—H35B | 108.6 |
C1—C2—C3 | 126.4 (3) | H35A—C35—H35B | 107.5 |
C1—C2—H2 | 116.8 | C35—C36—H36A | 109.5 |
C3—C2—H2 | 116.8 | C35—C36—H36B | 109.5 |
O2—C3—C2 | 126.1 (3) | H36A—C36—H36B | 109.5 |
O2—C3—C4 | 115.4 (2) | C35—C36—H36C | 109.5 |
C2—C3—C4 | 118.5 (3) | H36A—C36—H36C | 109.5 |
O03—C03—Re1 | 178.6 (3) | H36B—C36—H36C | 109.5 |
C3—C4—H4A | 109.5 | C38—C37—N1 | 114.8 (2) |
C3—C4—H4B | 109.5 | C38—C37—H37A | 108.6 |
H4A—C4—H4B | 109.5 | N1—C37—H37A | 108.6 |
C3—C4—H4C | 109.5 | C38—C37—H37B | 108.6 |
H4A—C4—H4C | 109.5 | N1—C37—H37B | 108.6 |
H4B—C4—H4C | 109.5 | H37A—C37—H37B | 107.5 |
C1—C5—H5A | 109.5 | C37—C38—H38A | 109.5 |
C1—C5—H5B | 109.5 | C37—C38—H38B | 109.5 |
H5A—C5—H5B | 109.5 | H38A—C38—H38B | 109.5 |
C1—C5—H5C | 109.5 | C37—C38—H38C | 109.5 |
H5A—C5—H5C | 109.5 | H38A—C38—H38C | 109.5 |
H5B—C5—H5C | 109.5 | H38B—C38—H38C | 109.5 |
N1—C31—C32 | 115.0 (2) | C35—N1—C31 | 109.2 (2) |
N1—C31—H31A | 108.5 | C35—N1—C37 | 108.6 (2) |
C32—C31—H31A | 108.5 | C31—N1—C37 | 111.1 (2) |
N1—C31—H31B | 108.5 | C35—N1—C33 | 110.9 (2) |
C32—C31—H31B | 108.5 | C31—N1—C33 | 108.3 (2) |
H31A—C31—H31B | 107.5 | C37—N1—C33 | 108.7 (2) |
C31—C32—H32A | 109.5 | C1—O1—Re1 | 128.19 (17) |
C31—C32—H32B | 109.5 | C3—O2—Re1 | 127.81 (18) |
H32A—C32—H32B | 109.5 | C03—Re1—C01 | 89.80 (12) |
C31—C32—H32C | 109.5 | C03—Re1—C02 | 89.85 (12) |
H32A—C32—H32C | 109.5 | C01—Re1—C02 | 85.88 (11) |
H32B—C32—H32C | 109.5 | C03—Re1—O1 | 91.61 (10) |
C34—C33—N1 | 115.0 (2) | C01—Re1—O1 | 178.54 (10) |
C34—C33—H33A | 108.5 | C02—Re1—O1 | 93.78 (9) |
N1—C33—H33A | 108.5 | C03—Re1—O2 | 92.67 (10) |
C34—C33—H33B | 108.5 | C01—Re1—O2 | 94.63 (9) |
N1—C33—H33B | 108.5 | C02—Re1—O2 | 177.43 (10) |
H33A—C33—H33B | 107.5 | O1—Re1—O2 | 85.66 (7) |
C33—C34—H34A | 109.5 | C03—Re1—Br1 | 175.69 (8) |
C33—C34—H34B | 109.5 | C01—Re1—Br1 | 93.65 (9) |
H34A—C34—H34B | 109.5 | C02—Re1—Br1 | 92.97 (9) |
C33—C34—H34C | 109.5 | O1—Re1—Br1 | 84.96 (6) |
H34A—C34—H34C | 109.5 | O2—Re1—Br1 | 84.49 (6) |
O1—C1—C2—C3 | 0.8 (5) | C34—C33—N1—C31 | 67.4 (3) |
C5—C1—C2—C3 | 179.9 (3) | C34—C33—N1—C37 | −171.7 (2) |
C1—C2—C3—O2 | 0.9 (5) | C2—C1—O1—Re1 | 1.3 (4) |
C1—C2—C3—C4 | −179.5 (3) | C5—C1—O1—Re1 | −177.82 (19) |
C36—C35—N1—C31 | −171.2 (2) | C2—C3—O2—Re1 | −4.3 (4) |
C36—C35—N1—C37 | 67.6 (3) | C4—C3—O2—Re1 | 176.09 (19) |
C36—C35—N1—C33 | −51.8 (3) | C1—O1—Re1—C03 | 89.5 (3) |
C32—C31—N1—C35 | −62.4 (3) | C1—O1—Re1—C02 | 179.5 (2) |
C32—C31—N1—C37 | 57.3 (3) | C1—O1—Re1—O2 | −3.0 (2) |
C32—C31—N1—C33 | 176.6 (2) | C1—O1—Re1—Br1 | −87.9 (2) |
C38—C37—N1—C35 | 173.2 (2) | C3—O2—Re1—C03 | −86.9 (2) |
C38—C37—N1—C31 | 53.1 (3) | C3—O2—Re1—C01 | −177.0 (2) |
C38—C37—N1—C33 | −66.1 (3) | C3—O2—Re1—O1 | 4.5 (2) |
C34—C33—N1—C35 | −52.4 (3) | C3—O2—Re1—Br1 | 89.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C31—H31A···O01i | 0.99 | 2.5 | 3.378 (4) | 147 |
C31—H31B···O01 | 0.99 | 2.58 | 3.543 (4) | 165 |
C35—H35B···O03ii | 0.99 | 2.54 | 3.221 (3) | 126 |
C36—H36B···O03ii | 0.98 | 2.57 | 3.155 (4) | 118 |
C37—H37A···Br1iii | 0.99 | 2.91 | 3.859 (3) | 161 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x−1/2, y, −z+3/2; (iii) −x+1/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | (C8H20N)[ReBr(C5H7O2)(CO)3] |
Mr | 579.5 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 100 |
a, b, c (Å) | 13.0931 (1), 14.5865 (1), 20.8724 (2) |
V (Å3) | 3986.26 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 8.12 |
Crystal size (mm) | 0.26 × 0.13 × 0.08 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur3 CCD |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.227, 0.563 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 30330, 4819, 3641 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.047, 1.02 |
No. of reflections | 4819 |
No. of parameters | 223 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.35, −0.71 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2004), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C31—H31A···O01i | 0.99 | 2.5 | 3.378 (4) | 147.3 |
C31—H31B···O01 | 0.99 | 2.58 | 3.543 (4) | 164.5 |
C35—H35B···O03ii | 0.99 | 2.54 | 3.221 (3) | 125.9 |
C36—H36B···O03ii | 0.98 | 2.57 | 3.155 (4) | 118 |
C37—H37A···Br1iii | 0.99 | 2.91 | 3.859 (3) | 161.2 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x−1/2, y, −z+3/2; (iii) −x+1/2, y+1/2, z. |
Acknowledgements
Financial assistance from the University of the Free State (UFS), the UFS Advanced Biomolecular Cluster, SASOL, the South African National Research Foundation (SA–NRF/THRIP) is gratefully acknowledged. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA–NRF.
References
Alberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079–1089. CSD CrossRef CAS Web of Science Google Scholar
Benny, P. D., Fugate, G. A., Barden, A. O., Morley, J. E., Silva-Lopez, E. & Twamley, B. (2008). Inorg. Chem. 47, 2240–2242. Web of Science CSD CrossRef PubMed CAS Google Scholar
Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brink, A., Roodt, A., Steyl, G. & Visser, H. G. (2010). Dalton Trans. pp. 5572–5578. Web of Science CSD CrossRef Google Scholar
Brink, A., Roodt, A. & Visser, H. G. (2007a). Acta Cryst. E63, m2831–m2832. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brink, A., Roodt, A. & Visser, H. G. (2007b). Acta Cryst. E63, m48–m50. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Herbst, L., Koen, R., Roodt, A. & Visser, H. G. (2010). Acta Cryst. E66, m801–m802. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mundwiler, S., Kündig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320–1328. Web of Science CSD CrossRef Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Purcell, W., Roodt, A., Basson, S. S. & Leipoldt, J. G. (1989). Transition Met. Chem. 14, 224–226. CrossRef CAS Web of Science Google Scholar
Roodt, A., Leipoldt, J. G., Helm, L. & Merbach, A. E. (1992). Inorg. Chem. 31, 2864–2868. CrossRef CAS Web of Science Google Scholar
Saw, M. M., Kurz, P., Agorastos, N., Hor, T. S. A., Sundram, F. X., Yan, Y. K. & Alberto, R. (2006). Inorg. Chim. Acta, 359, 4087–4094. Web of Science CSD CrossRef CAS Google Scholar
Schutte, M., Visser, H. G. & Brink, A. (2009). Acta Cryst. E65, m1575–m1576. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Schutte, M., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m859–m860. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steyl, G. & Hill, T. N. (2009). Acta Cryst. E65, m233. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386–393. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound forms part of an ongoing investigation aimed at determining the crystallographic and kinetic effects experienced by Re(I) and Re(V) complexes (Roodt et al., 1992, Purcell et al., 1989), in particular the manner which various O, O'-bidentate ligands have on rhenium tricarbonyl complexes as well as other transition group metals such as rhodium (Brink et al., 2010), silver (Steyl & Hill, 2009) and niobium (Herbst et al., 2010). Various rhenium tricarbonyl bidentate ligands have been synthesized (Mundwiler et al., 2004, Wang et al., 2003, Saw et al., 2006), however few O, O'-bidentate ligands are reported in literature (Schutte et al., 2010).
The octahedral geometry around the Re(I) metal atom in the rhenate anion shows little distortion (Fig. 1) with an O1—Re—O2 bite angle of 85.66 (7)°, which correlates well with a pyridine-coordinated rhenium acetylacetonato complex (85.07 (8)°; Benny et al., 2008) and is similar to rhodium acetylacetonato complexes (88.69 (8)° and 88.20 (6)°; Brink et al., 2007a,b). The Re—Oacac bond lengths (acac is acetylacetonate) of the title compound (2.1248 (18) Å and 2.1265 (19) Å) are slightly longer than that found in the pyridine analogue (2.1189 (19) Å and 2.1226 (19) Å; Benny et al., 2008). The Re—Br bond lengths of 2.6448 (3) Å compares well with related structures (Schutte et al., 2009, 2010). Intermolecular C—H···O and C—H···Br hydrogen-bonding interactions are observed between rhenate anions and neighboring cations (Table 1 and Fig. 2)