inorganic compounds
Dipotassium hexaaquanickel(II) bis[hexafluoridozirconate(IV)]
aUniversité Blaise Pascal, Laboratoire des Matériaux Inorganiques, UMR CNRS 6002, 24 Avenue des Landais, 63177 Aubière, France
*Correspondence e-mail: daniel.avignant@univ-bpclermont.fr
Single crystals of the title compound, K2[Ni(H2O)6][ZrF6]2, were grown by slow evaporation of a 40% aqueous HF solution in which a stoichiometric mixture of NiCl2·6H2O, ZrF4 and KCl was dissolved. The monoclinic structure is isotypic with its K2Cu, K2Zn, Cs2Zn and Cs2Cu analogues. The structure is built up from isolated, slightly elongated octahedral [Ni(H2O)6]2+ complex cations (symmetry ) and dimeric [Zr2F12]4− complex anions (symmetry ) that are also isolated from each other. The [Zr2F12]4− anion results from the association of two distorted pentagonal–bipyramidal [ZrF7] coordination polyhedra by sharing an equatorial edge passing through an inversion center of the Both isolated [Ni(H2O)6]2+ and [Zr2F12]4− complex ions are situated in planes parallel to (010). They are connected by the eight-coordinated K+ ions into a three-dimensional structure. An intricate O—H⋯F hydrogen-bonding network consolidates the structure.
Related literature
For isotypic structures, see: Fischer & Weiss (1973); Bukvetskii et al. (1993); Hitchman et al. (2002). For a review on the stereochemistry of zirconium and hafnium fluorido complexes, see: Davidovich (1998). For background to distortion indices, see: Momma & Izumi (2008).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S160053681005350X/wm2439sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681005350X/wm2439Isup2.hkl
Single crystals of the title compound were obtained by reacting a mixture of NiCl2.6H2O, ZrF4 and KCl in the molar ratio 1:2:2 with a 40% aqueous HF boiling solution in a platinum crucible. Then the solution was poured out into a PTFE beaker and slowly evaporated to dryness using a sand bath. Green single-crystals of the title compound were extracted from the dry residue.
The highest residual peak in the final difference Fourier map was located 0.60 Å from the Zr atom and the deepest hole was located 0.86 Å from the same atom. H atom parameter were fefined freely.
The existence of the title compound K2[Ni(H2O)6][ZrF6]2 as member of the large family of zirconium fluorido complexes with general formula MI2[MII(H2O)6][ZrF6]2 where MI = K, Rb, Cs or NH4 and MII = Co, Ni, Cu or Zn, has already been mentioned by Davidovich (1998). The monoclinic structure of the title compound is isotypic with those of K2[Cu(H2O)6][ZrF6]2 (Fischer & Weiss, 1973), K2[Zn(H2O)6][ZrF6]2 (Bukvetskii et al., 1993) and Cs2[Zn(H2O)6][ZrF6]2 (Hitchman et al., 2002). In the title structure the Ni2+ cation (site symmetry 1) is coordinated by six water molecules with two Ni—O distances slightly longer (2.0781 (9) Å) than the four others (2x 2.0548 (10) Å and 2x 2.0570 (11) Å). The Zr4+ cation is 7-coordinated by the fluoride ions but rather than being isolated anions, the fluoridozirconate(IV) ions form centrosymmetric [Zr2F12]4- dimers. Thus the structure is built up from isolated and slightly elongated octahedral [Ni(H2O)6]2+ complex cations and dimeric [Zr2F12]4- complex anions, also isolated from each other. The [ZrF7] is a distorted pentagonal bipyramid (symmetry 1) and the centrosymmetric [Zr2F12]4- complex anion results from the association of two pentagonal bipyramids by sharing an equatorial edge F1—F1 passing through an inversion center of the corresponding to either the 2 b or 2 c Wyckoff positions. Both isolated [Ni(H2O)6]2+ and [Zr2F12]4- complex ions lying in planes parallel to (010) are connected by the 8-coordinated K+ ions (Fig. 1) and an intricate O—H···F hydrogen bonds network (Fig. 2 and Table 1) to form the three-dimensional structure.
A careful examination of the geometry of the [Zr2F12]4- complex anion in isotypic structures, refined from single-crystal data, shows this anion being quasi unvarying for all the members (Table 2). The distortion index (bond length) (Momma & Izumi, 2008) is the same for all the K compounds (0.0265) and is only very slightly higher (0.02985) for the Cs analogue. It is also worth noting that the higher the index of distortion of the [MII(H2O)6] cationic polyhedron, the lower the index of distortion of the counter cation K+ (0.04429). This observation is obvious because water molecules are only shared between K+ and M2+ ions.
For isotypic structures, see: Fischer & Weiss (1973); Bukvetskii et al. (1993); Hitchman et al. (2002). For a review on the stereochemistry of zirconium and hafnium fluorido complexes, see: Davidovich (1998). For background to distortion indices, see: Momma & Izumi (2008).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. View of the polyhedral linkage inK2[Ni(H2O)6][ZrF6]2. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) x, y + 1, z; (ii) x - 1, y + 1, z; (iii) -x, -y + 1, -z + 1; (iv) -x, -y, -z; (v) -x, -y - 1, -z; (vi) -x - 1/2, y + 1/2, -z + 1/2; (vii) -x + 1/2, y + 1/2, -z + 1/2; (viii) x + 1/2, -y + 3/2, z - 1/2; (x) x + 1, y + 1, z; (xi) -x + 1/2, y - 1/2, -z + 1/2; (xii) x, y - 1, z; (xiii) x - 1, y - 1, z; (xiv) x + 1, y - 1, z; (xv) x - 1, y, z; (xvi) x - 1/2, -y + 3/2, z + 1/2; (xvii) -x - 1/2, y - 1/2, -z + 1/2. | |
Fig. 2. Projection of the crystal structure of K2[Ni(H2O)6][ZrF6]2 along [100] showing the hydrogen-bonding interactions. |
K2[Ni(H2O)6][ZrF6]2 | F(000) = 628 |
Mr = 655.45 | Dx = 2.799 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 7940 reflections |
a = 6.6090 (1) Å | θ = 3.7–38.7° |
b = 10.0398 (1) Å | µ = 3.20 mm−1 |
c = 11.7843 (1) Å | T = 296 K |
β = 95.897 (1)° | Block, green |
V = 777.79 (2) Å3 | 0.28 × 0.14 × 0.09 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 4436 independent reflections |
Radiation source: fine-focus sealed tube | 3858 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 38.8°, θmin = 4.2° |
ω and φ scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −17→12 |
Tmin = 0.613, Tmax = 0.748 | l = −18→20 |
17267 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | All H-atom parameters refined |
wR(F2) = 0.052 | w = 1/[σ2(Fo2) + (0.0182P)2 + 0.3179P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.032 |
4436 reflections | Δρmax = 0.63 e Å−3 |
131 parameters | Δρmin = −0.57 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 constraints | Extinction coefficient: 0.0068 (4) |
Primary atom site location: structure-invariant direct methods |
K2[Ni(H2O)6][ZrF6]2 | V = 777.79 (2) Å3 |
Mr = 655.45 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.6090 (1) Å | µ = 3.20 mm−1 |
b = 10.0398 (1) Å | T = 296 K |
c = 11.7843 (1) Å | 0.28 × 0.14 × 0.09 mm |
β = 95.897 (1)° |
Bruker APEXII CCD diffractometer | 4436 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 3858 reflections with I > 2σ(I) |
Tmin = 0.613, Tmax = 0.748 | Rint = 0.028 |
17267 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 0 restraints |
wR(F2) = 0.052 | All H-atom parameters refined |
S = 1.06 | Δρmax = 0.63 e Å−3 |
4436 reflections | Δρmin = −0.57 e Å−3 |
131 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zr | −0.462200 (17) | 0.984514 (11) | 0.350424 (9) | 0.01376 (3) | |
Ni | 0.0000 | 0.0000 | 0.0000 | 0.01508 (4) | |
K | 0.47534 (5) | 0.71630 (3) | 0.08423 (3) | 0.02839 (7) | |
O1 | 0.21314 (15) | −0.11683 (10) | −0.06747 (9) | 0.02154 (17) | |
O2 | −0.23852 (15) | −0.12500 (10) | −0.05901 (9) | 0.02039 (17) | |
O3 | −0.04437 (19) | −0.88871 (12) | −0.14701 (9) | 0.0293 (2) | |
F1 | 0.53736 (16) | 0.11314 (9) | 0.49592 (7) | 0.0300 (2) | |
F2 | −0.53154 (14) | 0.78950 (8) | 0.31006 (7) | 0.02440 (16) | |
F3 | −0.17901 (13) | 0.93040 (11) | 0.39692 (9) | 0.0346 (2) | |
F4 | −0.46635 (13) | 0.97177 (8) | 0.17481 (7) | 0.02228 (15) | |
F5 | −0.35001 (14) | 0.16232 (8) | 0.30407 (8) | 0.02609 (17) | |
F6 | −0.75507 (12) | 0.03609 (11) | 0.31945 (8) | 0.02759 (18) | |
H11 | 0.159 (4) | −0.169 (3) | −0.111 (2) | 0.044 (6)* | |
H12 | 0.289 (4) | −0.072 (3) | −0.103 (2) | 0.044 (6)* | |
H21 | −0.196 (3) | −0.178 (2) | −0.099 (2) | 0.041 (6)* | |
H22 | −0.327 (3) | −0.084 (2) | −0.0981 (19) | 0.038 (6)* | |
H31 | 0.028 (4) | −0.829 (3) | −0.163 (2) | 0.046 (7)* | |
H32 | −0.086 (4) | −0.925 (3) | −0.205 (2) | 0.048 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zr | 0.01662 (5) | 0.01302 (5) | 0.01144 (5) | −0.00068 (3) | 0.00044 (3) | 0.00045 (3) |
Ni | 0.01666 (9) | 0.01442 (9) | 0.01395 (9) | −0.00119 (6) | 0.00064 (7) | −0.00028 (6) |
K | 0.03371 (15) | 0.02741 (14) | 0.02299 (14) | −0.00580 (11) | −0.00224 (11) | 0.00113 (10) |
O1 | 0.0229 (4) | 0.0194 (4) | 0.0230 (5) | −0.0021 (3) | 0.0058 (4) | −0.0031 (3) |
O2 | 0.0207 (4) | 0.0186 (4) | 0.0213 (4) | −0.0003 (3) | −0.0007 (3) | −0.0024 (3) |
O3 | 0.0407 (6) | 0.0279 (5) | 0.0175 (5) | −0.0127 (4) | −0.0053 (4) | 0.0056 (4) |
F1 | 0.0579 (6) | 0.0175 (4) | 0.0158 (4) | −0.0105 (4) | 0.0091 (4) | −0.0021 (3) |
F2 | 0.0394 (5) | 0.0162 (3) | 0.0173 (4) | −0.0029 (3) | 0.0014 (3) | −0.0013 (3) |
F3 | 0.0216 (4) | 0.0442 (6) | 0.0365 (5) | 0.0060 (4) | −0.0048 (3) | 0.0052 (4) |
F4 | 0.0280 (4) | 0.0239 (4) | 0.0152 (3) | −0.0041 (3) | 0.0037 (3) | −0.0007 (3) |
F5 | 0.0367 (4) | 0.0181 (4) | 0.0247 (4) | −0.0067 (3) | 0.0091 (3) | 0.0002 (3) |
F6 | 0.0193 (4) | 0.0350 (5) | 0.0280 (5) | 0.0055 (3) | 0.0004 (3) | −0.0062 (3) |
Zr—F3 | 1.9717 (9) | K—F3xi | 3.1685 (12) |
Zr—F6i | 2.0006 (8) | O1—Kxii | 2.8929 (11) |
Zr—F5i | 2.0293 (8) | O1—H11 | 0.79 (3) |
Zr—F2 | 2.0554 (8) | O1—H12 | 0.82 (3) |
Zr—F4 | 2.0708 (8) | O2—Kxiii | 3.1015 (11) |
Zr—F1ii | 2.1467 (8) | O2—H21 | 0.78 (2) |
Zr—F1iii | 2.1614 (8) | O2—H22 | 0.82 (2) |
Ni—O1iv | 2.0548 (10) | O3—Nixii | 2.0570 (11) |
Ni—O1 | 2.0548 (10) | O3—H31 | 0.80 (3) |
Ni—O3v | 2.0570 (11) | O3—H32 | 0.80 (3) |
Ni—O3i | 2.0570 (11) | F1—Zrxiv | 2.1467 (8) |
Ni—O2iv | 2.0781 (9) | F1—Zriii | 2.1614 (8) |
Ni—O2 | 2.0781 (9) | F2—Kxv | 2.7658 (9) |
K—F6vi | 2.6497 (9) | F3—Kxvi | 2.7603 (10) |
K—F5vii | 2.7365 (10) | F3—Kvii | 3.1685 (12) |
K—F3viii | 2.7603 (10) | F4—Kxv | 2.7896 (9) |
K—F2ix | 2.7658 (9) | F5—Zrxii | 2.0293 (8) |
K—F4ix | 2.7896 (9) | F5—Kxi | 2.7365 (10) |
K—O1i | 2.8929 (11) | F6—Zrxii | 2.0006 (8) |
K—O2x | 3.1015 (11) | F6—Kxvii | 2.6497 (9) |
F3—Zr—F6i | 174.24 (4) | F5vii—K—F2ix | 72.14 (3) |
F3—Zr—F5i | 87.40 (4) | F3viii—K—F2ix | 150.45 (3) |
F6i—Zr—F5i | 95.54 (4) | F6vi—K—F4ix | 121.62 (3) |
F3—Zr—F2 | 89.11 (4) | F5vii—K—F4ix | 85.15 (3) |
F6i—Zr—F2 | 90.90 (4) | F3viii—K—F4ix | 145.26 (3) |
F5i—Zr—F2 | 148.71 (3) | F2ix—K—F4ix | 53.33 (2) |
F3—Zr—F4 | 100.10 (4) | F6vi—K—O1i | 109.85 (3) |
F6i—Zr—F4 | 85.44 (4) | F5vii—K—O1i | 150.10 (3) |
F5i—Zr—F4 | 75.70 (3) | F3viii—K—O1i | 70.50 (3) |
F2—Zr—F4 | 74.34 (3) | F2ix—K—O1i | 111.88 (3) |
F3—Zr—F1ii | 91.31 (4) | F4ix—K—O1i | 75.79 (3) |
F6i—Zr—F1ii | 84.80 (4) | F6vi—K—O2x | 167.54 (3) |
F5i—Zr—F1ii | 73.52 (3) | F5vii—K—O2x | 77.96 (3) |
F2—Zr—F1ii | 137.67 (3) | F3viii—K—O2x | 92.00 (3) |
F4—Zr—F1ii | 146.55 (3) | F2ix—K—O2x | 117.28 (3) |
F3—Zr—F1iii | 86.30 (4) | F4ix—K—O2x | 70.61 (3) |
F6i—Zr—F1iii | 88.22 (4) | O1i—K—O2x | 74.11 (3) |
F5i—Zr—F1iii | 138.27 (3) | F6vi—K—F3xi | 66.39 (3) |
F2—Zr—F1iii | 72.35 (3) | F5vii—K—F3xi | 55.25 (2) |
F4—Zr—F1iii | 145.96 (3) | F3viii—K—F3xi | 72.07 (3) |
F1ii—Zr—F1iii | 65.45 (4) | F2ix—K—F3xi | 102.83 (3) |
F3—Zr—Zrxviii | 88.57 (3) | F4ix—K—F3xi | 139.92 (3) |
F6i—Zr—Zrxviii | 85.86 (3) | O1i—K—F3xi | 142.29 (3) |
F5i—Zr—Zrxviii | 106.09 (3) | O2x—K—F3xi | 103.01 (3) |
F2—Zr—Zrxviii | 104.90 (2) | F6vi—K—Zrxi | 89.24 (2) |
F4—Zr—Zrxviii | 171.25 (2) | F5vii—K—Zrxi | 28.097 (18) |
F1ii—Zr—Zrxviii | 32.85 (2) | F3viii—K—Zrxi | 93.88 (2) |
F1iii—Zr—Zrxviii | 32.60 (2) | F2ix—K—Zrxi | 93.56 (2) |
F3—Zr—Kvii | 51.84 (3) | F4ix—K—Zrxi | 112.72 (2) |
F6i—Zr—Kvii | 129.16 (3) | O1i—K—Zrxi | 151.51 (2) |
F5i—Zr—Kvii | 39.43 (3) | O2x—K—Zrxi | 83.09 (2) |
F2—Zr—Kvii | 139.29 (3) | F3xi—K—Zrxi | 29.294 (16) |
F4—Zr—Kvii | 99.03 (2) | F6vi—K—Zrix | 97.85 (2) |
F1ii—Zr—Kvii | 63.98 (3) | F5vii—K—Zrix | 75.428 (19) |
F1iii—Zr—Kvii | 110.72 (3) | F3viii—K—Zrix | 163.11 (2) |
Zrxviii—Zr—Kvii | 87.200 (6) | F2ix—K—Zrix | 26.431 (17) |
F3—Zr—Kxv | 92.84 (3) | F4ix—K—Zrix | 27.023 (17) |
F6i—Zr—Kxv | 90.62 (3) | O1i—K—Zrix | 95.67 (2) |
F5i—Zr—Kxv | 112.37 (3) | O2x—K—Zrix | 93.42 (2) |
F2—Zr—Kxv | 36.80 (2) | F3xi—K—Zrix | 121.99 (2) |
F4—Zr—Kxv | 37.74 (2) | Zrxi—K—Zrix | 102.640 (7) |
F1ii—Zr—Kxv | 172.94 (3) | F6vi—K—Zrxvii | 20.660 (19) |
F1iii—Zr—Kxv | 109.12 (2) | F5vii—K—Zrxvii | 120.27 (2) |
Zrxviii—Zr—Kxv | 141.547 (7) | F3viii—K—Zrxvii | 67.44 (2) |
Kvii—Zr—Kxv | 123.004 (4) | F2ix—K—Zrxvii | 83.04 (2) |
F3—Zr—Kvi | 148.57 (3) | F4ix—K—Zrxvii | 121.05 (2) |
F6i—Zr—Kvi | 27.86 (3) | O1i—K—Zrxvii | 89.46 (2) |
F5i—Zr—Kvi | 83.54 (3) | O2x—K—Zrxvii | 157.34 (2) |
F2—Zr—Kvi | 113.62 (3) | F3xi—K—Zrxvii | 80.348 (18) |
F4—Zr—Kvi | 106.63 (3) | Zrxi—K—Zrxvii | 106.804 (8) |
F1ii—Zr—Kvi | 57.25 (3) | Zrix—K—Zrxvii | 103.843 (7) |
F1iii—Zr—Kvi | 80.80 (3) | F6vi—K—Zrviii | 65.81 (2) |
Zrxviii—Zr—Kvi | 65.435 (5) | F5vii—K—Zrviii | 137.16 (2) |
Kvii—Zr—Kvi | 106.804 (8) | F3viii—K—Zrviii | 20.89 (2) |
Kxv—Zr—Kvi | 118.448 (4) | F2ix—K—Zrviii | 131.81 (2) |
F3—Zr—Kxvi | 29.95 (3) | F4ix—K—Zrviii | 137.38 (2) |
F6i—Zr—Kxvi | 144.59 (3) | O1i—K—Zrviii | 63.49 (2) |
F5i—Zr—Kxvi | 110.23 (3) | O2x—K—Zrviii | 107.49 (2) |
F2—Zr—Kxvi | 79.65 (3) | F3xi—K—Zrviii | 82.684 (18) |
F4—Zr—Kxvi | 123.50 (3) | Zrxi—K—Zrviii | 109.132 (8) |
F1ii—Zr—Kxvi | 79.97 (3) | Zrix—K—Zrviii | 143.549 (10) |
F1iii—Zr—Kxvi | 56.37 (3) | Zrxvii—K—Zrviii | 50.252 (5) |
Zrxviii—Zr—Kxvi | 64.313 (5) | Ni—O1—Kxii | 118.84 (4) |
Kvii—Zr—Kxvi | 70.868 (8) | Ni—O1—H11 | 110.3 (17) |
Kxv—Zr—Kxvi | 100.955 (4) | Kxii—O1—H11 | 102.4 (18) |
Kvi—Zr—Kxvi | 129.748 (5) | Ni—O1—H12 | 111.2 (17) |
O1iv—Ni—O1 | 180.00 (7) | Kxii—O1—H12 | 106.2 (17) |
O1iv—Ni—O3v | 91.62 (5) | H11—O1—H12 | 107 (2) |
O1—Ni—O3v | 88.38 (5) | Ni—O2—Kxiii | 127.74 (4) |
O1iv—Ni—O3i | 88.38 (5) | Ni—O2—H21 | 107.6 (17) |
O1—Ni—O3i | 91.62 (5) | Kxiii—O2—H21 | 105.2 (17) |
O3v—Ni—O3i | 180.0 | Ni—O2—H22 | 111.1 (16) |
O1iv—Ni—O2iv | 93.00 (4) | Kxiii—O2—H22 | 97.1 (15) |
O1—Ni—O2iv | 87.00 (4) | H21—O2—H22 | 106 (2) |
O3v—Ni—O2iv | 90.50 (4) | Nixii—O3—H31 | 124.4 (17) |
O3i—Ni—O2iv | 89.50 (4) | Nixii—O3—H32 | 118.5 (19) |
O1iv—Ni—O2 | 87.00 (4) | H31—O3—H32 | 108 (2) |
O1—Ni—O2 | 93.00 (4) | Zrxiv—F1—Zriii | 114.55 (4) |
O3v—Ni—O2 | 89.50 (4) | Zr—F2—Kxv | 116.77 (3) |
O3i—Ni—O2 | 90.50 (4) | Zr—F3—Kxvi | 129.16 (5) |
O2iv—Ni—O2 | 180.00 (5) | Zr—F3—Kvii | 98.87 (4) |
F6vi—K—F5vii | 99.70 (3) | Kxvi—F3—Kvii | 107.93 (3) |
F6vi—K—F3viii | 78.70 (3) | Zr—F4—Kxv | 115.24 (3) |
F5vii—K—F3viii | 121.39 (3) | Zrxii—F5—Kxi | 112.48 (4) |
F6vi—K—F2ix | 72.85 (3) | Zrxii—F6—Kxvii | 131.48 (4) |
Symmetry codes: (i) x, y+1, z; (ii) x−1, y+1, z; (iii) −x, −y+1, −z+1; (iv) −x, −y, −z; (v) −x, −y−1, −z; (vi) −x−1/2, y+1/2, −z+1/2; (vii) −x+1/2, y+1/2, −z+1/2; (viii) x+1/2, −y+3/2, z−1/2; (ix) x+1, y, z; (x) x+1, y+1, z; (xi) −x+1/2, y−1/2, −z+1/2; (xii) x, y−1, z; (xiii) x−1, y−1, z; (xiv) x+1, y−1, z; (xv) x−1, y, z; (xvi) x−1/2, −y+3/2, z+1/2; (xvii) −x−1/2, y−1/2, −z+1/2; (xviii) −x−1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H11···F1xi | 0.79 (3) | 2.94 (2) | 3.3300 (14) | 112.8 (19) |
O1—H11···F2xix | 0.79 (3) | 1.92 (3) | 2.6877 (14) | 164 (2) |
O1—H12···F4xx | 0.82 (3) | 1.82 (3) | 2.6375 (13) | 177 (2) |
O1—H12···F5iv | 0.82 (3) | 2.61 (2) | 3.0526 (13) | 116 (2) |
O2—H21···F1xi | 0.78 (2) | 2.59 (2) | 3.0048 (13) | 115 (2) |
O2—H21···F2xix | 0.78 (2) | 1.95 (2) | 2.7227 (13) | 167 (2) |
O2—H22···F4xxi | 0.82 (2) | 1.92 (2) | 2.7362 (13) | 173 (2) |
O2—H22···F6xxii | 0.82 (2) | 2.76 (2) | 3.1924 (14) | 114.9 (17) |
O3—H31···F1xxiii | 0.80 (3) | 2.86 (3) | 3.2552 (16) | 113.3 (19) |
O3—H31···F5xxiv | 0.80 (3) | 1.92 (3) | 2.7019 (14) | 168 (2) |
O3—H32···F3iv | 0.80 (3) | 3.00 (2) | 3.4527 (16) | 119 (2) |
O3—H32···F6xxv | 0.80 (3) | 1.97 (3) | 2.7427 (15) | 163 (2) |
Symmetry codes: (iv) −x, −y, −z; (xi) −x+1/2, y−1/2, −z+1/2; (xix) x+1/2, −y+1/2, z−1/2; (xx) −x, −y+1, −z; (xxi) −x−1, −y+1, −z; (xxii) −x−1, −y, −z; (xxiii) x−1/2, −y−1/2, z−1/2; (xxiv) x+1/2, −y−1/2, z−1/2; (xxv) −x−1, −y−1, −z. |
Experimental details
Crystal data | |
Chemical formula | K2[Ni(H2O)6][ZrF6]2 |
Mr | 655.45 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 6.6090 (1), 10.0398 (1), 11.7843 (1) |
β (°) | 95.897 (1) |
V (Å3) | 777.79 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.20 |
Crystal size (mm) | 0.28 × 0.14 × 0.09 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.613, 0.748 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17267, 4436, 3858 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.882 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.052, 1.06 |
No. of reflections | 4436 |
No. of parameters | 131 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.63, −0.57 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H11···F1i | 0.79 (3) | 2.94 (2) | 3.3300 (14) | 112.8 (19) |
O1—H11···F2ii | 0.79 (3) | 1.92 (3) | 2.6877 (14) | 164 (2) |
O1—H12···F4iii | 0.82 (3) | 1.82 (3) | 2.6375 (13) | 177 (2) |
O1—H12···F5iv | 0.82 (3) | 2.61 (2) | 3.0526 (13) | 116 (2) |
O2—H21···F1i | 0.78 (2) | 2.59 (2) | 3.0048 (13) | 115 (2) |
O2—H21···F2ii | 0.78 (2) | 1.95 (2) | 2.7227 (13) | 167 (2) |
O2—H22···F4v | 0.82 (2) | 1.92 (2) | 2.7362 (13) | 173 (2) |
O2—H22···F6vi | 0.82 (2) | 2.76 (2) | 3.1924 (14) | 114.9 (17) |
O3—H31···F1vii | 0.80 (3) | 2.86 (3) | 3.2552 (16) | 113.3 (19) |
O3—H31···F5viii | 0.80 (3) | 1.92 (3) | 2.7019 (14) | 168 (2) |
O3—H32···F3iv | 0.80 (3) | 3.00 (2) | 3.4527 (16) | 119 (2) |
O3—H32···F6ix | 0.80 (3) | 1.97 (3) | 2.7427 (15) | 163 (2) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x+1/2, −y+1/2, z−1/2; (iii) −x, −y+1, −z; (iv) −x, −y, −z; (v) −x−1, −y+1, −z; (vi) −x−1, −y, −z; (vii) x−1/2, −y−1/2, z−1/2; (viii) x+1/2, −y−1/2, z−1/2; (ix) −x−1, −y−1, −z. |
K2[Ni(H2O)6][ZrF6]2a | K2[Cu(H2O)6][ZrF6]2b | K2[Zn(H2O)6][ZrF6]2c | Cs2[Zn(H2O)6][ZrF6]2d | |
Space group | P21/n | P21/c | P21/c | P21/n |
a | 6.6090 (1) | 6.631 (6) | 6.631 (1) | 6.970 (1) |
b | 10.0398 (1) | 9.981 (10) | 10.071 (1) | 10.515 (2) |
c | 11.7843 (1) | 12.921 (12) | 12.952 (1) | 11.803 (2) |
β | 95.897 (1) | 114.20 (15) | 114.96 (2) | 93.56 (3) |
V | 777.786 (16) | 780.01 (1) | 784.16 (2) | 863.4 (3) |
Ni—O1 = 2.0548 (10) (2×) | Cu—O1 = 1.966 (4) (2×) | Zn—O1 = 2.0856 (2) (2×) | Zn—O3 = 2.096 (6) (2×) | |
Distances MII—O | Ni—O3 = 2.0570 (11) (2×) | Cu—O2 = 2.025 (6) (2×) | Zn—O2 = 2.0940 (1) (2×) | Zn—O1 = 2.099 (5) (2×) |
Ni—O2 = 2.0781 (9) (2×) | Cu—O3 = 2.327 (5) (2×) | Zn—O3 = 2.1185 (2) (2×) | Zn—O2 = 2.105 (5) (2×) | |
Average MII—O bond length | 2.063 | 2.106 | 2.099 | 2.100 |
Polyhedral volume | 11.684 | 12.335 | 12.318 | 12.341 |
Distortion index (bond length) | 0.00483 | 0.06089 | 0.00607 | 0.00156 |
Quadratic elongation | 1.0013 | 1.0124 | 1.0011 | 1.0006 |
Zr—F6 = 1.9718 (9) | Zr—F3 = 1.968 (5) | Zr—F3 = 1.9727 (3) | Zr—F3 = 1.962 (5) | |
Zr—F5 = 2.0006 (8) | Zr—F1 = 2.004 (5) | Zr—F1 = 2.0018 (3) | Zr—F6 = 1.977 (5) | |
Zr—F3 = 2.0293 (9) | Zr—F5 = 2.029 (4) | Zr—F5 = 2.0277 (3) | Zr—F5 = 2.037 (5) | |
Distances Zr—F (Å) | Zr—F2 = 2.0554 (8) | Zr—F6 = 2.059 (4) | Zr—F6 = 2.0570 (3) | Zr—F4 = 2.067 (4) |
Zr—F1 = 2.0708 (8) | Zr—F2 = 2.063 (4) | Zr—F2 = 2.0668 (4) | Zr—F2 = 2.069 (4) | |
Zr—F4 = 2.1468 (9) | Zr—F4 = 2.156 (5) | Zr—F4 = 2.1501 (4) | Zr—F1 = 2.156 (4) | |
Zr—F4 = 2.1614 (8) | Zr—F4 = 2.160 (4) | Zr—F4 = 2.1628 (4) | Zr—F1 = 2.180 (4) | |
Average Zr—F bond length | 2.062 | 2.063 | 2.063 | 2.064 |
Polyhedral volume | 13.669 | 13.674 | 13.675 | 13.692 |
Distortion index (bond length) | 0.02662 | 0.02650 | 0.02654 | 0.02985 |
K—F5 = 2.6496 (10) | K—F1 = 2.668 (5) | K—F1 = 2.6506 (3) | Cs—F6 = 2.911 (5) | |
K—F3 = 2.7366 (9) | K—F6 = 2.750 (6) | K—F2 = 2.7395 (4) | Cs—F4 = 3.046 (4) | |
K—F6 = 2.7603 (11) | K—F3 = 2.756 (5) | K—F5 = 2.7633 (2) | Cs—F2 = 3.057 (4) | |
Distances K—F/O | K—F2 = 2.7658 (9) | K—F5 = 2.767 (5) | K—F6 = 2.7739 (2) | Cs—F3 = 3.065 (5) |
K—F1 = 2.7895 (9) | K—F2 = 2.799 (5) | K—F3 = 2.8094 (2) | Cs—F3 = 3.102 (5) | |
K—O2 = 2.8927 (10) | K—O3 = 2.942 (5) | K—O1 = 2.8968 (3) | Cs—O2 = 3.218 (5) | |
K—O1 = 3.1012 (10) | K—O1 = 2.980 (5) | K—O2 = 3.0873 (5) | Cs—O1 = 3.236 (5) | |
K—F6 = 3.1684 (12) | K—F3 = 3.1307 (7) | K—F3 = 3.1707 (7) | Cs—F5 = 3.228 (6) | |
Average MI—F/O bond length | 2.858 | 2.849 | 2.861 | 3.118 |
Polyhedral volume | 38.458 | 38.158 | 38.569 | 48.130 |
Distortion index (bond length) | 0.05146 | 0.04429 | 0.04984 | 0.02627 |
Notes: (a) this work; (b) Fischer & Weiss (1973); (c) Bukvetskii et al. (1993); (d) Hitchman et al. (2002). |
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bukvetskii, B. V., Gerasimenko, A. V., Davidovich, R. L., Kaidalova, T. A. & Teplukhina, L. V. (1993). Koord. Khim. 19, 526–528. CAS Google Scholar
Davidovich, R. L. (1998). Russ. J. Coord. Chem. 24, 751–768. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fischer, J. & Weiss, R. (1973). Acta Cryst. B29, 1958–1962. CrossRef CAS IUCr Journals Web of Science Google Scholar
Hitchman, M. A., Yablokov, Yu. V., Petrashen, V. E., Augustyniak-Jublokov, M. A., Stratemeier, H., Riley, M. J., Lukaszewicz, K., Tomaszewski, P. E. & Pietraszko, A. (2002). Inorg. Chem. 41, 229–238. Web of Science CrossRef PubMed CAS Google Scholar
Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The existence of the title compound K2[Ni(H2O)6][ZrF6]2 as member of the large family of zirconium fluorido complexes with general formula MI2[MII(H2O)6][ZrF6]2 where MI = K, Rb, Cs or NH4 and MII = Co, Ni, Cu or Zn, has already been mentioned by Davidovich (1998). The monoclinic structure of the title compound is isotypic with those of K2[Cu(H2O)6][ZrF6]2 (Fischer & Weiss, 1973), K2[Zn(H2O)6][ZrF6]2 (Bukvetskii et al., 1993) and Cs2[Zn(H2O)6][ZrF6]2 (Hitchman et al., 2002). In the title structure the Ni2+ cation (site symmetry 1) is coordinated by six water molecules with two Ni—O distances slightly longer (2.0781 (9) Å) than the four others (2x 2.0548 (10) Å and 2x 2.0570 (11) Å). The Zr4+ cation is 7-coordinated by the fluoride ions but rather than being isolated anions, the fluoridozirconate(IV) ions form centrosymmetric [Zr2F12]4- dimers. Thus the structure is built up from isolated and slightly elongated octahedral [Ni(H2O)6]2+ complex cations and dimeric [Zr2F12]4- complex anions, also isolated from each other. The [ZrF7] coordination polyhedron is a distorted pentagonal bipyramid (symmetry 1) and the centrosymmetric [Zr2F12]4- complex anion results from the association of two pentagonal bipyramids by sharing an equatorial edge F1—F1 passing through an inversion center of the unit cell corresponding to either the 2 b or 2 c Wyckoff positions. Both isolated [Ni(H2O)6]2+ and [Zr2F12]4- complex ions lying in planes parallel to (010) are connected by the 8-coordinated K+ ions (Fig. 1) and an intricate O—H···F hydrogen bonds network (Fig. 2 and Table 1) to form the three-dimensional structure.
A careful examination of the geometry of the [Zr2F12]4- complex anion in isotypic structures, refined from single-crystal data, shows this anion being quasi unvarying for all the members (Table 2). The distortion index (bond length) (Momma & Izumi, 2008) is the same for all the K compounds (0.0265) and is only very slightly higher (0.02985) for the Cs analogue. It is also worth noting that the higher the index of distortion of the [MII(H2O)6] cationic polyhedron, the lower the index of distortion of the counter cation K+ (0.04429). This observation is obvious because water molecules are only shared between K+ and M2+ ions.