inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dipotassium hexa­aqua­nickel(II) bis­­[hexa­fluoridozirconate(IV)]

aUniversité Blaise Pascal, Laboratoire des Matériaux Inorganiques, UMR CNRS 6002, 24 Avenue des Landais, 63177 Aubière, France
*Correspondence e-mail: daniel.avignant@univ-bpclermont.fr

(Received 13 December 2010; accepted 20 December 2010; online 24 December 2010)

Single crystals of the title compound, K2[Ni(H2O)6][ZrF6]2, were grown by slow evaporation of a 40% aqueous HF solution in which a stoichiometric mixture of NiCl2·6H2O, ZrF4 and KCl was dissolved. The monoclinic structure is isotypic with its K2Cu, K2Zn, Cs2Zn and Cs2Cu analogues. The structure is built up from isolated, slightly elongated octa­hedral [Ni(H2O)6]2+ complex cations (symmetry [\overline{1}]) and dimeric [Zr2F12]4− complex anions (symmetry [\overline{1}]) that are also isolated from each other. The [Zr2F12]4− anion results from the association of two distorted penta­gonal–bipyramidal [ZrF7] coordination polyhedra by sharing an equatorial edge passing through an inversion center of the unit cell. Both isolated [Ni(H2O)6]2+ and [Zr2F12]4− complex ions are situated in planes parallel to (010). They are connected by the eight-coordinated K+ ions into a three-dimensional structure. An intricate O—H⋯F hydrogen-bonding network consolidates the structure.

Related literature

For isotypic structures, see: Fischer & Weiss (1973[Fischer, J. & Weiss, R. (1973). Acta Cryst. B29, 1958-1962.]); Bukvetskii et al. (1993[Bukvetskii, B. V., Gerasimenko, A. V., Davidovich, R. L., Kaidalova, T. A. & Teplukhina, L. V. (1993). Koord. Khim. 19, 526-528.]); Hitchman et al. (2002[Hitchman, M. A., Yablokov, Yu. V., Petrashen, V. E., Augustyniak-Jublokov, M. A., Stratemeier, H., Riley, M. J., Lukaszewicz, K., Tomaszewski, P. E. & Pietraszko, A. (2002). Inorg. Chem. 41, 229-238.]). For a review on the stereochemistry of zirconium and hafnium fluorido complexes, see: Davidovich (1998[Davidovich, R. L. (1998). Russ. J. Coord. Chem. 24, 751-768.]). For background to distortion indices, see: Momma & Izumi (2008[Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653-658.]).

Experimental

Crystal data
  • K2[Ni(H2O)6][ZrF6]2

  • Mr = 655.45

  • Monoclinic, P 21 /n

  • a = 6.6090 (1) Å

  • b = 10.0398 (1) Å

  • c = 11.7843 (1) Å

  • β = 95.897 (1)°

  • V = 777.79 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.20 mm−1

  • T = 296 K

  • 0.28 × 0.14 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.613, Tmax = 0.748

  • 17267 measured reflections

  • 4436 independent reflections

  • 3858 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.052

  • S = 1.06

  • 4436 reflections

  • 131 parameters

  • All H-atom parameters refined

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯F1i 0.79 (3) 2.94 (2) 3.3300 (14) 112.8 (19)
O1—H11⋯F2ii 0.79 (3) 1.92 (3) 2.6877 (14) 164 (2)
O1—H12⋯F4iii 0.82 (3) 1.82 (3) 2.6375 (13) 177 (2)
O1—H12⋯F5iv 0.82 (3) 2.61 (2) 3.0526 (13) 116 (2)
O2—H21⋯F1i 0.78 (2) 2.59 (2) 3.0048 (13) 115 (2)
O2—H21⋯F2ii 0.78 (2) 1.95 (2) 2.7227 (13) 167 (2)
O2—H22⋯F4v 0.82 (2) 1.92 (2) 2.7362 (13) 173 (2)
O2—H22⋯F6vi 0.82 (2) 2.76 (2) 3.1924 (14) 114.9 (17)
O3—H31⋯F1vii 0.80 (3) 2.86 (3) 3.2552 (16) 113.3 (19)
O3—H31⋯F5viii 0.80 (3) 1.92 (3) 2.7019 (14) 168 (2)
O3—H32⋯F3iv 0.80 (3) 3.00 (2) 3.4527 (16) 119 (2)
O3—H32⋯F6ix 0.80 (3) 1.97 (3) 2.7427 (15) 163 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z; (iv) -x, -y, -z; (v) -x-1, -y+1, -z; (vi) -x-1, -y, -z; (vii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (viii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ix) -x-1, -y-1, -z.

Table 2
Comparison of the geometrical characteristics of the coordination polyhedra in isotypic MI2[MII(H2O)6][ZrF6]2 structures determined from single-crystal data (Å, °, Å3)

  K2[Ni(H2O)6][ZrF6]2a K2[Cu(H2O)6][ZrF6]2b K2[Zn(H2O)6][ZrF6]2c Cs2[Zn(H2O)6][ZrF6]2d
Space group P21/n P21/c P21/c P21/n
a 6.6090 (1) 6.631 (6) 6.631 (1) 6.970 (1)
b 10.0398 (1) 9.981 (10) 10.071 (1) 10.515 (2)
c 11.7843 (1) 12.921 (12) 12.952 (1) 11.803 (2)
β 95.897 (1) 114.20 (15) 114.96 (2) 93.56 (3)
V 777.786 (16) 780.01 (1) 784.16 (2) 863.4 (3)
  Ni—O1 = 2.0548 (10) (2×) Cu—O1 = 1.966 (4) (2×) Zn—O1 = 2.0856 (2) (2×) Zn—O3 = 2.096 (6) (2×)
Distances MII—O Ni—O3 = 2.0570 (11) (2×) Cu—O2 = 2.025 (6) (2×) Zn—O2 = 2.0940 (1) (2×) Zn—O1 = 2.099 (5) (2×)
  Ni—O2 = 2.0781 (9) (2×) Cu—O3 = 2.327 (5) (2×) Zn—O3 = 2.1185 (2) (2×) Zn—O2 = 2.105 (5) (2×)
Average MII—O bond length 2.063 2.106 2.099 2.100
Polyhedral volume 11.684 12.335 12.318 12.341
Distortion index (bond length) 0.00483 0.06089 0.00607 0.00156
Quadratic elongation 1.0013 1.0124 1.0011 1.0006
  Zr—F6 = 1.9718 (9) Zr—F3 = 1.968 (5) Zr—F3 = 1.9727 (3) Zr—F3 = 1.962 (5)
  Zr—F5 = 2.0006 (8) Zr—F1 = 2.004 (5) Zr—F1 = 2.0018 (3) Zr—F6 = 1.977 (5)
  Zr—F3 = 2.0293 (9) Zr—F5 = 2.029 (4) Zr—F5 = 2.0277 (3) Zr—F5 = 2.037 (5)
Distances Zr—F (Å) Zr—F2 = 2.0554 (8) Zr—F6 = 2.059 (4) Zr—F6 = 2.0570 (3) Zr—F4 = 2.067 (4)
  Zr—F1 = 2.0708 (8) Zr—F2 = 2.063 (4) Zr—F2 = 2.0668 (4) Zr—F2 = 2.069 (4)
  Zr—F4 = 2.1468 (9) Zr—F4 = 2.156 (5) Zr—F4 = 2.1501 (4) Zr—F1 = 2.156 (4)
  Zr—F4 = 2.1614 (8) Zr—F4 = 2.160 (4) Zr—F4 = 2.1628 (4) Zr—F1 = 2.180 (4)
Average Zr—F bond length 2.062 2.063 2.063 2.064
Polyhedral volume 13.669 13.674 13.675 13.692
Distortion index (bond length) 0.02662 0.02650 0.02654 0.02985
  K—F5 = 2.6496 (10) K—F1 = 2.668 (5) K—F1 = 2.6506 (3) Cs—F6 = 2.911 (5)
  K—F3 = 2.7366 (9) K—F6 = 2.750 (6) K—F2 = 2.7395 (4) Cs—F4 = 3.046 (4)
  K—F6 = 2.7603 (11) K—F3 = 2.756 (5) K—F5 = 2.7633 (2) Cs—F2 = 3.057 (4)
Distances K—F/O K—F2 = 2.7658 (9) K—F5 = 2.767 (5) K—F6 = 2.7739 (2) Cs—F3 = 3.065 (5)
  K—F1 = 2.7895 (9) K—F2 = 2.799 (5) K—F3 = 2.8094 (2) Cs—F3 = 3.102 (5)
  K—O2 = 2.8927 (10) K—O3 = 2.942 (5) K—O1 = 2.8968 (3) Cs—O2 = 3.218 (5)
  K—O1 = 3.1012 (10) K—O1 = 2.980 (5) K—O2 = 3.0873 (5) Cs—O1 = 3.236 (5)
  K—F6 = 3.1684 (12) K—F3 = 3.1307 (7) K—F3 = 3.1707 (7) Cs—F5 = 3.228 (6)
Average MI—F/O bond length 2.858 2.849 2.861 3.118
Polyhedral volume 38.458 38.158 38.569 48.130
Distortion index (bond length) 0.05146 0.04429 0.04984 0.02627
Notes: (a) this work; (b) Fischer & Weiss (1973[Fischer, J. & Weiss, R. (1973). Acta Cryst. B29, 1958-1962.]); (c) Bukvetskii et al. (1993[Bukvetskii, B. V., Gerasimenko, A. V., Davidovich, R. L., Kaidalova, T. A. & Teplukhina, L. V. (1993). Koord. Khim. 19, 526-528.]); (d) Hitchman et al. (2002[Hitchman, M. A., Yablokov, Yu. V., Petrashen, V. E., Augustyniak-Jublokov, M. A., Stratemeier, H., Riley, M. J., Lukaszewicz, K., Tomaszewski, P. E. & Pietraszko, A. (2002). Inorg. Chem. 41, 229-238.]).

Data collection: APEX2 (Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The existence of the title compound K2[Ni(H2O)6][ZrF6]2 as member of the large family of zirconium fluorido complexes with general formula MI2[MII(H2O)6][ZrF6]2 where MI = K, Rb, Cs or NH4 and MII = Co, Ni, Cu or Zn, has already been mentioned by Davidovich (1998). The monoclinic structure of the title compound is isotypic with those of K2[Cu(H2O)6][ZrF6]2 (Fischer & Weiss, 1973), K2[Zn(H2O)6][ZrF6]2 (Bukvetskii et al., 1993) and Cs2[Zn(H2O)6][ZrF6]2 (Hitchman et al., 2002). In the title structure the Ni2+ cation (site symmetry 1) is coordinated by six water molecules with two Ni—O distances slightly longer (2.0781 (9) Å) than the four others (2x 2.0548 (10) Å and 2x 2.0570 (11) Å). The Zr4+ cation is 7-coordinated by the fluoride ions but rather than being isolated anions, the fluoridozirconate(IV) ions form centrosymmetric [Zr2F12]4- dimers. Thus the structure is built up from isolated and slightly elongated octahedral [Ni(H2O)6]2+ complex cations and dimeric [Zr2F12]4- complex anions, also isolated from each other. The [ZrF7] coordination polyhedron is a distorted pentagonal bipyramid (symmetry 1) and the centrosymmetric [Zr2F12]4- complex anion results from the association of two pentagonal bipyramids by sharing an equatorial edge F1—F1 passing through an inversion center of the unit cell corresponding to either the 2 b or 2 c Wyckoff positions. Both isolated [Ni(H2O)6]2+ and [Zr2F12]4- complex ions lying in planes parallel to (010) are connected by the 8-coordinated K+ ions (Fig. 1) and an intricate O—H···F hydrogen bonds network (Fig. 2 and Table 1) to form the three-dimensional structure.

A careful examination of the geometry of the [Zr2F12]4- complex anion in isotypic structures, refined from single-crystal data, shows this anion being quasi unvarying for all the members (Table 2). The distortion index (bond length) (Momma & Izumi, 2008) is the same for all the K compounds (0.0265) and is only very slightly higher (0.02985) for the Cs analogue. It is also worth noting that the higher the index of distortion of the [MII(H2O)6] cationic polyhedron, the lower the index of distortion of the counter cation K+ (0.04429). This observation is obvious because water molecules are only shared between K+ and M2+ ions.

Related literature top

For isotypic structures, see: Fischer & Weiss (1973); Bukvetskii et al. (1993); Hitchman et al. (2002). For a review on the stereochemistry of zirconium and hafnium fluorido complexes, see: Davidovich (1998). For background to distortion indices, see: Momma & Izumi (2008).

Experimental top

Single crystals of the title compound were obtained by reacting a mixture of NiCl2.6H2O, ZrF4 and KCl in the molar ratio 1:2:2 with a 40% aqueous HF boiling solution in a platinum crucible. Then the solution was poured out into a PTFE beaker and slowly evaporated to dryness using a sand bath. Green single-crystals of the title compound were extracted from the dry residue.

Refinement top

The highest residual peak in the final difference Fourier map was located 0.60 Å from the Zr atom and the deepest hole was located 0.86 Å from the same atom. H atom parameter were fefined freely.

Structure description top

The existence of the title compound K2[Ni(H2O)6][ZrF6]2 as member of the large family of zirconium fluorido complexes with general formula MI2[MII(H2O)6][ZrF6]2 where MI = K, Rb, Cs or NH4 and MII = Co, Ni, Cu or Zn, has already been mentioned by Davidovich (1998). The monoclinic structure of the title compound is isotypic with those of K2[Cu(H2O)6][ZrF6]2 (Fischer & Weiss, 1973), K2[Zn(H2O)6][ZrF6]2 (Bukvetskii et al., 1993) and Cs2[Zn(H2O)6][ZrF6]2 (Hitchman et al., 2002). In the title structure the Ni2+ cation (site symmetry 1) is coordinated by six water molecules with two Ni—O distances slightly longer (2.0781 (9) Å) than the four others (2x 2.0548 (10) Å and 2x 2.0570 (11) Å). The Zr4+ cation is 7-coordinated by the fluoride ions but rather than being isolated anions, the fluoridozirconate(IV) ions form centrosymmetric [Zr2F12]4- dimers. Thus the structure is built up from isolated and slightly elongated octahedral [Ni(H2O)6]2+ complex cations and dimeric [Zr2F12]4- complex anions, also isolated from each other. The [ZrF7] coordination polyhedron is a distorted pentagonal bipyramid (symmetry 1) and the centrosymmetric [Zr2F12]4- complex anion results from the association of two pentagonal bipyramids by sharing an equatorial edge F1—F1 passing through an inversion center of the unit cell corresponding to either the 2 b or 2 c Wyckoff positions. Both isolated [Ni(H2O)6]2+ and [Zr2F12]4- complex ions lying in planes parallel to (010) are connected by the 8-coordinated K+ ions (Fig. 1) and an intricate O—H···F hydrogen bonds network (Fig. 2 and Table 1) to form the three-dimensional structure.

A careful examination of the geometry of the [Zr2F12]4- complex anion in isotypic structures, refined from single-crystal data, shows this anion being quasi unvarying for all the members (Table 2). The distortion index (bond length) (Momma & Izumi, 2008) is the same for all the K compounds (0.0265) and is only very slightly higher (0.02985) for the Cs analogue. It is also worth noting that the higher the index of distortion of the [MII(H2O)6] cationic polyhedron, the lower the index of distortion of the counter cation K+ (0.04429). This observation is obvious because water molecules are only shared between K+ and M2+ ions.

For isotypic structures, see: Fischer & Weiss (1973); Bukvetskii et al. (1993); Hitchman et al. (2002). For a review on the stereochemistry of zirconium and hafnium fluorido complexes, see: Davidovich (1998). For background to distortion indices, see: Momma & Izumi (2008).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the polyhedral linkage inK2[Ni(H2O)6][ZrF6]2. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) x, y + 1, z; (ii) x - 1, y + 1, z; (iii) -x, -y + 1, -z + 1; (iv) -x, -y, -z; (v) -x, -y - 1, -z; (vi) -x - 1/2, y + 1/2, -z + 1/2; (vii) -x + 1/2, y + 1/2, -z + 1/2; (viii) x + 1/2, -y + 3/2, z - 1/2; (x) x + 1, y + 1, z; (xi) -x + 1/2, y - 1/2, -z + 1/2; (xii) x, y - 1, z; (xiii) x - 1, y - 1, z; (xiv) x + 1, y - 1, z; (xv) x - 1, y, z; (xvi) x - 1/2, -y + 3/2, z + 1/2; (xvii) -x - 1/2, y - 1/2, -z + 1/2.
[Figure 2] Fig. 2. Projection of the crystal structure of K2[Ni(H2O)6][ZrF6]2 along [100] showing the hydrogen-bonding interactions.
Dipotassium hexaaquanickel bis[hexafluoridozirconate(IV)] top
Crystal data top
K2[Ni(H2O)6][ZrF6]2F(000) = 628
Mr = 655.45Dx = 2.799 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7940 reflections
a = 6.6090 (1) Åθ = 3.7–38.7°
b = 10.0398 (1) ŵ = 3.20 mm1
c = 11.7843 (1) ÅT = 296 K
β = 95.897 (1)°Block, green
V = 777.79 (2) Å30.28 × 0.14 × 0.09 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
4436 independent reflections
Radiation source: fine-focus sealed tube3858 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.3333 pixels mm-1θmax = 38.8°, θmin = 4.2°
ω and φ scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1712
Tmin = 0.613, Tmax = 0.748l = 1820
17267 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023All H-atom parameters refined
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0182P)2 + 0.3179P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.032
4436 reflectionsΔρmax = 0.63 e Å3
131 parametersΔρmin = 0.57 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0068 (4)
Primary atom site location: structure-invariant direct methods
Crystal data top
K2[Ni(H2O)6][ZrF6]2V = 777.79 (2) Å3
Mr = 655.45Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.6090 (1) ŵ = 3.20 mm1
b = 10.0398 (1) ÅT = 296 K
c = 11.7843 (1) Å0.28 × 0.14 × 0.09 mm
β = 95.897 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4436 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3858 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.748Rint = 0.028
17267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.052All H-atom parameters refined
S = 1.06Δρmax = 0.63 e Å3
4436 reflectionsΔρmin = 0.57 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr0.462200 (17)0.984514 (11)0.350424 (9)0.01376 (3)
Ni0.00000.00000.00000.01508 (4)
K0.47534 (5)0.71630 (3)0.08423 (3)0.02839 (7)
O10.21314 (15)0.11683 (10)0.06747 (9)0.02154 (17)
O20.23852 (15)0.12500 (10)0.05901 (9)0.02039 (17)
O30.04437 (19)0.88871 (12)0.14701 (9)0.0293 (2)
F10.53736 (16)0.11314 (9)0.49592 (7)0.0300 (2)
F20.53154 (14)0.78950 (8)0.31006 (7)0.02440 (16)
F30.17901 (13)0.93040 (11)0.39692 (9)0.0346 (2)
F40.46635 (13)0.97177 (8)0.17481 (7)0.02228 (15)
F50.35001 (14)0.16232 (8)0.30407 (8)0.02609 (17)
F60.75507 (12)0.03609 (11)0.31945 (8)0.02759 (18)
H110.159 (4)0.169 (3)0.111 (2)0.044 (6)*
H120.289 (4)0.072 (3)0.103 (2)0.044 (6)*
H210.196 (3)0.178 (2)0.099 (2)0.041 (6)*
H220.327 (3)0.084 (2)0.0981 (19)0.038 (6)*
H310.028 (4)0.829 (3)0.163 (2)0.046 (7)*
H320.086 (4)0.925 (3)0.205 (2)0.048 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr0.01662 (5)0.01302 (5)0.01144 (5)0.00068 (3)0.00044 (3)0.00045 (3)
Ni0.01666 (9)0.01442 (9)0.01395 (9)0.00119 (6)0.00064 (7)0.00028 (6)
K0.03371 (15)0.02741 (14)0.02299 (14)0.00580 (11)0.00224 (11)0.00113 (10)
O10.0229 (4)0.0194 (4)0.0230 (5)0.0021 (3)0.0058 (4)0.0031 (3)
O20.0207 (4)0.0186 (4)0.0213 (4)0.0003 (3)0.0007 (3)0.0024 (3)
O30.0407 (6)0.0279 (5)0.0175 (5)0.0127 (4)0.0053 (4)0.0056 (4)
F10.0579 (6)0.0175 (4)0.0158 (4)0.0105 (4)0.0091 (4)0.0021 (3)
F20.0394 (5)0.0162 (3)0.0173 (4)0.0029 (3)0.0014 (3)0.0013 (3)
F30.0216 (4)0.0442 (6)0.0365 (5)0.0060 (4)0.0048 (3)0.0052 (4)
F40.0280 (4)0.0239 (4)0.0152 (3)0.0041 (3)0.0037 (3)0.0007 (3)
F50.0367 (4)0.0181 (4)0.0247 (4)0.0067 (3)0.0091 (3)0.0002 (3)
F60.0193 (4)0.0350 (5)0.0280 (5)0.0055 (3)0.0004 (3)0.0062 (3)
Geometric parameters (Å, º) top
Zr—F31.9717 (9)K—F3xi3.1685 (12)
Zr—F6i2.0006 (8)O1—Kxii2.8929 (11)
Zr—F5i2.0293 (8)O1—H110.79 (3)
Zr—F22.0554 (8)O1—H120.82 (3)
Zr—F42.0708 (8)O2—Kxiii3.1015 (11)
Zr—F1ii2.1467 (8)O2—H210.78 (2)
Zr—F1iii2.1614 (8)O2—H220.82 (2)
Ni—O1iv2.0548 (10)O3—Nixii2.0570 (11)
Ni—O12.0548 (10)O3—H310.80 (3)
Ni—O3v2.0570 (11)O3—H320.80 (3)
Ni—O3i2.0570 (11)F1—Zrxiv2.1467 (8)
Ni—O2iv2.0781 (9)F1—Zriii2.1614 (8)
Ni—O22.0781 (9)F2—Kxv2.7658 (9)
K—F6vi2.6497 (9)F3—Kxvi2.7603 (10)
K—F5vii2.7365 (10)F3—Kvii3.1685 (12)
K—F3viii2.7603 (10)F4—Kxv2.7896 (9)
K—F2ix2.7658 (9)F5—Zrxii2.0293 (8)
K—F4ix2.7896 (9)F5—Kxi2.7365 (10)
K—O1i2.8929 (11)F6—Zrxii2.0006 (8)
K—O2x3.1015 (11)F6—Kxvii2.6497 (9)
F3—Zr—F6i174.24 (4)F5vii—K—F2ix72.14 (3)
F3—Zr—F5i87.40 (4)F3viii—K—F2ix150.45 (3)
F6i—Zr—F5i95.54 (4)F6vi—K—F4ix121.62 (3)
F3—Zr—F289.11 (4)F5vii—K—F4ix85.15 (3)
F6i—Zr—F290.90 (4)F3viii—K—F4ix145.26 (3)
F5i—Zr—F2148.71 (3)F2ix—K—F4ix53.33 (2)
F3—Zr—F4100.10 (4)F6vi—K—O1i109.85 (3)
F6i—Zr—F485.44 (4)F5vii—K—O1i150.10 (3)
F5i—Zr—F475.70 (3)F3viii—K—O1i70.50 (3)
F2—Zr—F474.34 (3)F2ix—K—O1i111.88 (3)
F3—Zr—F1ii91.31 (4)F4ix—K—O1i75.79 (3)
F6i—Zr—F1ii84.80 (4)F6vi—K—O2x167.54 (3)
F5i—Zr—F1ii73.52 (3)F5vii—K—O2x77.96 (3)
F2—Zr—F1ii137.67 (3)F3viii—K—O2x92.00 (3)
F4—Zr—F1ii146.55 (3)F2ix—K—O2x117.28 (3)
F3—Zr—F1iii86.30 (4)F4ix—K—O2x70.61 (3)
F6i—Zr—F1iii88.22 (4)O1i—K—O2x74.11 (3)
F5i—Zr—F1iii138.27 (3)F6vi—K—F3xi66.39 (3)
F2—Zr—F1iii72.35 (3)F5vii—K—F3xi55.25 (2)
F4—Zr—F1iii145.96 (3)F3viii—K—F3xi72.07 (3)
F1ii—Zr—F1iii65.45 (4)F2ix—K—F3xi102.83 (3)
F3—Zr—Zrxviii88.57 (3)F4ix—K—F3xi139.92 (3)
F6i—Zr—Zrxviii85.86 (3)O1i—K—F3xi142.29 (3)
F5i—Zr—Zrxviii106.09 (3)O2x—K—F3xi103.01 (3)
F2—Zr—Zrxviii104.90 (2)F6vi—K—Zrxi89.24 (2)
F4—Zr—Zrxviii171.25 (2)F5vii—K—Zrxi28.097 (18)
F1ii—Zr—Zrxviii32.85 (2)F3viii—K—Zrxi93.88 (2)
F1iii—Zr—Zrxviii32.60 (2)F2ix—K—Zrxi93.56 (2)
F3—Zr—Kvii51.84 (3)F4ix—K—Zrxi112.72 (2)
F6i—Zr—Kvii129.16 (3)O1i—K—Zrxi151.51 (2)
F5i—Zr—Kvii39.43 (3)O2x—K—Zrxi83.09 (2)
F2—Zr—Kvii139.29 (3)F3xi—K—Zrxi29.294 (16)
F4—Zr—Kvii99.03 (2)F6vi—K—Zrix97.85 (2)
F1ii—Zr—Kvii63.98 (3)F5vii—K—Zrix75.428 (19)
F1iii—Zr—Kvii110.72 (3)F3viii—K—Zrix163.11 (2)
Zrxviii—Zr—Kvii87.200 (6)F2ix—K—Zrix26.431 (17)
F3—Zr—Kxv92.84 (3)F4ix—K—Zrix27.023 (17)
F6i—Zr—Kxv90.62 (3)O1i—K—Zrix95.67 (2)
F5i—Zr—Kxv112.37 (3)O2x—K—Zrix93.42 (2)
F2—Zr—Kxv36.80 (2)F3xi—K—Zrix121.99 (2)
F4—Zr—Kxv37.74 (2)Zrxi—K—Zrix102.640 (7)
F1ii—Zr—Kxv172.94 (3)F6vi—K—Zrxvii20.660 (19)
F1iii—Zr—Kxv109.12 (2)F5vii—K—Zrxvii120.27 (2)
Zrxviii—Zr—Kxv141.547 (7)F3viii—K—Zrxvii67.44 (2)
Kvii—Zr—Kxv123.004 (4)F2ix—K—Zrxvii83.04 (2)
F3—Zr—Kvi148.57 (3)F4ix—K—Zrxvii121.05 (2)
F6i—Zr—Kvi27.86 (3)O1i—K—Zrxvii89.46 (2)
F5i—Zr—Kvi83.54 (3)O2x—K—Zrxvii157.34 (2)
F2—Zr—Kvi113.62 (3)F3xi—K—Zrxvii80.348 (18)
F4—Zr—Kvi106.63 (3)Zrxi—K—Zrxvii106.804 (8)
F1ii—Zr—Kvi57.25 (3)Zrix—K—Zrxvii103.843 (7)
F1iii—Zr—Kvi80.80 (3)F6vi—K—Zrviii65.81 (2)
Zrxviii—Zr—Kvi65.435 (5)F5vii—K—Zrviii137.16 (2)
Kvii—Zr—Kvi106.804 (8)F3viii—K—Zrviii20.89 (2)
Kxv—Zr—Kvi118.448 (4)F2ix—K—Zrviii131.81 (2)
F3—Zr—Kxvi29.95 (3)F4ix—K—Zrviii137.38 (2)
F6i—Zr—Kxvi144.59 (3)O1i—K—Zrviii63.49 (2)
F5i—Zr—Kxvi110.23 (3)O2x—K—Zrviii107.49 (2)
F2—Zr—Kxvi79.65 (3)F3xi—K—Zrviii82.684 (18)
F4—Zr—Kxvi123.50 (3)Zrxi—K—Zrviii109.132 (8)
F1ii—Zr—Kxvi79.97 (3)Zrix—K—Zrviii143.549 (10)
F1iii—Zr—Kxvi56.37 (3)Zrxvii—K—Zrviii50.252 (5)
Zrxviii—Zr—Kxvi64.313 (5)Ni—O1—Kxii118.84 (4)
Kvii—Zr—Kxvi70.868 (8)Ni—O1—H11110.3 (17)
Kxv—Zr—Kxvi100.955 (4)Kxii—O1—H11102.4 (18)
Kvi—Zr—Kxvi129.748 (5)Ni—O1—H12111.2 (17)
O1iv—Ni—O1180.00 (7)Kxii—O1—H12106.2 (17)
O1iv—Ni—O3v91.62 (5)H11—O1—H12107 (2)
O1—Ni—O3v88.38 (5)Ni—O2—Kxiii127.74 (4)
O1iv—Ni—O3i88.38 (5)Ni—O2—H21107.6 (17)
O1—Ni—O3i91.62 (5)Kxiii—O2—H21105.2 (17)
O3v—Ni—O3i180.0Ni—O2—H22111.1 (16)
O1iv—Ni—O2iv93.00 (4)Kxiii—O2—H2297.1 (15)
O1—Ni—O2iv87.00 (4)H21—O2—H22106 (2)
O3v—Ni—O2iv90.50 (4)Nixii—O3—H31124.4 (17)
O3i—Ni—O2iv89.50 (4)Nixii—O3—H32118.5 (19)
O1iv—Ni—O287.00 (4)H31—O3—H32108 (2)
O1—Ni—O293.00 (4)Zrxiv—F1—Zriii114.55 (4)
O3v—Ni—O289.50 (4)Zr—F2—Kxv116.77 (3)
O3i—Ni—O290.50 (4)Zr—F3—Kxvi129.16 (5)
O2iv—Ni—O2180.00 (5)Zr—F3—Kvii98.87 (4)
F6vi—K—F5vii99.70 (3)Kxvi—F3—Kvii107.93 (3)
F6vi—K—F3viii78.70 (3)Zr—F4—Kxv115.24 (3)
F5vii—K—F3viii121.39 (3)Zrxii—F5—Kxi112.48 (4)
F6vi—K—F2ix72.85 (3)Zrxii—F6—Kxvii131.48 (4)
Symmetry codes: (i) x, y+1, z; (ii) x1, y+1, z; (iii) x, y+1, z+1; (iv) x, y, z; (v) x, y1, z; (vi) x1/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y+3/2, z1/2; (ix) x+1, y, z; (x) x+1, y+1, z; (xi) x+1/2, y1/2, z+1/2; (xii) x, y1, z; (xiii) x1, y1, z; (xiv) x+1, y1, z; (xv) x1, y, z; (xvi) x1/2, y+3/2, z+1/2; (xvii) x1/2, y1/2, z+1/2; (xviii) x1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···F1xi0.79 (3)2.94 (2)3.3300 (14)112.8 (19)
O1—H11···F2xix0.79 (3)1.92 (3)2.6877 (14)164 (2)
O1—H12···F4xx0.82 (3)1.82 (3)2.6375 (13)177 (2)
O1—H12···F5iv0.82 (3)2.61 (2)3.0526 (13)116 (2)
O2—H21···F1xi0.78 (2)2.59 (2)3.0048 (13)115 (2)
O2—H21···F2xix0.78 (2)1.95 (2)2.7227 (13)167 (2)
O2—H22···F4xxi0.82 (2)1.92 (2)2.7362 (13)173 (2)
O2—H22···F6xxii0.82 (2)2.76 (2)3.1924 (14)114.9 (17)
O3—H31···F1xxiii0.80 (3)2.86 (3)3.2552 (16)113.3 (19)
O3—H31···F5xxiv0.80 (3)1.92 (3)2.7019 (14)168 (2)
O3—H32···F3iv0.80 (3)3.00 (2)3.4527 (16)119 (2)
O3—H32···F6xxv0.80 (3)1.97 (3)2.7427 (15)163 (2)
Symmetry codes: (iv) x, y, z; (xi) x+1/2, y1/2, z+1/2; (xix) x+1/2, y+1/2, z1/2; (xx) x, y+1, z; (xxi) x1, y+1, z; (xxii) x1, y, z; (xxiii) x1/2, y1/2, z1/2; (xxiv) x+1/2, y1/2, z1/2; (xxv) x1, y1, z.

Experimental details

Crystal data
Chemical formulaK2[Ni(H2O)6][ZrF6]2
Mr655.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)6.6090 (1), 10.0398 (1), 11.7843 (1)
β (°) 95.897 (1)
V3)777.79 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.20
Crystal size (mm)0.28 × 0.14 × 0.09
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.613, 0.748
No. of measured, independent and
observed [I > 2σ(I)] reflections
17267, 4436, 3858
Rint0.028
(sin θ/λ)max1)0.882
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.052, 1.06
No. of reflections4436
No. of parameters131
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.63, 0.57

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···F1i0.79 (3)2.94 (2)3.3300 (14)112.8 (19)
O1—H11···F2ii0.79 (3)1.92 (3)2.6877 (14)164 (2)
O1—H12···F4iii0.82 (3)1.82 (3)2.6375 (13)177 (2)
O1—H12···F5iv0.82 (3)2.61 (2)3.0526 (13)116 (2)
O2—H21···F1i0.78 (2)2.59 (2)3.0048 (13)115 (2)
O2—H21···F2ii0.78 (2)1.95 (2)2.7227 (13)167 (2)
O2—H22···F4v0.82 (2)1.92 (2)2.7362 (13)173 (2)
O2—H22···F6vi0.82 (2)2.76 (2)3.1924 (14)114.9 (17)
O3—H31···F1vii0.80 (3)2.86 (3)3.2552 (16)113.3 (19)
O3—H31···F5viii0.80 (3)1.92 (3)2.7019 (14)168 (2)
O3—H32···F3iv0.80 (3)3.00 (2)3.4527 (16)119 (2)
O3—H32···F6ix0.80 (3)1.97 (3)2.7427 (15)163 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x, y+1, z; (iv) x, y, z; (v) x1, y+1, z; (vi) x1, y, z; (vii) x1/2, y1/2, z1/2; (viii) x+1/2, y1/2, z1/2; (ix) x1, y1, z.
Comparison of the geometrical characteristics of the coordination polyhedra in isotypic MI2[MII(H2O)6][ZrF6]2 structures determined from single-crystal data (Å, °, Å3) top
K2[Ni(H2O)6][ZrF6]2aK2[Cu(H2O)6][ZrF6]2bK2[Zn(H2O)6][ZrF6]2cCs2[Zn(H2O)6][ZrF6]2d
Space groupP21/nP21/cP21/cP21/n
a6.6090 (1)6.631 (6)6.631 (1)6.970 (1)
b10.0398 (1)9.981 (10)10.071 (1)10.515 (2)
c11.7843 (1)12.921 (12)12.952 (1)11.803 (2)
β95.897 (1)114.20 (15)114.96 (2)93.56 (3)
V777.786 (16)780.01 (1)784.16 (2)863.4 (3)
Ni—O1 = 2.0548 (10) (2×)Cu—O1 = 1.966 (4) (2×)Zn—O1 = 2.0856 (2) (2×)Zn—O3 = 2.096 (6) (2×)
Distances MII—ONi—O3 = 2.0570 (11) (2×)Cu—O2 = 2.025 (6) (2×)Zn—O2 = 2.0940 (1) (2×)Zn—O1 = 2.099 (5) (2×)
Ni—O2 = 2.0781 (9) (2×)Cu—O3 = 2.327 (5) (2×)Zn—O3 = 2.1185 (2) (2×)Zn—O2 = 2.105 (5) (2×)
Average MII—O bond length2.0632.1062.0992.100
Polyhedral volume11.68412.33512.31812.341
Distortion index (bond length)0.004830.060890.006070.00156
Quadratic elongation1.00131.01241.00111.0006
Zr—F6 = 1.9718 (9)Zr—F3 = 1.968 (5)Zr—F3 = 1.9727 (3)Zr—F3 = 1.962 (5)
Zr—F5 = 2.0006 (8)Zr—F1 = 2.004 (5)Zr—F1 = 2.0018 (3)Zr—F6 = 1.977 (5)
Zr—F3 = 2.0293 (9)Zr—F5 = 2.029 (4)Zr—F5 = 2.0277 (3)Zr—F5 = 2.037 (5)
Distances Zr—F (Å)Zr—F2 = 2.0554 (8)Zr—F6 = 2.059 (4)Zr—F6 = 2.0570 (3)Zr—F4 = 2.067 (4)
Zr—F1 = 2.0708 (8)Zr—F2 = 2.063 (4)Zr—F2 = 2.0668 (4)Zr—F2 = 2.069 (4)
Zr—F4 = 2.1468 (9)Zr—F4 = 2.156 (5)Zr—F4 = 2.1501 (4)Zr—F1 = 2.156 (4)
Zr—F4 = 2.1614 (8)Zr—F4 = 2.160 (4)Zr—F4 = 2.1628 (4)Zr—F1 = 2.180 (4)
Average Zr—F bond length2.0622.0632.0632.064
Polyhedral volume13.66913.67413.67513.692
Distortion index (bond length)0.026620.026500.026540.02985
K—F5 = 2.6496 (10)K—F1 = 2.668 (5)K—F1 = 2.6506 (3)Cs—F6 = 2.911 (5)
K—F3 = 2.7366 (9)K—F6 = 2.750 (6)K—F2 = 2.7395 (4)Cs—F4 = 3.046 (4)
K—F6 = 2.7603 (11)K—F3 = 2.756 (5)K—F5 = 2.7633 (2)Cs—F2 = 3.057 (4)
Distances K—F/OK—F2 = 2.7658 (9)K—F5 = 2.767 (5)K—F6 = 2.7739 (2)Cs—F3 = 3.065 (5)
K—F1 = 2.7895 (9)K—F2 = 2.799 (5)K—F3 = 2.8094 (2)Cs—F3 = 3.102 (5)
K—O2 = 2.8927 (10)K—O3 = 2.942 (5)K—O1 = 2.8968 (3)Cs—O2 = 3.218 (5)
K—O1 = 3.1012 (10)K—O1 = 2.980 (5)K—O2 = 3.0873 (5)Cs—O1 = 3.236 (5)
K—F6 = 3.1684 (12)K—F3 = 3.1307 (7)K—F3 = 3.1707 (7)Cs—F5 = 3.228 (6)
Average MI—F/O bond length2.8582.8492.8613.118
Polyhedral volume38.45838.15838.56948.130
Distortion index (bond length)0.051460.044290.049840.02627
Notes: (a) this work; (b) Fischer & Weiss (1973); (c) Bukvetskii et al. (1993); (d) Hitchman et al. (2002).
 

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBukvetskii, B. V., Gerasimenko, A. V., Davidovich, R. L., Kaidalova, T. A. & Teplukhina, L. V. (1993). Koord. Khim. 19, 526–528.  CAS Google Scholar
First citationDavidovich, R. L. (1998). Russ. J. Coord. Chem. 24, 751–768.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFischer, J. & Weiss, R. (1973). Acta Cryst. B29, 1958–1962.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHitchman, M. A., Yablokov, Yu. V., Petrashen, V. E., Augustyniak-Jublokov, M. A., Stratemeier, H., Riley, M. J., Lukaszewicz, K., Tomaszewski, P. E. & Pietraszko, A. (2002). Inorg. Chem. 41, 229–238.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMomma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds