organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-Benzyl-2-cyano-3-phenyl­acryl­amide

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: kangtairan@yahoo.com.cn

(Received 19 November 2010; accepted 26 November 2010; online 4 December 2010)

In the title compound, C17H14N2O, the N-benzyl­formamide and phenyl groups are located on the opposite sides of the C=C bond, showing an E configuration; the terminal phenyl rings are twisted to each other at a dihedral angle of 63.61 (7)°. Inter­molecular classical N—H⋯N and weak C—H⋯O hydrogen bonds occur in the crystal structure.

Related literature

For the use of malononitrile-containing compounds as building blocks in syntheses, see: Lee et al. (2002[Lee, S. U., Shin, C. G., Lee, C. K. & Lee, Y. S. (2002). J. Org. Chem. 67, 7019-7028.]); Rajan et al. (2001[Rajan, P., Vedernikova, I., Cos, P., Berghe, D. V., Augustyns, K. & Haemers, A. (2001). Bioorg. Med. Chem. Lett. 11, 215-217.]); Yingyongnarongkul et al. (2006[Yingyongnarongkul, B., Apriatikul, N., Aroonrerk, N. & Suksamrarn, A. (2006). Bioorg. Med. Chem. Lett. 16, 5870-5873.]). For a related structure, see: Kang & Chen (2009[Kang, T.-R. & Chen, L.-M. (2009). Acta Cryst. E65, o3164.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14N2O

  • Mr = 262.30

  • Triclinic, [P \overline 1]

  • a = 5.8956 (3) Å

  • b = 9.9224 (5) Å

  • c = 12.1400 (7) Å

  • α = 94.508 (5)°

  • β = 99.544 (4)°

  • γ = 98.895 (4)°

  • V = 687.95 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.64 mm−1

  • T = 291 K

  • 0.36 × 0.35 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.803, Tmax = 0.832

  • 5416 measured reflections

  • 2407 independent reflections

  • 2202 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.05

  • 2407 reflections

  • 185 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H4⋯N1i 0.88 (1) 2.24 (1) 3.0687 (14) 157 (1)
C3—H3⋯O1ii 0.93 2.36 3.2672 (16) 164
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The phenylacrylamide derivatives have broad application for the preparation of heterocyclic ring compounds. The phenylacrylamide derivatives was studied extensively, Rajan (Rajan et al.,2001) synthesized a series of phenylacrylamide derivatives and evaluated their antioxidant properties as lipid peroxidation inhibitors. Some phenylacrylamide derivatives and analogues were synthesized and studied antibacterial activity against S. aureus (Yingyongnarongkul et al.,2006). Some phenylacrylamide derivatives were synthesized for the purpose of simplifying the structure of L-chicoric acid as new HIV-1 integrase inhibitors (Lee et al., 2002).As an extension of this research, we report the synthesis and the crystal structure of the title compound (I), namely, (E)—N-benzyl-2-cyano-3-phenylacrylamide.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The dihedral angle between the C1—C6 and C12—C17 benzene planes is 63.62 (5)°. The crystal packing is stabilized by N—H···N an C—H···O hydrogen bonding (Table 1).

Related literature top

For the use of malononitrile-containing compounds as building blocks in syntheses, see: Lee et al. (2002); Rajan et al. (2001); Yingyongnarongkul et al. (2006). For a related structure, see: Kang & Chen (2009).

Experimental top

N-Benzyl-2-cyanoacetamide (0.258 g, 2 mmol) and benzaldehyde (0.212 g, 2 mmol) were dissolved in 2-propanol (2 ml). To the solution was added piperidine (0.017 g, 0.2 mmol),the solution was stirred for 24 h at 273 K and the solution was filtered to obtain a solid. Recrystallization from hot ethanol afforded the pure compound. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation ethanol solvent.

Refinement top

Imino H atom was located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions, with C—H = 0.93–0.97 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

The phenylacrylamide derivatives have broad application for the preparation of heterocyclic ring compounds. The phenylacrylamide derivatives was studied extensively, Rajan (Rajan et al.,2001) synthesized a series of phenylacrylamide derivatives and evaluated their antioxidant properties as lipid peroxidation inhibitors. Some phenylacrylamide derivatives and analogues were synthesized and studied antibacterial activity against S. aureus (Yingyongnarongkul et al.,2006). Some phenylacrylamide derivatives were synthesized for the purpose of simplifying the structure of L-chicoric acid as new HIV-1 integrase inhibitors (Lee et al., 2002).As an extension of this research, we report the synthesis and the crystal structure of the title compound (I), namely, (E)—N-benzyl-2-cyano-3-phenylacrylamide.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The dihedral angle between the C1—C6 and C12—C17 benzene planes is 63.62 (5)°. The crystal packing is stabilized by N—H···N an C—H···O hydrogen bonding (Table 1).

For the use of malononitrile-containing compounds as building blocks in syntheses, see: Lee et al. (2002); Rajan et al. (2001); Yingyongnarongkul et al. (2006). For a related structure, see: Kang & Chen (2009).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
(E)-N-Benzyl-2-cyano-3-phenylacrylamide top
Crystal data top
C17H14N2OZ = 2
Mr = 262.30F(000) = 276
Triclinic, P1Dx = 1.266 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 5.8956 (3) ÅCell parameters from 3956 reflections
b = 9.9224 (5) Åθ = 4.5–72.2°
c = 12.1400 (7) ŵ = 0.64 mm1
α = 94.508 (5)°T = 291 K
β = 99.544 (4)°Block, yellow
γ = 98.895 (4)°0.36 × 0.35 × 0.30 mm
V = 687.95 (6) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
2407 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2202 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 7.9575 pixels mm-1θmax = 67.1°, θmin = 4.5°
ω scansh = 67
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1111
Tmin = 0.803, Tmax = 0.832l = 1414
5416 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.101P]
where P = (Fo2 + 2Fc2)/3
2407 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.14 e Å3
2 restraintsΔρmin = 0.12 e Å3
Crystal data top
C17H14N2Oγ = 98.895 (4)°
Mr = 262.30V = 687.95 (6) Å3
Triclinic, P1Z = 2
a = 5.8956 (3) ÅCu Kα radiation
b = 9.9224 (5) ŵ = 0.64 mm1
c = 12.1400 (7) ÅT = 291 K
α = 94.508 (5)°0.36 × 0.35 × 0.30 mm
β = 99.544 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
2407 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2202 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.832Rint = 0.018
5416 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.14 e Å3
2407 reflectionsΔρmin = 0.12 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28178 (15)0.43568 (9)0.56771 (8)0.0523 (3)
N20.53117 (17)0.28418 (10)0.58336 (8)0.0424 (3)
C40.2206 (2)0.19407 (12)0.31358 (9)0.0398 (3)
C120.7670 (2)0.35036 (12)0.77490 (10)0.0413 (3)
N10.2529 (2)0.02233 (11)0.42829 (10)0.0556 (3)
C80.1591 (2)0.22182 (11)0.45635 (9)0.0371 (3)
C30.3994 (2)0.26728 (13)0.27993 (11)0.0471 (3)
H30.39040.35630.31280.056*
C90.20860 (19)0.08566 (12)0.43834 (10)0.0405 (3)
C70.0298 (2)0.26411 (11)0.40119 (10)0.0389 (3)
H70.04090.35450.42290.047*
C110.7242 (2)0.37901 (13)0.65408 (11)0.0458 (3)
H11A0.69180.47170.65090.055*
H11B0.86530.37450.62370.055*
C100.32978 (19)0.32315 (11)0.54175 (9)0.0375 (3)
C20.5896 (2)0.20970 (15)0.19856 (12)0.0570 (4)
H20.70800.25960.17760.068*
C170.9529 (2)0.28819 (16)0.81647 (12)0.0576 (4)
H171.05180.26340.76910.069*
C150.8499 (3)0.29793 (18)0.99859 (13)0.0689 (4)
H150.87780.28041.07330.083*
C130.6229 (2)0.38575 (14)0.84780 (12)0.0536 (3)
H130.49670.42760.82160.064*
C50.2386 (3)0.06160 (14)0.26135 (12)0.0579 (4)
H50.12090.01090.28130.069*
C60.4295 (3)0.00533 (15)0.18032 (13)0.0666 (4)
H60.44040.08350.14670.080*
C140.6643 (3)0.35969 (16)0.95881 (13)0.0646 (4)
H140.56610.38401.00670.078*
C10.6041 (3)0.07908 (15)0.14864 (12)0.0613 (4)
H10.73180.04050.09350.074*
C160.9936 (3)0.26243 (19)0.92760 (14)0.0727 (5)
H161.11950.22060.95430.087*
H40.556 (2)0.2006 (13)0.5647 (12)0.054 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0492 (5)0.0412 (5)0.0618 (6)0.0158 (4)0.0034 (4)0.0101 (4)
N20.0437 (6)0.0402 (5)0.0415 (6)0.0134 (4)0.0015 (4)0.0002 (4)
C40.0431 (6)0.0387 (6)0.0364 (6)0.0082 (5)0.0028 (5)0.0033 (5)
C120.0383 (6)0.0394 (6)0.0423 (6)0.0043 (5)0.0002 (5)0.0003 (5)
N10.0566 (7)0.0418 (6)0.0664 (7)0.0175 (5)0.0001 (5)0.0008 (5)
C80.0409 (6)0.0347 (5)0.0360 (6)0.0089 (4)0.0059 (5)0.0023 (4)
C30.0502 (7)0.0461 (7)0.0434 (7)0.0138 (5)0.0008 (5)0.0012 (5)
C90.0406 (6)0.0386 (6)0.0406 (6)0.0097 (5)0.0006 (5)0.0016 (5)
C70.0436 (6)0.0345 (6)0.0388 (6)0.0098 (5)0.0061 (5)0.0016 (5)
C110.0398 (6)0.0491 (7)0.0459 (7)0.0060 (5)0.0021 (5)0.0051 (5)
C100.0405 (6)0.0370 (6)0.0355 (6)0.0100 (5)0.0059 (5)0.0033 (4)
C20.0504 (8)0.0660 (9)0.0508 (8)0.0160 (6)0.0066 (6)0.0042 (6)
C170.0460 (7)0.0747 (9)0.0524 (8)0.0190 (6)0.0018 (6)0.0059 (7)
C150.0760 (10)0.0812 (11)0.0422 (8)0.0034 (8)0.0028 (7)0.0101 (7)
C130.0560 (8)0.0536 (8)0.0543 (8)0.0179 (6)0.0109 (6)0.0049 (6)
C50.0632 (8)0.0441 (7)0.0597 (8)0.0163 (6)0.0101 (7)0.0042 (6)
C60.0784 (10)0.0460 (8)0.0625 (9)0.0067 (7)0.0133 (8)0.0094 (7)
C140.0777 (10)0.0672 (9)0.0505 (8)0.0113 (8)0.0197 (7)0.0003 (7)
C10.0586 (8)0.0619 (9)0.0514 (8)0.0007 (7)0.0119 (6)0.0010 (7)
C160.0598 (9)0.0964 (13)0.0599 (9)0.0238 (8)0.0093 (7)0.0186 (9)
Geometric parameters (Å, º) top
O1—C101.2240 (13)C11—H11B0.9700
N2—C101.3372 (14)C2—C11.371 (2)
N2—C111.4612 (15)C2—H20.9300
N2—H40.884 (12)C17—C161.382 (2)
C4—C51.3945 (17)C17—H170.9300
C4—C31.3954 (16)C15—C161.368 (2)
C4—C71.4574 (16)C15—C141.373 (2)
C12—C171.3824 (17)C15—H150.9300
C12—C131.3862 (18)C13—C141.381 (2)
C12—C111.5036 (17)C13—H130.9300
N1—C91.1435 (15)C5—C61.3781 (19)
C8—C71.3443 (16)C5—H50.9300
C8—C91.4334 (15)C6—C11.374 (2)
C8—C101.5084 (16)C6—H60.9300
C3—C21.3803 (18)C14—H140.9300
C3—H30.9300C1—H10.9300
C7—H70.9300C16—H160.9300
C11—H11A0.9700
C10—N2—C11122.18 (10)C1—C2—C3120.08 (13)
C10—N2—H4120.6 (9)C1—C2—H2120.0
C11—N2—H4117.1 (9)C3—C2—H2120.0
C5—C4—C3117.89 (11)C16—C17—C12120.79 (14)
C5—C4—C7125.69 (11)C16—C17—H17119.6
C3—C4—C7116.41 (10)C12—C17—H17119.6
C17—C12—C13118.10 (12)C16—C15—C14119.57 (14)
C17—C12—C11120.65 (12)C16—C15—H15120.2
C13—C12—C11121.25 (11)C14—C15—H15120.2
C7—C8—C9123.69 (10)C14—C13—C12120.87 (13)
C7—C8—C10118.37 (10)C14—C13—H13119.6
C9—C8—C10117.94 (9)C12—C13—H13119.6
C2—C3—C4121.03 (12)C6—C5—C4120.46 (12)
C2—C3—H3119.5C6—C5—H5119.8
C4—C3—H3119.5C4—C5—H5119.8
N1—C9—C8177.26 (13)C1—C6—C5120.71 (13)
C8—C7—C4131.72 (10)C1—C6—H6119.6
C8—C7—H7114.1C5—C6—H6119.6
C4—C7—H7114.1C15—C14—C13120.19 (14)
N2—C11—C12113.92 (10)C15—C14—H14119.9
N2—C11—H11A108.8C13—C14—H14119.9
C12—C11—H11A108.8C2—C1—C6119.82 (13)
N2—C11—H11B108.8C2—C1—H1120.1
C12—C11—H11B108.8C6—C1—H1120.1
H11A—C11—H11B107.7C15—C16—C17120.48 (14)
O1—C10—N2123.51 (11)C15—C16—H16119.8
O1—C10—C8119.71 (10)C17—C16—H16119.8
N2—C10—C8116.76 (10)
C5—C4—C3—C20.8 (2)C9—C8—C10—N28.94 (16)
C7—C4—C3—C2179.17 (12)C4—C3—C2—C10.6 (2)
C7—C8—C9—N1153 (3)C13—C12—C17—C160.1 (2)
C10—C8—C9—N127 (3)C11—C12—C17—C16179.64 (13)
C9—C8—C7—C41.4 (2)C17—C12—C13—C140.1 (2)
C10—C8—C7—C4178.30 (11)C11—C12—C13—C14179.67 (12)
C5—C4—C7—C84.2 (2)C3—C4—C5—C60.9 (2)
C3—C4—C7—C8175.79 (12)C7—C4—C5—C6179.10 (14)
C10—N2—C11—C12109.92 (13)C4—C5—C6—C10.7 (3)
C17—C12—C11—N2104.01 (14)C16—C15—C14—C130.0 (3)
C13—C12—C11—N276.26 (15)C12—C13—C14—C150.0 (2)
C11—N2—C10—O17.34 (18)C3—C2—C1—C60.4 (2)
C11—N2—C10—C8171.11 (10)C5—C6—C1—C20.5 (3)
C7—C8—C10—O17.69 (17)C14—C15—C16—C170.0 (3)
C9—C8—C10—O1172.55 (11)C12—C17—C16—C150.1 (3)
C7—C8—C10—N2170.82 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H4···N1i0.88 (1)2.24 (1)3.0687 (14)157 (1)
C3—H3···O1ii0.932.363.2672 (16)164
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H14N2O
Mr262.30
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)5.8956 (3), 9.9224 (5), 12.1400 (7)
α, β, γ (°)94.508 (5), 99.544 (4), 98.895 (4)
V3)687.95 (6)
Z2
Radiation typeCu Kα
µ (mm1)0.64
Crystal size (mm)0.36 × 0.35 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3 Gemini ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.803, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
5416, 2407, 2202
Rint0.018
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.05
No. of reflections2407
No. of parameters185
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.12

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H4···N1i0.884 (12)2.238 (13)3.0687 (14)156.5 (12)
C3—H3···O1ii0.932.3633.2672 (16)164
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Testing Centre of the Sichuan University for the diffraction measurements and are grateful for financial support from China West Normal University (No. 412374).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKang, T.-R. & Chen, L.-M. (2009). Acta Cryst. E65, o3164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, S. U., Shin, C. G., Lee, C. K. & Lee, Y. S. (2002). J. Org. Chem. 67, 7019–7028.  Web of Science PubMed Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRajan, P., Vedernikova, I., Cos, P., Berghe, D. V., Augustyns, K. & Haemers, A. (2001). Bioorg. Med. Chem. Lett. 11, 215–217.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYingyongnarongkul, B., Apriatikul, N., Aroonrerk, N. & Suksamrarn, A. (2006). Bioorg. Med. Chem. Lett. 16, 5870–5873.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds