organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-2-[(2,4-Di­methyl­phen­yl)imino]-1,3-thia­zinan-4-one

aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
*Correspondence e-mail: zhr0103@zju.edu.cn

(Received 22 November 2010; accepted 6 December 2010; online 11 December 2010)

In the title compound, C12H14N2OS, the 1,3-thia­zinane ring displays a screw-boat conformation. In the crystal, pairs of centrosymmetrically related mol­ecules are linked by pairs of N—H⋯O hydrogen bonds into dimers. C—H⋯π inter­actions occur between adjacent dimers.

Related literature

For pharmaceutical applications of 4-thia­zinones, see: Mogilaiah et al. (1999[Mogilaiah, K., Reddy, P., Raghotham, R. & Babu, R. (1999). Indian J. Chem. Sect. B, 38, 495-500.]); Turkevich et al., 1977)[Turkevich, N. M., Kolosova, L. G., Boikiv, D. P., Avgustinovich, M. S. & Vyshemirskaya, L. D. (1977). Farm. Zh. Kiev, 5, 55-60.]. For the synthesis, see: Mansuroğlu et al. (2009[Mansuroğlu, D. S., Arslan, H., Van Derveer, D. & Binzet, G. (2009). Phosphorus, Sulfur Silicon. 184, 3221-3230.]); Schroth et al. (1977[Schroth, W., Herrmann, J., Feustel, C., Schmidt, S. & Jamil, K. M. (1977). Arch. Pharm. 32, 461-465.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N2OS

  • Mr = 234.31

  • Triclinic, [P \overline 1]

  • a = 7.2325 (4) Å

  • b = 9.2000 (7) Å

  • c = 10.0513 (7) Å

  • α = 114.184 (7)°

  • β = 94.647 (5)°

  • γ = 97.910 (5)°

  • V = 597.27 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.48 × 0.28 × 0.23 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.919, Tmax = 0.944

  • 4061 measured reflections

  • 2188 independent reflections

  • 1569 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.115

  • S = 1.06

  • 2188 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.08 2.900 (3) 161
C1—H1CCg2ii 0.96 2.72 3.591 (3) 152
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+2, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

4-Thiazinones have remarkable biological activities such as antithyroid (Turkevich et al., 1977) and antimicrobial activity (Mogilaiah et al., 1999). We report here the structure of a new derivative of 4-thiazinones (Fig. 1).

In the title compound, the thiazine ring is non-planar. Theoretically, there may be two tautomers according to the title compound, the C=N double bond can exist between C9 and N1 or between C9 and N2, however, from the experimental data, the bond length 1.264 (3) Å indicates that the double bond between C9 and N1. Intermolecular N—H···O hydrogen bonds (Table 1), link two molecules to form a dimer, and the dimer forms two-dimensional supra-molecular layers.

Related literature top

For pharmaceutical applications of 4-thiazinones, see: Mogilaiah et al. (1999); Turkevich et al., 1977). For the synthesis, see: Mansuroğlu et al. (2009); Schroth et al. (1977).

Experimental top

The title compound was prepared according to the procedure reported by Mansuroğlu et al. (2009) and Schroth et al. (1977). A solution of 3-chloropropionyl chloride (0.125 g,1 mmol) in acetone (5 ml) was added dropwise to a suspension of potassium thiocyanate (0.145 g,1.5 mmol).The reaction mixture was heated under reflux for 30 min and then cooled to room temperature. A solution of 2,4-dimethylaniline (0.121 g,1 mmol) in acetone (3 ml) was added to the mixture during a period of 15 min at room temperature and the mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 30 ml) was added, and the solution was filtered. The solid product N-(3-chloropropionyl)-N'-(2,4-dimethylphenyl)thiourea was washed with water and purified by recrystallization from ethanol:dichloromethane(1:1) mixture. Then the thiourea (0.216 g, 0.8 mmol) was put in a 50 ml flask. Toluene (30 ml) and acetone (2 ml) were added to the flask. The solution of thiourea was refluxed for 4 h. On completion, cool the reaction mixture, vaporize the solvent under reduced pressure, we can get the crude product, then, the crude product is chromatographed on silica gel (eluent, petroleum ether:ethyl acetate=1:1). Recrystallization of the product from ethanol gave white crystalline solids.

Refinement top

H atoms were placed in calculated positions and refined using a riding model, with C–H = 0.93–0.96 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N)

Structure description top

4-Thiazinones have remarkable biological activities such as antithyroid (Turkevich et al., 1977) and antimicrobial activity (Mogilaiah et al., 1999). We report here the structure of a new derivative of 4-thiazinones (Fig. 1).

In the title compound, the thiazine ring is non-planar. Theoretically, there may be two tautomers according to the title compound, the C=N double bond can exist between C9 and N1 or between C9 and N2, however, from the experimental data, the bond length 1.264 (3) Å indicates that the double bond between C9 and N1. Intermolecular N—H···O hydrogen bonds (Table 1), link two molecules to form a dimer, and the dimer forms two-dimensional supra-molecular layers.

For pharmaceutical applications of 4-thiazinones, see: Mogilaiah et al. (1999); Turkevich et al., 1977). For the synthesis, see: Mansuroğlu et al. (2009); Schroth et al. (1977).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2008); cell refinement: CrysAlis PRO (Oxford Diffraction, 2008); data reduction: CrysAlis PRO (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 40% probability displacement ellipsoids.
(Z)-2-[(2,4-Dimethylphenyl)imino]-1,3-thiazinan-4-one top
Crystal data top
C12H14N2OSZ = 2
Mr = 234.31F(000) = 248
Triclinic, P1Dx = 1.303 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2325 (4) ÅCell parameters from 1436 reflections
b = 9.2000 (7) Åθ = 2.8–29.2°
c = 10.0513 (7) ŵ = 0.25 mm1
α = 114.184 (7)°T = 293 K
β = 94.647 (5)°Block, colorless
γ = 97.910 (5)°0.48 × 0.28 × 0.23 mm
V = 597.27 (7) Å3
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
2188 independent reflections
Radiation source: fine-focus sealed tube1569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.3592 pixels mm-1θmax = 25.4°, θmin = 2.9°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2008)
k = 1011
Tmin = 0.919, Tmax = 0.944l = 129
4061 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.175P]
where P = (Fo2 + 2Fc2)/3
2188 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C12H14N2OSγ = 97.910 (5)°
Mr = 234.31V = 597.27 (7) Å3
Triclinic, P1Z = 2
a = 7.2325 (4) ÅMo Kα radiation
b = 9.2000 (7) ŵ = 0.25 mm1
c = 10.0513 (7) ÅT = 293 K
α = 114.184 (7)°0.48 × 0.28 × 0.23 mm
β = 94.647 (5)°
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
2188 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2008)
1569 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.944Rint = 0.026
4061 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.06Δρmax = 0.21 e Å3
2188 reflectionsΔρmin = 0.28 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55185 (9)0.52363 (7)0.33010 (8)0.0523 (3)
O10.8076 (2)1.03840 (19)0.5892 (2)0.0549 (5)
N10.9131 (3)0.5481 (2)0.2917 (2)0.0440 (5)
N20.8280 (3)0.7918 (2)0.4195 (2)0.0421 (5)
H20.92360.83760.39610.051*
C10.7441 (4)0.1475 (3)0.0075 (4)0.0823 (11)
H1A0.61450.18360.03860.123*
H1B0.76500.18920.07970.123*
H1C0.82470.18630.06580.123*
C20.7884 (3)0.0354 (3)0.0820 (3)0.0518 (7)
C30.8622 (4)0.1187 (3)0.2294 (3)0.0580 (8)
H30.88500.06150.28480.070*
C40.9027 (4)0.2862 (3)0.2960 (3)0.0501 (7)
H40.95520.34030.39520.060*
C50.8663 (3)0.3743 (3)0.2171 (3)0.0399 (6)
C60.7938 (3)0.2946 (3)0.0679 (3)0.0445 (6)
C70.7569 (3)0.1258 (3)0.0048 (3)0.0540 (8)
H70.70820.07100.09510.065*
C80.7535 (4)0.3858 (4)0.0223 (3)0.0680 (9)
H8B0.79620.33630.11580.102*
H8C0.81840.49640.02930.102*
H8A0.62010.38290.03790.102*
C90.7833 (3)0.6224 (3)0.3455 (3)0.0360 (6)
C100.4370 (3)0.6924 (3)0.4178 (3)0.0544 (7)
H10B0.40740.73840.34910.065*
H10A0.31910.65450.44330.065*
C110.5592 (3)0.8223 (3)0.5554 (3)0.0477 (7)
H11B0.48930.90780.60240.057*
H11A0.58830.77600.62390.057*
C120.7393 (3)0.8938 (3)0.5241 (3)0.0399 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0440 (4)0.0327 (4)0.0669 (5)0.0023 (3)0.0113 (3)0.0090 (3)
O10.0525 (11)0.0270 (9)0.0719 (13)0.0066 (8)0.0125 (9)0.0076 (9)
N10.0416 (12)0.0317 (11)0.0496 (13)0.0072 (9)0.0078 (10)0.0080 (10)
N20.0430 (12)0.0269 (10)0.0518 (13)0.0043 (8)0.0119 (10)0.0122 (10)
C10.0548 (19)0.0368 (16)0.125 (3)0.0045 (14)0.0134 (19)0.0060 (18)
C20.0361 (14)0.0315 (14)0.071 (2)0.0091 (11)0.0085 (13)0.0047 (14)
C30.0553 (17)0.0445 (16)0.076 (2)0.0150 (13)0.0086 (15)0.0258 (16)
C40.0546 (16)0.0413 (15)0.0446 (16)0.0119 (12)0.0002 (12)0.0094 (13)
C50.0353 (13)0.0336 (13)0.0439 (15)0.0107 (10)0.0076 (11)0.0081 (12)
C60.0384 (14)0.0434 (15)0.0439 (16)0.0091 (11)0.0055 (11)0.0108 (13)
C70.0403 (15)0.0465 (16)0.0502 (17)0.0053 (12)0.0024 (12)0.0023 (14)
C80.075 (2)0.075 (2)0.0517 (19)0.0139 (17)0.0047 (15)0.0268 (17)
C90.0401 (13)0.0299 (12)0.0344 (13)0.0056 (10)0.0024 (10)0.0110 (11)
C100.0406 (15)0.0461 (15)0.0656 (19)0.0094 (12)0.0104 (13)0.0123 (14)
C110.0487 (15)0.0364 (14)0.0521 (17)0.0107 (11)0.0135 (12)0.0112 (13)
C120.0425 (14)0.0312 (13)0.0440 (15)0.0101 (11)0.0042 (11)0.0133 (12)
Geometric parameters (Å, º) top
S1—C91.754 (2)C4—C51.381 (4)
S1—C101.798 (3)C4—H40.9300
O1—C121.223 (3)C5—C61.388 (3)
N1—C91.264 (3)C6—C71.391 (3)
N1—C51.436 (3)C6—C81.503 (4)
N2—C121.365 (3)C7—H70.9300
N2—C91.400 (3)C8—H8B0.9600
N2—H20.8600C8—H8C0.9600
C1—C21.509 (3)C8—H8A0.9600
C1—H1A0.9600C10—C111.510 (3)
C1—H1B0.9600C10—H10B0.9700
C1—H1C0.9600C10—H10A0.9700
C2—C71.378 (4)C11—C121.492 (3)
C2—C31.378 (4)C11—H11B0.9700
C3—C41.381 (3)C11—H11A0.9700
C3—H30.9300
C9—S1—C10101.58 (11)C2—C7—H7118.2
C9—N1—C5117.4 (2)C6—C7—H7118.2
C12—N2—C9128.4 (2)C6—C8—H8B109.5
C12—N2—H2115.8C6—C8—H8C109.5
C9—N2—H2115.8H8B—C8—H8C109.5
C2—C1—H1A109.5C6—C8—H8A109.5
C2—C1—H1B109.5H8B—C8—H8A109.5
H1A—C1—H1B109.5H8C—C8—H8A109.5
C2—C1—H1C109.5N1—C9—N2117.8 (2)
H1A—C1—H1C109.5N1—C9—S1123.15 (18)
H1B—C1—H1C109.5N2—C9—S1119.04 (17)
C7—C2—C3117.3 (2)C11—C10—S1111.74 (18)
C7—C2—C1121.2 (3)C11—C10—H10B109.3
C3—C2—C1121.5 (3)S1—C10—H10B109.3
C2—C3—C4120.9 (3)C11—C10—H10A109.3
C2—C3—H3119.6S1—C10—H10A109.3
C4—C3—H3119.6H10B—C10—H10A107.9
C3—C4—C5120.7 (3)C12—C11—C10112.6 (2)
C3—C4—H4119.6C12—C11—H11B109.1
C5—C4—H4119.6C10—C11—H11B109.1
C4—C5—C6120.0 (2)C12—C11—H11A109.1
C4—C5—N1118.3 (2)C10—C11—H11A109.1
C6—C5—N1121.6 (2)H11B—C11—H11A107.8
C5—C6—C7117.3 (3)O1—C12—N2120.2 (2)
C5—C6—C8121.7 (2)O1—C12—C11122.0 (2)
C7—C6—C8120.9 (2)N2—C12—C11117.8 (2)
C2—C7—C6123.7 (3)
C7—C2—C3—C40.1 (4)C8—C6—C7—C2179.1 (2)
C1—C2—C3—C4179.7 (3)C5—N1—C9—N2179.5 (2)
C2—C3—C4—C51.4 (4)C5—N1—C9—S11.1 (3)
C3—C4—C5—C62.1 (4)C12—N2—C9—N1156.8 (2)
C3—C4—C5—N1179.4 (2)C12—N2—C9—S123.7 (3)
C9—N1—C5—C494.8 (3)C10—S1—C9—N1177.0 (2)
C9—N1—C5—C687.9 (3)C10—S1—C9—N22.4 (2)
C4—C5—C6—C71.4 (4)C9—S1—C10—C1141.6 (2)
N1—C5—C6—C7178.6 (2)S1—C10—C11—C1262.2 (3)
C4—C5—C6—C8179.6 (2)C9—N2—C12—O1172.6 (2)
N1—C5—C6—C82.4 (4)C9—N2—C12—C117.2 (4)
C3—C2—C7—C60.6 (4)C10—C11—C12—O1141.7 (2)
C1—C2—C7—C6179.6 (2)C10—C11—C12—N238.5 (3)
C5—C6—C7—C20.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.082.900 (3)161
C1—H1C···Cg2ii0.962.723.591 (3)152
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC12H14N2OS
Mr234.31
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2325 (4), 9.2000 (7), 10.0513 (7)
α, β, γ (°)114.184 (7), 94.647 (5), 97.910 (5)
V3)597.27 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.48 × 0.28 × 0.23
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2008)
Tmin, Tmax0.919, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
4061, 2188, 1569
Rint0.026
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.115, 1.06
No. of reflections2188
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.28

Computer programs: CrysAlis PRO (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.0752.900 (3)161
C1—H1C···Cg2ii0.962.7163.591 (3)152
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of Zhejiang Province, China, for financial support (grant No. Y4080234).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMansuroğlu, D. S., Arslan, H., Van Derveer, D. & Binzet, G. (2009). Phosphorus, Sulfur Silicon. 184, 3221–3230.  Google Scholar
First citationMogilaiah, K., Reddy, P., Raghotham, R. & Babu, R. (1999). Indian J. Chem. Sect. B, 38, 495–500.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSchroth, W., Herrmann, J., Feustel, C., Schmidt, S. & Jamil, K. M. (1977). Arch. Pharm. 32, 461–465.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurkevich, N. M., Kolosova, L. G., Boikiv, D. P., Avgustinovich, M. S. & Vyshemirskaya, L. D. (1977). Farm. Zh. Kiev, 5, 55–60.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds