organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Hy­dr­oxy-3-meth­­oxy­benz­yl)-1,3-thia­zolidine-2,4-dione monohydrate

aNew Drug Research Center, School of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China, bSchool of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, People's Republic of China, and cDepartment of Medicine, The General Hospital of Beijing Military Command, Beijing 100700, People's Republic of China.
*Correspondence e-mail: zhangchuan@smmu.edu.cn

(Received 22 November 2010; accepted 29 November 2010; online 4 December 2010)

In the title compound, C11H11NO4S·H2O, the five-membered thia­zolidine ring is nearly planar, with a maximum deviation of 0.010 (2) Å. The dihedral angle between the thia­zolidine and benzene rings is 49.16 (9)°. Inter­molecular O—H⋯O and N—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For the therapeutic and pharmacological properties of thia­zolidinediones, see: Day (1999[Day, C. (1999). Diabet. Med. 16, 179-192.]); Spiegelman (1998[Spiegelman, B. M. (1998). Diabetes, 47, 507-514.]). For the synthesis of the title compound, see: Madhavan et al. (2002[Madhavan, G. R., Chakrabarti, R., Vikramadithyan, R. K., Mamidi, R. N. V. S., Balraju, V., Rajesh, B. M., Misra, P., Kumar, S. K. B., Lohray, B. B., Lohraya, V. B. & Rajagopalan, R. (2002). Bioorg. Med. Chem. 10, 2671-2680.]); Shoda et al. (1983[Shoda, T., Mizuno, K., Hirata, T., Maki, Y. & Kawamatsu, Y. (1983). Chem. Pharm. Bull. 31, 560-569.]). For related structures, see: Divjaković et al. (1991[Divjaković, V., Popov-Pergal, K., Pergal, M. & Klement, U. (1991). Acta Cryst. C47, 1760-1761.]); Yathirajan et al. (2005[Yathirajan, H. S., Rai, K. M. L., Gaonkar, S. L., Narasegowda, R. S., Prabhuswamy, B. & Bolte, M. (2005). Acta Cryst. E61, o245-o246.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11NO4S·H2O

  • Mr = 271.28

  • Monoclinic, P 21 /n

  • a = 10.684 (4) Å

  • b = 8.151 (3) Å

  • c = 14.747 (5) Å

  • β = 99.657 (4)°

  • V = 1266.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.960, Tmax = 0.974

  • 4985 measured reflections

  • 2226 independent reflections

  • 1902 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.05

  • 2226 reflections

  • 171 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2i 0.86 2.03 2.886 (2) 174
O4—H4A⋯O5ii 0.82 1.87 2.685 (2) 171
O5—H5A⋯O3 0.82 (5) 2.19 (5) 2.962 (2) 156 (4)
O5—H5A⋯O4 0.82 (5) 2.37 (4) 2.947 (2) 127 (4)
O5—H5B⋯O1iii 0.85 (3) 1.97 (3) 2.795 (3) 163 (3)
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiazolidinediones (TZDs), which are known to sensitize tissues to insulin, have been developed and clinically used as antidiabetic agents. They have been shown to reduce plasma glucose, lipid, and insulin levels, and used for the treatment of type 2 diabetes (Day, 1999; Spiegelman, 1998). Prompted by the activity of TZDs, we have synthesized the title compound to study its crystal structure.

The asymmetric unit contains a 5-(4-hydroxy-3-methoxybenzyl)thiazolidine-2,4-dione molecule and a solvate water molecule (Fig. 1). The geometric parameter of the title compoundare to its related structures (Divjakovic et al., 1991; Yathirajan et al., 2005). The dihedral angle between the thiazolidinedione ring [S1/C2/N3/C4/C5] and the benzene ring [C7–C12] is 49.16 (9)°. In the crystal packing (Fig. 2), the molecules are linked via intermolecular N1—H1···O2 hydrogen bonds. In addition, the molecule is connected to the water molecule by O5—H5···O1, O5—H5···O4, O5—H5···O3 and O4—H4···O5 hydrogen bonds which generate a three dimensional network (Table 1).

Related literature top

For the therapeutic and pharmacological properties of thiazolidinediones, see: Day (1999); Spiegelman (1998). For the synthesis of the title compound, see: Madhavan et al. (2002); Shoda et al. (1983). For related structures, see: Divjaković et al. (1991); Yathirajan et al. (2005).

Experimental top

A mixture of 2,4-tThiazolidinedione (3.51 g, 0.03 mol), 4-hydroxy-3-methoxybenzaldehyde (4.56 g, 0.03 mol), acetic acid (0.18 g, 0.003 mol) and piperidine (0.26 g, 0.003 mol) in toluene (60 ml) was refluxed for 5 h with continuous removal of water. The reaction mixture was cooled to room temperature and the resultant crystalline compound was filtered and washed with water and dried to afford the (Z)-5-(4-hydroxy-3-methoxybenzylidene)thiazolidine-2,4-dione. Yield=7.33 g, 97.3%. To a solution of (Z)-5-(4-hydroxy-3-methoxybenzylidene) thiazolidine-2,4-dione (4 g, 0.016 mol) in 1,4-dioxane (400 ml), hydrogenated in the presence of 10% Pd/C (1.0 g) at 60 psi for 24 h. The mixture was filtered through a bed of Celite. The filtrate was evaporated under reduced pressure and purified by column chromatography using 50:1 CH2Cl2/MeOH to afford the title compound as yellowish solid. Yield = 1.96 g, 48.6% (Madhavan et al., 2002; Shoda et al., 1983). Crystallization of the product was carried out by dissolving the product in 10 ml a solvent mixture of MeOH and water (4:1) at room temperature.

Refinement top

Water H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and refined using the riding-model approximation with C—H = 0.93–0.97, O—H = 0.82 and N—H = 0.86 Å, and Uiso(H) = 1.5Ueq(C,O) for methyl H and hydroxy H atoms and 1.2Ueq(C,N) for the others.

Structure description top

Thiazolidinediones (TZDs), which are known to sensitize tissues to insulin, have been developed and clinically used as antidiabetic agents. They have been shown to reduce plasma glucose, lipid, and insulin levels, and used for the treatment of type 2 diabetes (Day, 1999; Spiegelman, 1998). Prompted by the activity of TZDs, we have synthesized the title compound to study its crystal structure.

The asymmetric unit contains a 5-(4-hydroxy-3-methoxybenzyl)thiazolidine-2,4-dione molecule and a solvate water molecule (Fig. 1). The geometric parameter of the title compoundare to its related structures (Divjakovic et al., 1991; Yathirajan et al., 2005). The dihedral angle between the thiazolidinedione ring [S1/C2/N3/C4/C5] and the benzene ring [C7–C12] is 49.16 (9)°. In the crystal packing (Fig. 2), the molecules are linked via intermolecular N1—H1···O2 hydrogen bonds. In addition, the molecule is connected to the water molecule by O5—H5···O1, O5—H5···O4, O5—H5···O3 and O4—H4···O5 hydrogen bonds which generate a three dimensional network (Table 1).

For the therapeutic and pharmacological properties of thiazolidinediones, see: Day (1999); Spiegelman (1998). For the synthesis of the title compound, see: Madhavan et al. (2002); Shoda et al. (1983). For related structures, see: Divjaković et al. (1991); Yathirajan et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of the compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
5-(4-Hydroxy-3-methoxybenzyl)-1,3-thiazolidine-2,4-dione monohydrate top
Crystal data top
C11H11NO4S·H2OF(000) = 568
Mr = 271.28Dx = 1.423 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 889 reflections
a = 10.684 (4) Åθ = 2.8–27.5°
b = 8.151 (3) ŵ = 0.27 mm1
c = 14.747 (5) ÅT = 293 K
β = 99.657 (4)°Block, yellow
V = 1266.0 (8) Å30.15 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2226 independent reflections
Radiation source: fine-focus sealed tube1902 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 2.2°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 96
Tmin = 0.960, Tmax = 0.974l = 1617
4985 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.2943P]
where P = (Fo2 + 2Fc2)/3
2226 reflections(Δ/σ)max = 0.001
171 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C11H11NO4S·H2OV = 1266.0 (8) Å3
Mr = 271.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.684 (4) ŵ = 0.27 mm1
b = 8.151 (3) ÅT = 293 K
c = 14.747 (5) Å0.15 × 0.12 × 0.10 mm
β = 99.657 (4)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2226 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1902 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.974Rint = 0.047
4985 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.22 e Å3
2226 reflectionsΔρmin = 0.31 e Å3
171 parameters
Special details top

Experimental. 1H NMR (300 MHz, CDCl3): δ 8.72(bar, 1H, N—H), 6.87–6.71 (m, 3H, 8-H, 11-H, 12-H), 5.46 (bar, 1H, 10-OH), 4.47–4.51 (m, 1H, 5-H), 3.83 (s, 3H, 9-OCH3), 3.46 (dd, 1H, j=14.4, 4.2, 3-H), 3.06 (dd, 1H, j=14.1, 9.6, 3-H). 13C NMR (300 MHz, CDCl3): δ 174.5, 167.5, 147.8, 145.7, 132.7, 123.1, 116.7, 114.9, 57.2, 56.1, 36.2. MS(ESI) m/z calc. for C11H11NO4S 253.27, found [M–1]+ 252.15. m.p. 109-110°C

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.49420 (5)1.06186 (7)0.70922 (3)0.0523 (2)
N30.51317 (16)1.07172 (19)0.88568 (11)0.0430 (4)
H30.53031.10720.94130.052*
C20.5427 (2)1.1623 (3)0.81421 (15)0.0529 (5)
C40.45618 (17)0.9243 (2)0.86643 (12)0.0383 (4)
C50.43481 (18)0.8857 (2)0.76418 (12)0.0403 (4)
H50.48680.79020.75450.048*
C60.29661 (18)0.8453 (3)0.72695 (13)0.0448 (5)
H6A0.27060.75260.76060.054*
H6B0.24400.93830.73700.054*
C70.27553 (18)0.8048 (2)0.62553 (13)0.0407 (4)
C80.31489 (17)0.6537 (2)0.59516 (12)0.0386 (4)
H80.35230.57680.63780.046*
C90.29866 (16)0.6178 (2)0.50237 (12)0.0360 (4)
C100.24649 (18)0.7353 (2)0.43822 (12)0.0408 (4)
C110.2075 (2)0.8830 (2)0.46857 (14)0.0512 (5)
H110.17180.96130.42610.061*
C120.2206 (2)0.9167 (2)0.56175 (14)0.0504 (5)
H120.19181.01630.58120.061*
C130.3765 (2)0.3430 (3)0.52648 (16)0.0541 (5)
H13A0.39550.24940.49170.081*
H13B0.31280.31410.56250.081*
H13C0.45200.37810.56650.081*
O10.5944 (2)1.2929 (2)0.82373 (12)0.0877 (7)
O20.42480 (14)0.83322 (17)0.92352 (9)0.0483 (4)
O30.33054 (14)0.47280 (16)0.46520 (9)0.0485 (4)
O40.23570 (15)0.69314 (17)0.34819 (9)0.0537 (4)
H4A0.20340.76910.31600.080*
O50.36833 (18)0.4211 (2)0.27286 (12)0.0558 (4)
H5A0.336 (4)0.444 (5)0.318 (3)0.134 (16)*
H5B0.376 (3)0.518 (4)0.253 (2)0.085 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0699 (4)0.0527 (4)0.0342 (3)0.0171 (2)0.0079 (2)0.0023 (2)
N30.0578 (10)0.0384 (9)0.0326 (8)0.0079 (7)0.0065 (7)0.0046 (6)
C20.0715 (14)0.0423 (11)0.0453 (11)0.0124 (10)0.0112 (10)0.0012 (9)
C40.0432 (9)0.0353 (10)0.0352 (9)0.0008 (7)0.0033 (7)0.0011 (7)
C50.0510 (10)0.0365 (10)0.0332 (9)0.0018 (8)0.0060 (8)0.0021 (8)
C60.0518 (11)0.0454 (11)0.0374 (10)0.0063 (9)0.0079 (8)0.0067 (8)
C70.0465 (10)0.0381 (10)0.0369 (10)0.0074 (8)0.0050 (8)0.0055 (8)
C80.0441 (9)0.0368 (10)0.0337 (9)0.0031 (8)0.0029 (7)0.0046 (7)
C90.0409 (9)0.0300 (9)0.0367 (9)0.0029 (7)0.0051 (7)0.0018 (7)
C100.0509 (10)0.0363 (10)0.0328 (9)0.0020 (8)0.0006 (8)0.0018 (7)
C110.0727 (14)0.0357 (10)0.0405 (10)0.0059 (10)0.0042 (9)0.0021 (8)
C120.0679 (13)0.0344 (10)0.0466 (11)0.0016 (9)0.0028 (10)0.0078 (8)
C130.0650 (13)0.0390 (11)0.0599 (13)0.0097 (10)0.0149 (10)0.0102 (10)
O10.1467 (19)0.0578 (11)0.0617 (11)0.0545 (12)0.0262 (11)0.0083 (8)
O20.0667 (9)0.0429 (7)0.0340 (7)0.0108 (7)0.0047 (6)0.0033 (6)
O30.0718 (9)0.0344 (7)0.0391 (7)0.0089 (7)0.0084 (6)0.0019 (6)
O40.0836 (10)0.0421 (8)0.0312 (7)0.0092 (7)0.0022 (7)0.0009 (6)
O50.0797 (11)0.0438 (9)0.0440 (8)0.0040 (8)0.0106 (8)0.0066 (7)
Geometric parameters (Å, º) top
S1—C21.751 (2)C8—H80.9300
S1—C51.815 (2)C9—O31.370 (2)
N3—C41.356 (2)C9—C101.395 (3)
N3—C21.366 (3)C10—O41.358 (2)
N3—H30.8600C10—C111.373 (3)
C2—O11.197 (3)C11—C121.385 (3)
C4—O21.211 (2)C11—H110.9300
C4—C51.520 (2)C12—H120.9300
C5—C61.523 (3)C13—O31.424 (2)
C5—H50.9800C13—H13A0.9600
C6—C71.511 (3)C13—H13B0.9600
C6—H6A0.9700C13—H13C0.9600
C6—H6B0.9700O4—H4A0.8200
C7—C121.370 (3)O5—H5A0.82 (5)
C7—C81.399 (3)O5—H5B0.85 (3)
C8—C91.382 (3)
C2—S1—C592.79 (9)C9—C8—C7120.60 (17)
C4—N3—C2118.11 (16)C9—C8—H8119.7
C4—N3—H3120.9C7—C8—H8119.7
C2—N3—H3120.9O3—C9—C8125.52 (16)
O1—C2—N3123.5 (2)O3—C9—C10114.77 (15)
O1—C2—S1125.58 (18)C8—C9—C10119.71 (17)
N3—C2—S1110.93 (15)O4—C10—C11124.07 (17)
O2—C4—N3124.38 (17)O4—C10—C9116.61 (16)
O2—C4—C5123.37 (17)C11—C10—C9119.31 (17)
N3—C4—C5112.25 (16)C10—C11—C12120.76 (18)
C4—C5—C6112.19 (15)C10—C11—H11119.6
C4—C5—S1105.90 (13)C12—C11—H11119.6
C6—C5—S1113.61 (13)C7—C12—C11120.64 (19)
C4—C5—H5108.3C7—C12—H12119.7
C6—C5—H5108.3C11—C12—H12119.7
S1—C5—H5108.3O3—C13—H13A109.5
C7—C6—C5112.25 (15)O3—C13—H13B109.5
C7—C6—H6A109.2H13A—C13—H13B109.5
C5—C6—H6A109.2O3—C13—H13C109.5
C7—C6—H6B109.2H13A—C13—H13C109.5
C5—C6—H6B109.2H13B—C13—H13C109.5
H6A—C6—H6B107.9C9—O3—C13118.00 (15)
C12—C7—C8118.92 (18)C10—O4—H4A109.5
C12—C7—C6120.66 (18)H5A—O5—H5B98 (3)
C8—C7—C6120.40 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.862.032.886 (2)174
O4—H4A···O5ii0.821.872.685 (2)171
O5—H5A···O30.82 (5)2.19 (5)2.962 (2)156 (4)
O5—H5A···O40.82 (5)2.37 (4)2.947 (2)127 (4)
O5—H5B···O1iii0.85 (3)1.97 (3)2.795 (3)163 (3)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC11H11NO4S·H2O
Mr271.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.684 (4), 8.151 (3), 14.747 (5)
β (°) 99.657 (4)
V3)1266.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.960, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
4985, 2226, 1902
Rint0.047
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.05
No. of reflections2226
No. of parameters171
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.31

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.862.032.886 (2)174.1
O4—H4A···O5ii0.821.872.685 (2)171.1
O5—H5A···O30.82 (5)2.19 (5)2.962 (2)156 (4)
O5—H5A···O40.82 (5)2.37 (4)2.947 (2)127 (4)
O5—H5B···O1iii0.85 (3)1.97 (3)2.795 (3)163 (3)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+2, z+1.
 

Acknowledgements

This study was supported by the Science and Technology Commission of Shanghai special purpose for modernization of traditional Chinese medicine in 2008 (No 08DZ1970802) and the National Basic Research Program of China (No 2006CB504100 and 2009CB521907).

References

First citationBruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDay, C. (1999). Diabet. Med. 16, 179–192.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDivjaković, V., Popov-Pergal, K., Pergal, M. & Klement, U. (1991). Acta Cryst. C47, 1760–1761.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationMadhavan, G. R., Chakrabarti, R., Vikramadithyan, R. K., Mamidi, R. N. V. S., Balraju, V., Rajesh, B. M., Misra, P., Kumar, S. K. B., Lohray, B. B., Lohraya, V. B. & Rajagopalan, R. (2002). Bioorg. Med. Chem. 10, 2671–2680.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShoda, T., Mizuno, K., Hirata, T., Maki, Y. & Kawamatsu, Y. (1983). Chem. Pharm. Bull. 31, 560–569.  PubMed Web of Science Google Scholar
First citationSpiegelman, B. M. (1998). Diabetes, 47, 507–514.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYathirajan, H. S., Rai, K. M. L., Gaonkar, S. L., Narasegowda, R. S., Prabhuswamy, B. & Bolte, M. (2005). Acta Cryst. E61, o245–o246.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds