metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,10-Phenanthrolin-1-ium nitrate–aqua­bis­­(4-hy­droxy­benzoato-κ2O,O′)(nitrato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)erbium(III)–1,10-phenanthroline–water (1/1/0.5/2)

aDepartment of Biotechnology, Yuanpei University, HsinChu 30015, Taiwan, and bDepartment of Genernal Eduction Center, Yuanpei University, HsinChu 30015, Taiwan
*Correspondence e-mail: lush@mail.ypu.edu.tw

(Received 22 November 2010; accepted 10 December 2010; online 15 December 2010)

In the title compound, C12H9N2+·NO3·[Er(C7H5O3)2(NO3)(C12H8N2)(H2O)]·0.5C12H8N2·2H2O, the water-mol­ecule-coordinated ErIII ion is chelated by one 1,10-phenanthroline (phen) ligand, two 4-hy­droxy­benzoate anions and one nitrate anion in a monocapped square-anti­prismatic coordination geometry. The uncoordinating phen mol­ecule is approximately parallel to the 1,10-phenanthrolin-1-ium (Hphen) anion [dihedral angle = 3.3 (4)°]. The centroid–centroid distance of 3.801 (5) Å between pyridine rings suggests the existence of ππ stacking. The crystal structure contains an extensive network of classical O—H⋯O and N—H⋯O and weak C—H⋯O hydrogen bonds. C—H⋯π inter­actions between phen and 4-hy­droxy­benzoate is also present in the crystal structure. In the crystal, the uncoordinating phen is equally disordered over two sites about an inversion center.

Related literature

For a related hydro­thermal substitution reaction, see: Xiong et al. (2001[Xiong, R.-G., Zhang, J., Chen, Z.-F., You, X.-Z., Che, C.-M. & Fun, H. K. (2001). J. Chem. Soc. Dalton Trans. pp. 780-782.]). For related structures, see: Liu et al. (2007[Liu, Y.-F., Xia, H.-T., Wang, D.-Q., Yang, S.-P. & Meng, Y.-L. (2007). Acta Cryst. E63, m2544.], 2010[Liu, J.-L., Liu, J.-F. & Zhao, G.-L. (2010). Acta Cryst. E66, m1513.]); Neelgund et al. (2007[Neelgund, G. M., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2007). Acta Cryst. C63, m74-m76.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9N2+·NO3·[Er(C7H5O3)2(NO3)(C12H8N2)(H2O)]·0.5C12H8N2·2H2O

  • Mr = 1071.07

  • Triclinic, [P \overline 1]

  • a = 10.9464 (2) Å

  • b = 11.3682 (3) Å

  • c = 19.2638 (5) Å

  • α = 77.108 (2)°

  • β = 84.790 (2)°

  • γ = 67.250 (2)°

  • V = 2154.95 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.03 mm−1

  • T = 97 K

  • 0.35 × 0.20 × 0.18 mm

Data collection
  • Oxford Diffraction Gemini-S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.629, Tmax = 0.694

  • 16237 measured reflections

  • 7710 independent reflections

  • 6632 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.05

  • 7710 reflections

  • 583 parameters

  • H-atom parameters constrained

  • Δρmax = 2.48 e Å−3

  • Δρmin = −1.41 e Å−3

Table 1
Selected bond lengths (Å)

Er1—O1 2.470 (4)
Er1—O2 2.376 (4)
Er1—O3W 2.358 (3)
Er1—O4 2.372 (3)
Er1—O5 2.399 (3)
Er1—O6 2.366 (4)
Er1—O7 2.433 (4)
Er1—N1 2.461 (4)
Er1—N2 2.489 (4)

Table 2
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C32–C37 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O2i 0.82 2.55 3.270 (6) 148
O1W—H1A⋯O6i 0.82 2.22 2.875 (6) 137
O1W—H1B⋯O12i 0.82 2.06 2.872 (10) 172
O2W—H2A⋯O9ii 0.82 1.94 2.737 (8) 164
O2W—H2B⋯O11i 0.82 2.01 2.789 (10) 157
O3W—H3A⋯O5iii 0.82 1.90 2.671 (5) 155
O3W—H3B⋯O7iii 0.82 2.16 2.836 (5) 140
N4—H4⋯O2W 0.86 1.91 2.725 (9) 157
O8—H8⋯O1Wiv 0.82 1.87 2.659 (6) 160
O9—H9⋯O11v 0.82 2.09 2.803 (12) 145
O9—H9⋯O12v 0.82 2.43 3.172 (12) 151
C34—H34⋯O3v 0.93 2.43 3.256 (8) 148
C48—H48⋯O12vi 0.93 2.27 3.046 (11) 141
C62—H62⋯O1vii 0.93 2.55 3.387 (10) 150
C70—H70⋯O13i 0.93 2.35 3.244 (13) 161
C83—H83⋯Cg4ii 0.93 2.78 3.628 (9) 152
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x, -y+1, -z; (iv) x-1, y+1, z-1; (v) x-1, y, z; (vi) x, y-1, z; (vii) x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The coordination chemistry of erbium (III) with N and O donor ligands has been investigated in the past decade and numbers of erbium (III) complexes with different donor ligands have been synthesized and studied by X-ray crystallography (Liu et al., 2010; Neelgund et al., 2007; Liu et al., 2007). The title compound was recently obtained from the reaction of erbium nitrate, sodium benzoate and phen in an methanol-water mixture, and its crystal structure is reported here. Since no 4-hydrobenzoic acid ligand is present in the starting reaction mixture, it may be derived from the benzoic acid via in situ substitution(Xiong et al., 2001) under hydrothermal condition.

The ErIII ion is nine-coordinated by two N atoms of a phen ligand, four carboxylate O atoms of two 4-hydroxybenzoate anions, two O atoms of nitrate anion and one O atom of a water molecule. The resulting coordination geometry is a monocapped square antiprismatic coordination (Table 1 and Fig. 1).

The phen molecule is approximately parallel to 1,10-phenanthrolinium (Hphen), making dihedral angle of 3.3 (4)°.The centroid-centroid distance between N4-pyridine and N7-pyridine rings is 3.801 (5) Å, indictative of ππ interaction.The crystal structure contain an extensive network of classical (O—H···O, N—H···O) and weak (C—H···O) hydrogen bonds (Table 2 and Fig. 2).

In addition, C—H···π interaction (C83—H83···Cg4(C32—C37); full details and symmetry code are given in Table 2.) between phen and 4-hydroxybenzoate is present in the crystal structure.

Related literature top

For a related hydrothermal substitution reaction, see: Xiong et al. (2001). For related structures, see: Liu et al. (2007, 2010); Neelgund et al. (2007).

Experimental top

Erbium trinitrate solution was prepared by dissolving Er(NO3)3.6H2O (0.4631 g, 1.00 mmole) at room temperature with stirring. The ligand solution was prepared by dissolving benzoic acid (0.4889 g, 4 mmole) and 1,10-phenanthroline (4 mmole) in 20 ml methanol at room temperature. The pH of the ligand solution was adjusted to about 6 with 2 N NaOH. The Er solution was added drop wise and slowly to the ligand solution. The reaction mixture was stirred for 2 h at room temperature. Pink crystals were obtained at room temperature over a period 3 months.

Refinement top

Position C82, N6, C86, N7, C87 and C88 of the phen ring split into two different atoms with 50% occupancies for each, respectively. H atoms bonded to O and N atoms were placed in calculated positions and refined with the distances constrains of O—H = 0.82, N—H = 0.86 Å, and Uiso(H)= 1.2Ueq(N) and 1.5Ueq(O). Other H atoms were positioned geometrically with C—H = 0.93 Å and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

The coordination chemistry of erbium (III) with N and O donor ligands has been investigated in the past decade and numbers of erbium (III) complexes with different donor ligands have been synthesized and studied by X-ray crystallography (Liu et al., 2010; Neelgund et al., 2007; Liu et al., 2007). The title compound was recently obtained from the reaction of erbium nitrate, sodium benzoate and phen in an methanol-water mixture, and its crystal structure is reported here. Since no 4-hydrobenzoic acid ligand is present in the starting reaction mixture, it may be derived from the benzoic acid via in situ substitution(Xiong et al., 2001) under hydrothermal condition.

The ErIII ion is nine-coordinated by two N atoms of a phen ligand, four carboxylate O atoms of two 4-hydroxybenzoate anions, two O atoms of nitrate anion and one O atom of a water molecule. The resulting coordination geometry is a monocapped square antiprismatic coordination (Table 1 and Fig. 1).

The phen molecule is approximately parallel to 1,10-phenanthrolinium (Hphen), making dihedral angle of 3.3 (4)°.The centroid-centroid distance between N4-pyridine and N7-pyridine rings is 3.801 (5) Å, indictative of ππ interaction.The crystal structure contain an extensive network of classical (O—H···O, N—H···O) and weak (C—H···O) hydrogen bonds (Table 2 and Fig. 2).

In addition, C—H···π interaction (C83—H83···Cg4(C32—C37); full details and symmetry code are given in Table 2.) between phen and 4-hydroxybenzoate is present in the crystal structure.

For a related hydrothermal substitution reaction, see: Xiong et al. (2001). For related structures, see: Liu et al. (2007, 2010); Neelgund et al. (2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level [symmetry code: (i) 2 - x, -y, 1 - z].
[Figure 2] Fig. 2. The molecular packing for the title compound. Hydrogen bonds are shown as dashed lines.
1,10-Phenanthrolin-1-ium nitrate– aquabis(4-hydroxybenzoato-κ2O,O')(nitrato- κ2O,O')(1,10-phenanthroline- κ2N,N')erbium(III)–\1,10-phenanthroline–water (1/1/0.5/2) top
Crystal data top
C12H9N2+·NO3·[Er(C7H5O3)2(NO3)(C12H8N2)(H2O)]·0.5C12H8N2·2H2OZ = 2
Mr = 1071.07F(000) = 1076
Triclinic, P1Dx = 1.651 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.9464 (2) ÅCell parameters from 12670 reflections
b = 11.3682 (3) Åθ = 2.4–29.2°
c = 19.2638 (5) ŵ = 2.03 mm1
α = 77.108 (2)°T = 97 K
β = 84.790 (2)°Block, pink
γ = 67.250 (2)°0.35 × 0.20 × 0.18 mm
V = 2154.95 (10) Å3
Data collection top
Oxford Diffraction Gemini-S CCD
diffractometer
7710 independent reflections
Radiation source: fine-focus sealed tube6632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 9 pixels mm-1θmax = 25.2°, θmin = 2.5°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1311
Tmin = 0.629, Tmax = 0.694l = 2322
16237 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0656P)2 + 2.9468P]
where P = (Fo2 + 2Fc2)/3
7710 reflections(Δ/σ)max = 0.001
583 parametersΔρmax = 2.48 e Å3
0 restraintsΔρmin = 1.41 e Å3
Crystal data top
C12H9N2+·NO3·[Er(C7H5O3)2(NO3)(C12H8N2)(H2O)]·0.5C12H8N2·2H2Oγ = 67.250 (2)°
Mr = 1071.07V = 2154.95 (10) Å3
Triclinic, P1Z = 2
a = 10.9464 (2) ÅMo Kα radiation
b = 11.3682 (3) ŵ = 2.03 mm1
c = 19.2638 (5) ÅT = 97 K
α = 77.108 (2)°0.35 × 0.20 × 0.18 mm
β = 84.790 (2)°
Data collection top
Oxford Diffraction Gemini-S CCD
diffractometer
7710 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
6632 reflections with I > 2σ(I)
Tmin = 0.629, Tmax = 0.694Rint = 0.028
16237 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.05Δρmax = 2.48 e Å3
7710 reflectionsΔρmin = 1.41 e Å3
583 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Er10.23247 (2)0.40305 (2)0.07892 (1)0.0145 (1)
O10.3934 (4)0.3029 (4)0.17753 (19)0.0232 (11)
O20.3711 (3)0.4927 (4)0.11782 (19)0.0234 (11)
O30.4913 (4)0.4118 (5)0.2139 (2)0.0406 (16)
O3W0.1453 (3)0.3643 (3)0.01739 (18)0.0176 (10)
O40.2763 (3)0.5363 (3)0.02595 (18)0.0199 (11)
O50.0975 (3)0.6273 (3)0.03472 (18)0.0176 (11)
O60.1303 (3)0.4721 (4)0.18419 (18)0.0204 (11)
O70.0106 (3)0.4202 (3)0.12003 (18)0.0178 (11)
O80.0969 (4)1.1108 (4)0.2073 (2)0.0379 (14)
O90.4015 (6)0.6324 (7)0.3624 (3)0.084 (3)
N10.4400 (4)0.2592 (4)0.0322 (2)0.0166 (12)
N20.2730 (4)0.1678 (4)0.1217 (2)0.0200 (12)
N80.4204 (4)0.4033 (5)0.1714 (2)0.0224 (16)
C210.1771 (5)0.6361 (5)0.0180 (3)0.0165 (16)
C220.1524 (5)0.7613 (5)0.0678 (3)0.0165 (16)
C230.2377 (5)0.7697 (5)0.1251 (3)0.0209 (17)
C240.2173 (6)0.8873 (6)0.1703 (3)0.0265 (17)
C250.1121 (5)0.9991 (5)0.1603 (3)0.0240 (17)
C260.0270 (5)0.9913 (5)0.1026 (3)0.0204 (17)
C270.0462 (5)0.8744 (5)0.0570 (3)0.0189 (16)
C310.0201 (5)0.4661 (5)0.1733 (3)0.0173 (17)
C320.0930 (5)0.5123 (5)0.2214 (3)0.0188 (17)
C330.2127 (5)0.5001 (5)0.2132 (3)0.0233 (17)
C340.3172 (6)0.5408 (6)0.2595 (3)0.0302 (19)
C350.3038 (7)0.5950 (8)0.3140 (4)0.048 (3)
C360.1851 (7)0.6091 (8)0.3221 (4)0.048 (3)
C370.0815 (6)0.5674 (6)0.2763 (3)0.0307 (19)
C410.5172 (5)0.3009 (5)0.0162 (3)0.0196 (16)
C420.6408 (5)0.2174 (6)0.0376 (3)0.0232 (16)
C430.6854 (5)0.0893 (5)0.0062 (3)0.0234 (16)
C440.6101 (5)0.0409 (5)0.0460 (3)0.0226 (17)
C450.6523 (6)0.0923 (6)0.0828 (3)0.0282 (17)
C460.5745 (6)0.1344 (6)0.1304 (3)0.0323 (19)
C470.4424 (6)0.0499 (5)0.1450 (3)0.0247 (17)
C480.3541 (6)0.0925 (6)0.1906 (3)0.0315 (19)
C490.2285 (6)0.0087 (6)0.1985 (3)0.0282 (17)
C500.1909 (5)0.1214 (6)0.1633 (3)0.0241 (17)
C510.3980 (5)0.0820 (5)0.1119 (3)0.0186 (17)
C520.4844 (5)0.1306 (5)0.0621 (3)0.0176 (16)
N60.9403 (6)0.1675 (6)0.4488 (3)0.0379 (19)0.500
N70.9737 (6)0.0343 (6)0.4147 (3)0.0373 (19)0.500
C810.9773 (6)0.0350 (6)0.4644 (3)0.0307 (17)
C820.9403 (6)0.1675 (6)0.4488 (3)0.0379 (19)0.500
C830.8975 (7)0.2307 (8)0.3798 (4)0.050 (3)
C840.8912 (8)0.1665 (9)0.3303 (4)0.054 (3)
C850.9291 (7)0.0356 (9)0.3474 (4)0.050 (3)
C860.9737 (6)0.0343 (6)0.4147 (3)0.0373 (19)0.500
C870.9379 (12)0.2441 (15)0.5036 (8)0.049 (5)0.500
C880.9813 (13)0.1792 (15)0.5675 (8)0.045 (5)0.500
N30.6566 (5)0.8871 (7)0.4088 (3)0.047 (2)
N40.7372 (5)0.7810 (6)0.5468 (3)0.0404 (19)
C610.6104 (7)0.9421 (10)0.3441 (4)0.075 (2)
C620.5602 (7)1.0749 (10)0.3179 (5)0.075 (2)
C630.5605 (7)1.1543 (11)0.3588 (5)0.075 (2)
C640.6096 (6)1.1019 (8)0.4282 (4)0.053 (3)
C650.6144 (8)1.1804 (9)0.4766 (6)0.075 (4)
C660.6588 (9)1.1252 (10)0.5436 (6)0.072 (4)
C670.7030 (7)0.9884 (9)0.5694 (4)0.049 (3)
C680.7458 (8)0.9284 (12)0.6377 (4)0.069 (4)
C690.7839 (8)0.7975 (12)0.6597 (4)0.072 (4)
C700.7774 (7)0.7261 (9)0.6133 (4)0.056 (3)
C710.7003 (5)0.9088 (7)0.5234 (3)0.0334 (19)
C720.6538 (6)0.9681 (7)0.4511 (3)0.041 (2)
O110.4009 (8)0.5285 (9)0.3933 (4)0.1090 (19)
O120.3154 (8)0.6897 (9)0.3035 (4)0.1090 (19)
O130.2058 (8)0.5725 (9)0.3489 (4)0.1090 (19)
N50.3076 (11)0.6002 (11)0.3496 (6)0.1090 (19)
O1W0.8550 (4)0.2838 (4)0.8087 (2)0.0373 (14)
O2W0.7115 (6)0.5915 (6)0.4911 (3)0.070 (2)
H3A0.075800.351800.010900.0260*
H3B0.138900.422900.052300.0260*
H80.031901.170100.196100.0560*
H90.465300.617900.353100.1260*
H230.308700.695500.132700.0250*
H240.275100.892000.208300.0320*
H260.043401.066000.095000.0240*
H270.011400.870000.018800.0220*
H330.222300.464100.176100.0280*
H340.396300.531600.253900.0360*
H360.176200.646800.358600.0580*
H370.002400.576400.282200.0370*
H410.488100.389300.036800.0240*
H420.690900.249500.072600.0280*
H430.767100.033000.019600.0280*
H450.735800.150700.073200.0340*
H460.606500.220600.154900.0390*
H480.381600.178500.215400.0380*
H490.168200.037500.227000.0340*
H500.104500.178300.169200.0290*
H830.872100.320700.367500.0600*
H840.861000.211800.284700.0650*
H850.925100.008700.313000.0590*
H870.906500.334600.492400.0580*0.500
H880.984200.223700.602000.0540*0.500
H40.735000.733100.518500.0480*
H610.611500.888100.314000.0890*
H620.526501.108400.272000.0890*
H630.528501.243900.341600.0890*
H650.586501.270200.461300.0890*
H660.660701.177900.573800.0860*
H680.748700.978200.669400.0820*
H690.814100.757200.705800.0860*
H700.801800.636600.628600.0670*
H1A0.823200.352000.823300.0560*
H1B0.803600.286400.779500.0560*
H2A0.685000.587700.453500.1050*
H2B0.695600.537700.522800.1050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.0110 (1)0.0126 (1)0.0177 (1)0.0017 (1)0.0013 (1)0.0031 (1)
O10.0243 (19)0.018 (2)0.026 (2)0.0047 (16)0.0082 (16)0.0046 (16)
O20.0178 (18)0.026 (2)0.023 (2)0.0060 (16)0.0008 (15)0.0020 (16)
O30.039 (2)0.045 (3)0.045 (3)0.017 (2)0.019 (2)0.014 (2)
O3W0.0143 (17)0.0174 (19)0.0191 (18)0.0043 (15)0.0005 (14)0.0025 (15)
O40.0135 (17)0.0150 (19)0.025 (2)0.0005 (15)0.0031 (14)0.0037 (15)
O50.0125 (17)0.0163 (19)0.0219 (19)0.0042 (14)0.0000 (14)0.0022 (15)
O60.0158 (18)0.024 (2)0.0207 (19)0.0077 (16)0.0009 (14)0.0024 (15)
O70.0178 (18)0.0184 (19)0.0170 (18)0.0071 (15)0.0021 (14)0.0039 (15)
O80.047 (3)0.019 (2)0.035 (2)0.0078 (19)0.015 (2)0.0048 (18)
O90.058 (4)0.148 (7)0.097 (5)0.067 (4)0.056 (3)0.096 (5)
N10.012 (2)0.016 (2)0.022 (2)0.0026 (17)0.0039 (17)0.0077 (18)
N20.019 (2)0.019 (2)0.023 (2)0.0070 (19)0.0034 (18)0.0052 (19)
N80.012 (2)0.028 (3)0.028 (3)0.004 (2)0.0001 (19)0.014 (2)
C210.014 (2)0.017 (3)0.018 (3)0.004 (2)0.003 (2)0.005 (2)
C220.013 (2)0.014 (3)0.023 (3)0.005 (2)0.003 (2)0.004 (2)
C230.019 (3)0.020 (3)0.022 (3)0.006 (2)0.001 (2)0.004 (2)
C240.030 (3)0.028 (3)0.022 (3)0.013 (3)0.011 (2)0.007 (2)
C250.028 (3)0.019 (3)0.024 (3)0.010 (2)0.001 (2)0.000 (2)
C260.019 (3)0.012 (3)0.027 (3)0.001 (2)0.001 (2)0.006 (2)
C270.014 (2)0.020 (3)0.021 (3)0.005 (2)0.004 (2)0.005 (2)
C310.021 (3)0.012 (3)0.017 (3)0.006 (2)0.002 (2)0.001 (2)
C320.019 (3)0.015 (3)0.020 (3)0.006 (2)0.001 (2)0.000 (2)
C330.027 (3)0.014 (3)0.027 (3)0.007 (2)0.001 (2)0.002 (2)
C340.023 (3)0.034 (3)0.040 (4)0.017 (3)0.010 (3)0.013 (3)
C350.041 (4)0.068 (5)0.055 (4)0.035 (4)0.027 (3)0.038 (4)
C360.049 (4)0.078 (6)0.044 (4)0.042 (4)0.023 (3)0.041 (4)
C370.030 (3)0.041 (4)0.029 (3)0.020 (3)0.008 (2)0.014 (3)
C410.016 (2)0.020 (3)0.025 (3)0.007 (2)0.002 (2)0.008 (2)
C420.013 (2)0.027 (3)0.033 (3)0.008 (2)0.003 (2)0.013 (2)
C430.013 (2)0.023 (3)0.036 (3)0.001 (2)0.001 (2)0.020 (3)
C440.015 (3)0.018 (3)0.035 (3)0.000 (2)0.009 (2)0.014 (2)
C450.023 (3)0.018 (3)0.039 (3)0.002 (2)0.009 (3)0.011 (3)
C460.037 (3)0.014 (3)0.039 (4)0.001 (3)0.013 (3)0.006 (3)
C470.033 (3)0.015 (3)0.025 (3)0.007 (2)0.010 (2)0.002 (2)
C480.049 (4)0.018 (3)0.028 (3)0.014 (3)0.013 (3)0.002 (2)
C490.038 (3)0.025 (3)0.026 (3)0.017 (3)0.002 (2)0.004 (2)
C500.025 (3)0.028 (3)0.022 (3)0.012 (2)0.002 (2)0.006 (2)
C510.020 (3)0.017 (3)0.019 (3)0.005 (2)0.007 (2)0.005 (2)
C520.015 (2)0.017 (3)0.023 (3)0.005 (2)0.006 (2)0.008 (2)
N60.031 (3)0.033 (3)0.045 (4)0.013 (3)0.004 (3)0.001 (3)
N70.031 (3)0.047 (4)0.036 (3)0.019 (3)0.005 (2)0.007 (3)
C810.026 (3)0.034 (3)0.030 (3)0.013 (3)0.006 (2)0.002 (3)
C820.031 (3)0.033 (3)0.045 (4)0.013 (3)0.004 (3)0.001 (3)
C830.048 (4)0.040 (4)0.056 (5)0.022 (4)0.001 (4)0.014 (4)
C840.055 (5)0.068 (6)0.037 (4)0.033 (4)0.011 (3)0.016 (4)
C850.038 (4)0.080 (6)0.037 (4)0.032 (4)0.004 (3)0.008 (4)
C860.031 (3)0.047 (4)0.036 (3)0.019 (3)0.005 (2)0.007 (3)
C870.022 (6)0.047 (9)0.054 (9)0.005 (6)0.003 (6)0.022 (7)
C880.032 (7)0.049 (9)0.053 (9)0.016 (7)0.006 (6)0.011 (7)
N30.036 (3)0.070 (5)0.027 (3)0.016 (3)0.000 (2)0.001 (3)
N40.029 (3)0.050 (4)0.030 (3)0.008 (3)0.000 (2)0.003 (3)
C610.029 (2)0.106 (5)0.052 (3)0.012 (3)0.003 (2)0.030 (3)
C620.029 (2)0.106 (5)0.052 (3)0.012 (3)0.003 (2)0.030 (3)
C630.029 (2)0.106 (5)0.052 (3)0.012 (3)0.003 (2)0.030 (3)
C640.022 (3)0.043 (5)0.066 (5)0.001 (3)0.013 (3)0.016 (4)
C650.046 (5)0.043 (5)0.120 (9)0.013 (4)0.040 (5)0.010 (6)
C660.056 (5)0.061 (6)0.112 (8)0.032 (5)0.043 (6)0.044 (6)
C670.028 (3)0.071 (6)0.054 (5)0.020 (4)0.013 (3)0.026 (4)
C680.040 (4)0.126 (10)0.045 (5)0.027 (5)0.005 (4)0.038 (6)
C690.038 (4)0.126 (10)0.028 (4)0.013 (5)0.002 (3)0.001 (5)
C700.033 (4)0.077 (6)0.031 (4)0.003 (4)0.004 (3)0.008 (4)
C710.018 (3)0.045 (4)0.031 (3)0.009 (3)0.005 (2)0.003 (3)
C720.019 (3)0.056 (5)0.034 (4)0.009 (3)0.008 (3)0.006 (3)
O110.108 (3)0.127 (4)0.101 (3)0.076 (3)0.014 (2)0.022 (3)
O120.108 (3)0.127 (4)0.101 (3)0.076 (3)0.014 (2)0.022 (3)
O130.108 (3)0.127 (4)0.101 (3)0.076 (3)0.014 (2)0.022 (3)
N50.108 (3)0.127 (4)0.101 (3)0.076 (3)0.014 (2)0.022 (3)
O1W0.042 (2)0.019 (2)0.050 (3)0.0106 (19)0.003 (2)0.0084 (19)
O2W0.090 (4)0.067 (4)0.049 (3)0.026 (4)0.014 (3)0.016 (3)
Geometric parameters (Å, º) top
Er1—O12.470 (4)C44—C521.417 (8)
Er1—O22.376 (4)C44—C451.431 (8)
Er1—O3W2.358 (3)C45—C461.331 (9)
Er1—O42.372 (3)C46—C471.437 (9)
Er1—O52.399 (3)C47—C511.399 (8)
Er1—O62.366 (4)C47—C481.399 (9)
Er1—O72.433 (4)C48—C491.355 (10)
Er1—N12.461 (4)C49—C501.396 (9)
Er1—N22.489 (4)C51—C521.457 (8)
O1—N81.264 (7)C23—H230.9300
O2—N81.264 (6)C24—H240.9300
O3—N81.221 (6)C26—H260.9300
O4—C211.259 (6)C27—H270.9300
O5—C211.289 (7)C33—H330.9300
O6—C311.273 (7)C34—H340.9300
O7—C311.279 (7)C36—H360.9300
O8—C251.346 (7)C37—H370.9300
O9—C351.356 (10)C41—H410.9300
O3W—H3B0.8200C42—H420.9300
O3W—H3A0.8200C43—H430.9300
O8—H80.8200C45—H450.9300
O9—H90.8200C46—H460.9300
O11—N51.274 (15)C48—H480.9300
O12—N51.217 (14)C49—H490.9300
O13—N51.272 (16)C50—H500.9300
O1W—H1A0.8200C81—C821.368 (9)
O1W—H1B0.8200C81—C81i1.447 (8)
N1—C411.333 (7)C81—C861.381 (9)
N1—C521.353 (7)C82—C831.389 (10)
N2—C511.365 (7)C82—C871.504 (17)
N2—C501.332 (7)C83—C841.345 (12)
O2W—H2B0.8200C84—C851.350 (13)
O2W—H2A0.8200C85—C861.381 (10)
N6—C811.368 (9)C87—C881.31 (2)
N6—C871.504 (17)C83—H830.9300
N6—C831.389 (10)C84—H840.9300
N7—C851.381 (10)C85—H850.9300
N7—C811.381 (9)C87—H870.9300
N3—C611.312 (10)C88—H880.9300
N3—C721.350 (10)C61—C621.380 (15)
N4—C711.328 (10)C62—C631.325 (15)
N4—C701.326 (10)C63—C641.400 (12)
N4—H40.8600C64—C721.383 (11)
C21—C221.470 (8)C64—C651.444 (13)
C22—C271.403 (8)C65—C661.346 (16)
C22—C231.391 (8)C66—C671.420 (14)
C23—C241.371 (8)C67—C681.371 (11)
C24—C251.384 (9)C67—C711.410 (11)
C25—C261.394 (8)C68—C691.356 (17)
C26—C271.371 (8)C69—C701.358 (14)
C31—C321.474 (8)C71—C721.448 (8)
C32—C371.381 (8)C61—H610.9300
C32—C331.396 (8)C62—H620.9300
C33—C341.381 (9)C63—H630.9300
C34—C351.375 (10)C65—H650.9300
C35—C361.396 (12)C66—H660.9300
C36—C371.371 (10)C68—H680.9300
C41—C421.408 (8)C69—H690.9300
C42—C431.355 (8)C70—H700.9300
C43—C441.395 (8)
O1—Er1—O252.34 (14)N1—C41—C42123.0 (5)
O1—Er1—O3W144.85 (13)C41—C42—C43118.6 (5)
O1—Er1—O4120.59 (13)C42—C43—C44120.7 (5)
O1—Er1—O5130.28 (13)C43—C44—C45123.8 (5)
O1—Er1—O670.36 (13)C43—C44—C52116.9 (5)
O1—Er1—O7111.53 (13)C45—C44—C52119.3 (5)
O1—Er1—N172.55 (13)C44—C45—C46121.4 (6)
O1—Er1—N268.63 (14)C45—C46—C47121.7 (6)
O1—Er1—C21129.79 (16)C46—C47—C51119.0 (6)
O1—Er1—C3191.78 (15)C48—C47—C51117.6 (6)
O2—Er1—O3W147.75 (12)C46—C47—C48123.5 (5)
O2—Er1—O475.78 (12)C47—C48—C49120.1 (6)
O2—Er1—O583.49 (13)C48—C49—C50119.1 (6)
O2—Er1—O675.18 (13)N2—C50—C49123.0 (6)
O2—Er1—O7128.27 (12)N2—C51—C47122.5 (5)
O2—Er1—N184.17 (14)N2—C51—C52117.6 (5)
O2—Er1—N2119.87 (14)C47—C51—C52119.8 (5)
O2—Er1—C2177.53 (15)C44—C52—C51118.7 (5)
O2—Er1—C31101.38 (15)N1—C52—C51118.5 (5)
O3W—Er1—O472.86 (12)N1—C52—C44122.8 (5)
O3W—Er1—O584.64 (11)C22—C23—H23120.00
O3W—Er1—O6130.89 (12)C24—C23—H23120.00
O3W—Er1—O777.04 (12)C25—C24—H24119.00
O3W—Er1—N181.08 (13)C23—C24—H24119.00
O3W—Er1—N280.02 (12)C25—C26—H26120.00
O3W—Er1—C2178.02 (14)C27—C26—H26120.00
O3W—Er1—C31103.94 (15)C22—C27—H27120.00
O4—Er1—O554.83 (12)C26—C27—H27120.00
O4—Er1—O6126.38 (13)C34—C33—H33120.00
O4—Er1—O7123.64 (12)C32—C33—H33120.00
O4—Er1—N175.77 (12)C33—C34—H34120.00
O4—Er1—N2136.77 (12)C35—C34—H34120.00
O4—Er1—C2127.04 (14)C35—C36—H36120.00
O4—Er1—C31128.77 (14)C37—C36—H36120.00
O5—Er1—O677.85 (13)C36—C37—H37120.00
O5—Er1—O776.12 (11)C32—C37—H37120.00
O5—Er1—N1130.59 (12)N1—C41—H41119.00
O5—Er1—N2154.27 (14)C42—C41—H41118.00
O5—Er1—C2127.81 (14)C43—C42—H42121.00
O5—Er1—C3173.95 (14)C41—C42—H42121.00
O6—Er1—O754.37 (12)C44—C43—H43120.00
O6—Er1—N1142.83 (13)C42—C43—H43120.00
O6—Er1—N296.83 (13)C46—C45—H45119.00
O6—Er1—C21102.45 (15)C44—C45—H45119.00
O6—Er1—C3127.09 (15)C47—C46—H46119.00
O7—Er1—N1143.43 (13)C45—C46—H46119.00
O7—Er1—N280.37 (13)C49—C48—H48120.00
O7—Er1—C21100.89 (14)C47—C48—H48120.00
O7—Er1—C3127.34 (14)C48—C49—H49120.00
N1—Er1—N267.14 (14)C50—C49—H49121.00
N1—Er1—C21102.79 (15)C49—C50—H50118.00
N1—Er1—C31155.46 (15)N2—C50—H50119.00
N2—Er1—C21157.08 (15)C81i—C81—C82118.6 (6)
N2—Er1—C3189.81 (15)N7—C81—C82122.5 (5)
C21—Er1—C31101.75 (16)N7—C81—C81i118.9 (6)
Er1—O1—N893.5 (3)C82—C81—C86122.5 (5)
Er1—O2—N898.0 (3)N6—C81—C81i118.6 (6)
Er1—O4—C2194.0 (3)N6—C81—C86122.5 (5)
Er1—O5—C2192.0 (3)C81i—C81—C86118.9 (6)
Er1—O6—C3195.1 (3)N6—C81—N7122.5 (5)
Er1—O7—C3191.8 (3)C83—C82—C87120.5 (8)
H3A—O3W—H3B110.00C81—C82—C83116.7 (6)
Er1—O3W—H3B110.00C81—C82—C87122.7 (8)
Er1—O3W—H3A118.00N6—C83—C84122.4 (8)
C25—O8—H8109.00C82—C83—C84122.4 (8)
C35—O9—H9109.00C83—C84—C85119.4 (7)
H1A—O1W—H1B108.00C84—C85—C86121.7 (8)
C41—N1—C52117.8 (5)N7—C85—C84121.7 (8)
Er1—N1—C41124.3 (3)C81—C86—C85117.4 (6)
Er1—N1—C52117.7 (3)C82—C87—C88117.9 (13)
C50—N2—C51117.7 (5)N6—C87—C88117.9 (13)
Er1—N2—C50125.0 (4)C82—C83—H83119.00
Er1—N2—C51116.3 (3)C84—C83—H83119.00
O1—N8—O2115.5 (4)N6—C83—H83119.00
O1—N8—O3121.9 (5)C85—C84—H84120.00
O2—N8—O3122.5 (5)C83—C84—H84120.00
H2A—O2W—H2B108.00C84—C85—H85119.00
C81—N6—C87122.7 (8)N7—C85—H85119.00
C81—N6—C83116.7 (6)C86—C85—H85119.00
C83—N6—C87120.5 (8)C88—C87—H87121.00
C81—N7—C85117.4 (6)N6—C87—H87121.00
C61—N3—C72116.4 (8)C82—C87—H87121.00
C70—N4—C71120.9 (7)C87—C88—H88120.00
C71—N4—H4120.00N3—C61—C62124.2 (9)
C70—N4—H4119.00C61—C62—C63119.4 (9)
O12—N5—O13117.0 (11)C62—C63—C64119.3 (10)
O11—N5—O13120.0 (11)C63—C64—C65123.3 (9)
O11—N5—O12122.7 (12)C63—C64—C72117.6 (8)
Er1—C21—C22177.2 (4)C65—C64—C72119.1 (7)
O4—C21—O5119.1 (5)C64—C65—C66120.9 (9)
O4—C21—C22120.6 (5)C65—C66—C67121.7 (10)
O5—C21—C22120.3 (5)C68—C67—C71117.4 (9)
Er1—C21—O560.2 (3)C66—C67—C71118.9 (8)
Er1—C21—O459.0 (3)C66—C67—C68123.6 (9)
C21—C22—C27120.9 (5)C67—C68—C69120.9 (9)
C23—C22—C27119.1 (5)C68—C69—C70119.0 (8)
C21—C22—C23120.0 (5)N4—C70—C69121.6 (9)
C22—C23—C24120.1 (5)N4—C71—C72120.4 (6)
C23—C24—C25121.1 (6)C67—C71—C72119.4 (7)
C24—C25—C26119.0 (5)N4—C71—C67120.2 (6)
O8—C25—C24118.0 (5)N3—C72—C71116.9 (6)
O8—C25—C26123.1 (5)C64—C72—C71120.1 (6)
C25—C26—C27120.5 (5)N3—C72—C64123.0 (6)
C22—C27—C26120.2 (5)N3—C61—H61118.00
Er1—C31—C32174.6 (4)C62—C61—H61118.00
Er1—C31—O657.9 (3)C61—C62—H62120.00
O6—C31—C32119.9 (5)C63—C62—H62120.00
Er1—C31—O760.9 (3)C64—C63—H63120.00
O7—C31—C32121.6 (5)C62—C63—H63120.00
O6—C31—O7118.5 (5)C66—C65—H65120.00
C33—C32—C37118.7 (5)C64—C65—H65120.00
C31—C32—C37120.2 (6)C65—C66—H66119.00
C31—C32—C33121.1 (5)C67—C66—H66119.00
C32—C33—C34120.8 (5)C67—C68—H68120.00
C33—C34—C35119.7 (7)C69—C68—H68120.00
C34—C35—C36119.9 (7)C70—C69—H69120.00
O9—C35—C36117.9 (7)C68—C69—H69121.00
O9—C35—C34122.1 (7)C69—C70—H70119.00
C35—C36—C37120.0 (7)N4—C70—H70119.00
C32—C37—C36120.9 (7)
O2—Er1—O1—N84.8 (3)Er1—O6—C31—O75.4 (5)
O3W—Er1—O1—N8144.2 (3)Er1—O6—C31—C32174.3 (4)
O4—Er1—O1—N840.0 (3)Er1—O7—C31—C32174.4 (5)
O5—Er1—O1—N827.9 (4)Er1—O7—C31—O65.2 (5)
O6—Er1—O1—N881.4 (3)C52—N1—C41—C420.6 (8)
O7—Er1—O1—N8117.7 (3)Er1—N1—C52—C44172.0 (4)
N1—Er1—O1—N8101.0 (3)Er1—N1—C52—C519.3 (6)
N2—Er1—O1—N8172.7 (3)C41—N1—C52—C442.4 (8)
C21—Er1—O1—N88.7 (4)Er1—N1—C41—C42174.6 (4)
C31—Er1—O1—N898.2 (3)C41—N1—C52—C51176.4 (5)
O1—Er1—O2—N84.8 (3)C50—N2—C51—C471.6 (8)
O3W—Er1—O2—N8140.2 (3)C50—N2—C51—C52175.3 (5)
O4—Er1—O2—N8154.0 (3)Er1—N2—C51—C5215.8 (6)
O5—Er1—O2—N8150.7 (3)Er1—N2—C50—C49165.8 (4)
O6—Er1—O2—N871.6 (3)C51—N2—C50—C492.1 (8)
O7—Er1—O2—N884.1 (3)Er1—N2—C51—C47167.3 (4)
N1—Er1—O2—N877.2 (3)C83—N6—C87—C88179.0 (12)
N2—Er1—O2—N817.8 (3)C83—N6—C81—C860.4 (11)
C21—Er1—O2—N8178.3 (3)C83—N6—C81—C81i179.9 (7)
C31—Er1—O2—N878.6 (3)C87—N6—C81—N7177.0 (9)
O1—Er1—O4—C21118.5 (3)C87—N6—C81—C86177.0 (9)
O2—Er1—O4—C2190.4 (3)C87—N6—C81—C81i3.4 (12)
O3W—Er1—O4—C2197.3 (3)C81—N6—C83—C840.5 (12)
O5—Er1—O4—C211.7 (3)C83—N6—C81—N70.4 (11)
O6—Er1—O4—C2131.3 (4)C81—N6—C87—C884.5 (18)
O7—Er1—O4—C2136.4 (3)C87—N6—C83—C84176.3 (10)
N1—Er1—O4—C21177.9 (3)C85—N7—C81—C81i179.6 (7)
N2—Er1—O4—C21150.9 (3)C81—N7—C85—C840.5 (12)
C31—Er1—O4—C212.9 (4)C85—N7—C81—C820.8 (11)
O1—Er1—O5—C21101.0 (3)C85—N7—C81—N60.8 (11)
O2—Er1—O5—C2175.6 (3)C61—N3—C72—C642.2 (11)
O3W—Er1—O5—C2174.4 (3)C72—N3—C61—C620.2 (12)
O4—Er1—O5—C211.6 (3)C61—N3—C72—C71177.9 (7)
O6—Er1—O5—C21151.8 (3)C71—N4—C70—C690.8 (12)
O7—Er1—O5—C21152.4 (3)C70—N4—C71—C670.2 (11)
N1—Er1—O5—C211.0 (4)C70—N4—C71—C72178.6 (7)
N2—Er1—O5—C21127.8 (4)O5—C21—C22—C23179.2 (5)
C31—Er1—O5—C21179.4 (3)O4—C21—C22—C27176.5 (5)
O1—Er1—O6—C31140.4 (3)O5—C21—C22—C273.2 (8)
O2—Er1—O6—C31164.8 (3)O4—C21—C22—C231.2 (8)
O3W—Er1—O6—C316.7 (4)C21—C22—C23—C24177.9 (6)
O4—Er1—O6—C31105.5 (3)C23—C22—C27—C260.2 (9)
O5—Er1—O6—C3178.5 (3)C21—C22—C27—C26177.9 (5)
O7—Er1—O6—C313.1 (3)C27—C22—C23—C240.2 (9)
N1—Er1—O6—C31136.7 (3)C22—C23—C24—C250.3 (9)
N2—Er1—O6—C3176.0 (3)C23—C24—C25—C260.8 (9)
C21—Er1—O6—C3191.5 (3)C23—C24—C25—O8179.0 (6)
O1—Er1—O7—C3146.4 (3)O8—C25—C26—C27179.0 (5)
O2—Er1—O7—C3111.9 (3)C24—C25—C26—C270.8 (9)
O3W—Er1—O7—C31169.4 (3)C25—C26—C27—C220.3 (9)
O4—Er1—O7—C31110.5 (3)O6—C31—C32—C372.9 (8)
O5—Er1—O7—C3181.8 (3)O6—C31—C32—C33176.3 (5)
O6—Er1—O7—C313.0 (3)O7—C31—C32—C334.1 (8)
N1—Er1—O7—C31135.8 (3)O7—C31—C32—C37176.7 (5)
N2—Er1—O7—C31108.7 (3)C31—C32—C33—C34178.5 (5)
C21—Er1—O7—C3194.6 (3)C33—C32—C37—C360.2 (9)
O1—Er1—N1—C41112.5 (4)C31—C32—C37—C36179.1 (6)
O1—Er1—N1—C5261.5 (4)C37—C32—C33—C340.8 (8)
O2—Er1—N1—C4160.2 (4)C32—C33—C34—C350.6 (9)
O2—Er1—N1—C52113.7 (4)C33—C34—C35—O9177.7 (7)
O3W—Er1—N1—C4191.0 (4)C33—C34—C35—C360.3 (11)
O3W—Er1—N1—C5295.0 (4)O9—C35—C36—C37177.2 (7)
O4—Er1—N1—C4116.6 (4)C34—C35—C36—C370.8 (12)
O4—Er1—N1—C52169.5 (4)C35—C36—C37—C320.6 (11)
O5—Er1—N1—C4116.0 (5)N1—C41—C42—C432.0 (9)
O5—Er1—N1—C52170.0 (3)C41—C42—C43—C440.4 (9)
O6—Er1—N1—C41116.2 (4)C42—C43—C44—C45178.3 (6)
O6—Er1—N1—C5257.8 (5)C42—C43—C44—C522.3 (8)
O7—Er1—N1—C41144.7 (4)C43—C44—C52—C51174.9 (5)
O7—Er1—N1—C5241.4 (5)C45—C44—C52—C514.5 (8)
N2—Er1—N1—C41173.9 (5)C45—C44—C52—N1176.7 (5)
N2—Er1—N1—C5212.2 (4)C43—C44—C45—C46177.6 (6)
C21—Er1—N1—C4115.6 (4)C43—C44—C52—N13.8 (8)
C21—Er1—N1—C52170.5 (4)C52—C44—C45—C461.9 (9)
C31—Er1—N1—C41164.9 (4)C44—C45—C46—C472.7 (10)
C31—Er1—N1—C529.0 (6)C45—C46—C47—C514.5 (9)
O1—Er1—N2—C50103.0 (4)C45—C46—C47—C48175.1 (6)
O1—Er1—N2—C5165.0 (4)C48—C47—C51—C52178.0 (5)
O2—Er1—N2—C50114.1 (4)C46—C47—C51—N2178.4 (5)
O2—Er1—N2—C5153.9 (4)C46—C47—C48—C49176.1 (6)
O3W—Er1—N2—C5093.2 (4)C51—C47—C48—C493.5 (9)
O3W—Er1—N2—C5198.9 (4)C46—C47—C51—C521.6 (8)
O4—Er1—N2—C50144.6 (4)C48—C47—C51—N21.1 (9)
O4—Er1—N2—C5147.5 (4)C47—C48—C49—C503.0 (9)
O5—Er1—N2—C5038.9 (6)C48—C49—C50—N20.2 (9)
O5—Er1—N2—C51153.2 (3)N2—C51—C52—N14.6 (8)
O6—Er1—N2—C5037.3 (4)N2—C51—C52—C44174.2 (5)
O6—Er1—N2—C51130.7 (4)C47—C51—C52—C442.8 (8)
O7—Er1—N2—C5014.8 (4)C47—C51—C52—N1178.4 (5)
O7—Er1—N2—C51177.3 (4)C86—C81—C82—C830.4 (11)
N1—Er1—N2—C50177.6 (5)C86—C81—C82—C87177.0 (9)
N1—Er1—N2—C5114.4 (3)N7—C81—C82—C87177.0 (9)
C21—Er1—N2—C50110.0 (5)N6—C81—C81i—N6i180.0 (7)
C21—Er1—N2—C5182.1 (6)N6—C81—C81i—N7i0.4 (10)
C31—Er1—N2—C5011.0 (4)C81i—C81—C82—C83179.9 (7)
C31—Er1—N2—C51156.9 (4)C81i—C81—C82—C873.4 (12)
O1—Er1—C21—O479.9 (3)N6—C81—C86—C850.8 (11)
O1—Er1—C21—O5103.0 (3)C82—C81—C86—C850.8 (11)
O2—Er1—C21—O483.1 (3)C81i—C81—C86—C85179.6 (7)
O2—Er1—C21—O599.8 (3)C86—C81—C81i—N7i180.0 (7)
O3W—Er1—C21—O475.7 (3)N7—C81—C82—C830.4 (11)
O3W—Er1—C21—O5101.4 (3)C82—C81—C81i—N6i180.0 (7)
O4—Er1—C21—O5177.1 (5)N7—C81—C81i—N6i0.4 (10)
O5—Er1—C21—O4177.1 (5)N7—C81—C81i—N7i180.0 (7)
O6—Er1—C21—O4154.6 (3)C82—C81—C81i—N7i0.4 (10)
O6—Er1—C21—O528.3 (3)C86—C81—C81i—N6i0.4 (10)
O7—Er1—C21—O4149.8 (3)C87—C82—C83—C84176.3 (10)
O7—Er1—C21—O527.3 (3)C81—C82—C83—C840.5 (12)
N1—Er1—C21—O42.1 (3)C81—C82—C87—C884.5 (18)
N1—Er1—C21—O5179.2 (3)C83—C82—C87—C88179.0 (12)
N2—Er1—C21—O458.8 (6)N6—C83—C84—C850.8 (14)
N2—Er1—C21—O5118.3 (4)C82—C83—C84—C850.8 (14)
C31—Er1—C21—O4177.7 (3)C83—C84—C85—C860.3 (14)
C31—Er1—C21—O50.6 (3)C83—C84—C85—N70.3 (14)
O1—Er1—C31—O636.9 (3)C84—C85—C86—C810.5 (12)
O1—Er1—C31—O7137.7 (3)N3—C61—C62—C631.9 (14)
O2—Er1—C31—O615.0 (3)C61—C62—C63—C641.1 (13)
O2—Er1—C31—O7170.5 (3)C62—C63—C64—C65179.8 (9)
O3W—Er1—C31—O6174.8 (3)C62—C63—C64—C721.1 (12)
O3W—Er1—C31—O710.6 (3)C63—C64—C65—C66177.9 (9)
O4—Er1—C31—O695.8 (3)C72—C64—C65—C661.2 (13)
O4—Er1—C31—O789.7 (3)C63—C64—C72—N32.9 (11)
O5—Er1—C31—O694.7 (3)C63—C64—C72—C71177.3 (7)
O5—Er1—C31—O790.7 (3)C65—C64—C72—N3178.0 (7)
O6—Er1—C31—O7174.6 (5)C65—C64—C72—C711.9 (11)
O7—Er1—C31—O6174.6 (5)C64—C65—C66—C670.2 (15)
N1—Er1—C31—O686.1 (5)C65—C66—C67—C68178.3 (10)
N1—Er1—C31—O788.5 (5)C65—C66—C67—C710.1 (14)
N2—Er1—C31—O6105.5 (3)C66—C67—C68—C69178.4 (10)
N2—Er1—C31—O769.1 (3)C71—C67—C68—C690.0 (14)
C21—Er1—C31—O694.4 (3)C66—C67—C71—N4177.9 (8)
C21—Er1—C31—O791.0 (3)C66—C67—C71—C720.5 (11)
Er1—O1—N8—O3173.3 (5)C68—C67—C71—N40.6 (11)
Er1—O1—N8—O27.9 (4)C68—C67—C71—C72179.0 (8)
Er1—O2—N8—O3173.0 (5)C67—C68—C69—C700.9 (15)
Er1—O2—N8—O18.3 (5)C68—C69—C70—N41.3 (14)
Er1—O4—C21—O52.9 (5)N4—C71—C72—N33.3 (10)
Er1—O4—C21—C22176.8 (5)N4—C71—C72—C64176.9 (7)
Er1—O5—C21—C22176.8 (5)C67—C71—C72—N3178.3 (7)
Er1—O5—C21—O42.9 (5)C67—C71—C72—C641.5 (10)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C32–C37 ring.
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2ii0.822.553.270 (6)148
O1W—H1A···O6ii0.822.222.875 (6)137
O1W—H1B···O12ii0.822.062.872 (10)172
O2W—H2A···O9iii0.821.942.737 (8)164
O2W—H2B···O11ii0.822.012.789 (10)157
O3W—H3A···O5iv0.821.902.671 (5)155
O3W—H3B···O7iv0.822.162.836 (5)140
N4—H4···O2W0.861.912.725 (9)157
O8—H8···O1Wv0.821.872.659 (6)160
O9—H9···O11vi0.822.092.803 (12)145
O9—H9···O12vi0.822.433.172 (12)151
C34—H34···O3vi0.932.433.256 (8)148
C48—H48···O12vii0.932.273.046 (11)141
C62—H62···O1viii0.932.553.387 (10)150
C70—H70···O13ii0.932.353.244 (13)161
C83—H83···Cg4iii0.932.783.628 (9)152
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x, y+1, z; (v) x1, y+1, z1; (vi) x1, y, z; (vii) x, y1, z; (viii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H9N2+·NO3·[Er(C7H5O3)2(NO3)(C12H8N2)(H2O)]·0.5C12H8N2·2H2O
Mr1071.07
Crystal system, space groupTriclinic, P1
Temperature (K)97
a, b, c (Å)10.9464 (2), 11.3682 (3), 19.2638 (5)
α, β, γ (°)77.108 (2), 84.790 (2), 67.250 (2)
V3)2154.95 (10)
Z2
Radiation typeMo Kα
µ (mm1)2.03
Crystal size (mm)0.35 × 0.20 × 0.18
Data collection
DiffractometerOxford Diffraction Gemini-S CCD
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.629, 0.694
No. of measured, independent and
observed [I > 2σ(I)] reflections
16237, 7710, 6632
Rint0.028
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.05
No. of reflections7710
No. of parameters583
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.48, 1.41

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Er1—O12.470 (4)Er1—O62.366 (4)
Er1—O22.376 (4)Er1—O72.433 (4)
Er1—O3W2.358 (3)Er1—N12.461 (4)
Er1—O42.372 (3)Er1—N22.489 (4)
Er1—O52.399 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C32–C37 ring.
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2i0.822.553.270 (6)148
O1W—H1A···O6i0.822.222.875 (6)137
O1W—H1B···O12i0.822.062.872 (10)172
O2W—H2A···O9ii0.821.942.737 (8)164
O2W—H2B···O11i0.822.012.789 (10)157
O3W—H3A···O5iii0.821.902.671 (5)155
O3W—H3B···O7iii0.822.162.836 (5)140
N4—H4···O2W0.861.912.725 (9)157
O8—H8···O1Wiv0.821.872.659 (6)160
O9—H9···O11v0.822.092.803 (12)145
O9—H9···O12v0.822.433.172 (12)151
C34—H34···O3v0.932.433.256 (8)148
C48—H48···O12vi0.932.273.046 (11)141
C62—H62···O1vii0.932.553.387 (10)150
C70—H70···O13i0.932.353.244 (13)161
C83—H83···Cg4ii0.932.783.628 (9)152
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x1, y+1, z1; (v) x1, y, z; (vi) x, y1, z; (vii) x, y+1, z.
 

Acknowledgements

This work was supported financially by Yuanpei University, Taiwan.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiu, J.-L., Liu, J.-F. & Zhao, G.-L. (2010). Acta Cryst. E66, m1513.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y.-F., Xia, H.-T., Wang, D.-Q., Yang, S.-P. & Meng, Y.-L. (2007). Acta Cryst. E63, m2544.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeelgund, G. M., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2007). Acta Cryst. C63, m74–m76.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiong, R.-G., Zhang, J., Chen, Z.-F., You, X.-Z., Che, C.-M. & Fun, H. K. (2001). J. Chem. Soc. Dalton Trans. pp. 780–782.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds