organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5S)-3-Chloro-4-(2,5-di­hydro-1H-pyrrol-1-yl)-5-[(1R,2S,5R)-2-iso­propyl-5-methyl­cyclo­hex­yl­oxy]furan-2(5H)-one

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: wangwangzhaoyang@tom.com

(Received 24 November 2010; accepted 6 December 2010; online 11 December 2010)

The title compound, C18H26ClNO3, was obtained via a tandem asymmetric Michael addition–elimination reaction of 3,4-dichloro-5-(S)-(l-menth­yloxy)furan-2(5H)-one and 2,5-di­hydro-1H-pyrrole in the presence of potassium fluoride. In the mol­ecule, the nearly planar dihydro­pyrrole ring [maximum atomic deviation = 0.019 (3) Å] is oriented at a dihedral angle of 10.73 (8)° to the the nearly planar furan­one ring [maximum atomic deviation = 0.011 (2) Å]; the cyclo­hexane ring adopts a chair conformation. In the crystal, mol­ecules are linked via weak inter­molecular C—H⋯O hydrogen bonds, forming supra­molecular chains running along the b axis.

Related literature

The title compound is a derivative of 4-amino-2(5H)-furan­one. For the biological activity of 4-amino-2(5H)-furan­ones, see: Lattmann et al. (1999[Lattmann, E., Billington, D. C. & Langley, C. A. (1999). Drug Des. Discov. 16, 243-250.], 2005[Lattmann, E., Dunn, S., Niamsanit, S. & Sattayasai, N. (2005). Bioorg. Med. Chem. Lett. 15, 919-921.], 2006[Lattmann, E., Sattayasai, N., Schwalbe, C. S., Niamsanit, S., Billington, D. C., Lattmann, P., Langley, C. A., Singh, H. & Dunn, S. (2006). Curr. Drug Discov. Technol. 3, 125-134.]); Rowland et al. (2007[Rowland, S., Clark, P., Gordon, R., Mullen, A., Guay, J., Dufresne, L., Brideau, C., Cote, B., Ducharme, Y. & Mancini, J. (2007). Eur. J. Pharmacol. 560, 216-224.]); Kim et al. (2002[Kim, Y., Nam, N.-H., You, Y.-J. & Ahn, B.-Z. (2002). Bioorg. Med. Chem. Lett. 12, 719-722.]). For asymmetric Michael addition reactions of 2(5H)-furan­one, see: He et al. (2006[He, L., Liu, Y.-M., Li, M. & Chen, Q.-H. (2006). Chem. J. Chin. Univ. 27, 464-467.]). For the synthesis of the title compound, see: Song et al. (2009[Song, X.-M., Wang, Z.-Y., Li, J.-X. & Fu, J.-H. (2009). Chin. J. Org. Chem. 11, 1804-1810.]).

[Scheme 1]

Experimental

Crystal data
  • C18H26ClNO3

  • Mr = 339.85

  • Orthorhombic, P 21 21 21

  • a = 7.192 (2) Å

  • b = 9.622 (3) Å

  • c = 27.534 (9) Å

  • V = 1905.4 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.16 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.966

  • 9627 measured reflections

  • 3363 independent reflections

  • 1708 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.129

  • S = 1.02

  • 3363 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1398 Friedel pairs

  • Flack parameter: 0.14 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O2i 0.93 2.42 3.320 (6) 164
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules possessing 2(5H)-furanone moiety, are extremely useful heterocyclic compounds, due to their significant biological activities, such as antibacterial, anti-inflammatory and antitumor. (Lattmann et al., 2005; Rowland et al., 2007; Kim et al., 2002). 5-Alkoxy-3,4-dihalo-2(5H)-furanones, being a kind of synthons, are widely used in asymmetric and pharmaceutical synthesis reactions. (Lattmann et al., 2006). At the same time, 4-amino-2(5H)-furanones are showing an antibiotic activity against MRSA (Lattmann et al., 1999; Lattmann et al., 2006). Therefore, we are interested in the tandem Michael addition-elimination reaction of the chiral synthon 3,4-dichloro-5-(S)-(l-menthyloxy)-2(5H)-furanone and 2,5-dihydro-1H-pyrrole in the present of potassium fluoride.

The structure of the title compound (I) is illustrated in Fig. 1. The crystal structure of the title compound, which has four chiral centers (C4(S), C5(R), C6(S), C9(R)), contains a five-membered furanone ring and a six-membered ring connected each other via C4—O3—C5 ether bond. The furanone ring of C4—O1—C1—C2—C3 is approximately planar, whereas the six-membered ring displays a chair conformation.

Related literature top

The title compound is a derivative of 4-amino-2(5H)-furanone. For the biological activity of 4-amino-2(5H)-furanones, see: Lattmann et al. (1999, 2005, 2006); Rowland et al. (2007); Kim et al. (2002). For asymmetric Michael addition reactions of 2(5H)-furanone, see: He et al. (2006). For the synthesis of the title compound, see: Song et al. (2009).

Experimental top

The precursor 3,4-dichloro-5-(S)-(l-menthyloxy)-2(5H)-furanone was prepared according to the literature procedure (Song et al., 2009). After the mixture of 3,4-dichloro-5-(S)-(l-menthyloxy)-2(5H)-furanone (2.0 mmol) and potassium fluoride (6.0 mmol) was dissolved in absolute tetrahydrofuran (2.0 mL) under nitrogen atmosphere, tetrahydrofuran solution of 2,5-dihydro-1H-pyrrole (2.0 mmol) was added. The reaction was carried out under the stirring at room temperature for 6 h. Once the reaction was complete, the solvents were removed under reduced pressure. The residual solid was dissolved in dichloromethane. Then the combined organic layers from extraction were concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography with the gradient mixture of petroleum ether and ethyl acetate to give the product yielding (I) 0.561 g (82.4%).

Refinement top

H atoms were positioned in calculated positions with C—H = 0.93-0.98 Å and were refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Structure description top

Molecules possessing 2(5H)-furanone moiety, are extremely useful heterocyclic compounds, due to their significant biological activities, such as antibacterial, anti-inflammatory and antitumor. (Lattmann et al., 2005; Rowland et al., 2007; Kim et al., 2002). 5-Alkoxy-3,4-dihalo-2(5H)-furanones, being a kind of synthons, are widely used in asymmetric and pharmaceutical synthesis reactions. (Lattmann et al., 2006). At the same time, 4-amino-2(5H)-furanones are showing an antibiotic activity against MRSA (Lattmann et al., 1999; Lattmann et al., 2006). Therefore, we are interested in the tandem Michael addition-elimination reaction of the chiral synthon 3,4-dichloro-5-(S)-(l-menthyloxy)-2(5H)-furanone and 2,5-dihydro-1H-pyrrole in the present of potassium fluoride.

The structure of the title compound (I) is illustrated in Fig. 1. The crystal structure of the title compound, which has four chiral centers (C4(S), C5(R), C6(S), C9(R)), contains a five-membered furanone ring and a six-membered ring connected each other via C4—O3—C5 ether bond. The furanone ring of C4—O1—C1—C2—C3 is approximately planar, whereas the six-membered ring displays a chair conformation.

The title compound is a derivative of 4-amino-2(5H)-furanone. For the biological activity of 4-amino-2(5H)-furanones, see: Lattmann et al. (1999, 2005, 2006); Rowland et al. (2007); Kim et al. (2002). For asymmetric Michael addition reactions of 2(5H)-furanone, see: He et al. (2006). For the synthesis of the title compound, see: Song et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the crystal packing.
(5S)-3-Chloro-4-(2,5-dihydro-1H-pyrrol-1-yl)- 5-[(1R,2S,5R)-2-isopropyl-5- methylcyclohexyloxy]furan-2(5H)-one top
Crystal data top
C18H26ClNO3F(000) = 728
Mr = 339.85Dx = 1.185 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1222 reflections
a = 7.192 (2) Åθ = 2.2–17.5°
b = 9.622 (3) ŵ = 0.21 mm1
c = 27.534 (9) ÅT = 298 K
V = 1905.4 (10) Å3Block, colourless
Z = 40.23 × 0.20 × 0.16 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3363 independent reflections
Radiation source: fine-focus sealed tube1708 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scanθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 68
Tmin = 0.952, Tmax = 0.966k = 1011
9627 measured reflectionsl = 3228
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0439P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3363 reflectionsΔρmax = 0.11 e Å3
211 parametersΔρmin = 0.14 e Å3
0 restraintsAbsolute structure: Flack (1983), 1398 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.14 (12)
Crystal data top
C18H26ClNO3V = 1905.4 (10) Å3
Mr = 339.85Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.192 (2) ŵ = 0.21 mm1
b = 9.622 (3) ÅT = 298 K
c = 27.534 (9) Å0.23 × 0.20 × 0.16 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3363 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1708 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.966Rint = 0.053
9627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.129Δρmax = 0.11 e Å3
S = 1.02Δρmin = 0.14 e Å3
3363 reflectionsAbsolute structure: Flack (1983), 1398 Friedel pairs
211 parametersAbsolute structure parameter: 0.14 (12)
0 restraints
Special details top

Experimental. Data for (I): [α]20°D = -45.0° (c 0.557, CH3CH2OH); 1H NMR (400 MHz, CDCl3, TMS): 0.791 (3H, d, J = 6.8 Hz, CH3), 0.823-0.937 (7H, m, CH, 2CH3), 0.945-1.181 (2H, m, CH2), 1.298-1.457 (2H, m, 2CH), 1.623-1.704 (2H, m, CH2), 2.137-2.210 (2H, m, CH2), 3.576-3.641 (1H, ddd, J = 4.4 Hz, J = 4.4 Hz,J = 4.4 Hz,CH), 3.997-4.970 (4H, m, 2CH2), 5.731-5.884 (3H, m, 3CH), ESI-MS, m/z (%): Calcd for C18H27ClNO3+([M+H]+): 340.16(100.0), 342.16(32.7), Found: 340.24 (100.0), 342.32(38.7).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.78504 (18)0.24214 (12)0.34421 (3)0.1169 (5)
C30.7443 (5)0.2768 (4)0.24451 (11)0.0695 (9)
C40.7076 (5)0.1802 (4)0.20226 (12)0.0744 (10)
H40.59520.20840.18470.089*
C50.8243 (6)0.1400 (4)0.12119 (10)0.0775 (11)
H50.73750.20710.10700.093*
C10.7075 (6)0.0576 (5)0.27315 (13)0.0840 (11)
C20.7477 (5)0.1979 (4)0.28492 (11)0.0773 (10)
C61.0128 (6)0.1530 (5)0.09539 (12)0.0901 (13)
H61.09610.08560.11080.108*
C100.7420 (7)0.0036 (4)0.11707 (11)0.1015 (13)
H10A0.62120.00500.13270.122*
H10B0.82160.06950.13380.122*
C70.9896 (8)0.1062 (5)0.04242 (13)0.1185 (18)
H7A0.90930.17140.02560.142*
H7B1.10990.10760.02650.142*
C111.1050 (6)0.2946 (6)0.10072 (14)0.1047 (15)
H111.09320.32060.13500.126*
C90.7204 (10)0.0480 (5)0.06354 (14)0.1288 (18)
H90.63400.01610.04760.155*
C80.9082 (10)0.0374 (7)0.03860 (16)0.140 (2)
H8A0.99320.10350.05320.168*
H8B0.89420.06160.00460.168*
C141.0115 (8)0.4096 (5)0.07156 (16)0.140 (2)
H14A1.03090.39360.03750.210*
H14B1.06410.49780.08040.210*
H14C0.88050.41000.07830.210*
C131.3143 (7)0.2870 (7)0.08997 (15)0.160 (2)
H13A1.36960.21510.10930.241*
H13B1.37120.37460.09770.241*
H13C1.33290.26670.05620.241*
C120.6404 (13)0.1951 (7)0.06041 (19)0.217 (4)
H12A0.65980.23130.02830.326*
H12B0.50960.19250.06730.326*
H12C0.70170.25370.08360.326*
C180.7548 (7)0.4780 (4)0.18901 (13)0.0971 (12)
H18A0.64220.45070.17210.117*
H18B0.86180.45660.16890.117*
C150.7871 (6)0.5142 (4)0.27610 (13)0.0967 (13)
H15A0.68840.50450.29990.116*
H15B0.90640.50590.29230.116*
C170.7505 (7)0.6280 (4)0.20278 (19)0.1103 (14)
H170.73440.70010.18070.132*
C160.7720 (7)0.6461 (5)0.2495 (2)0.1092 (14)
H160.77720.73290.26430.131*
N10.7681 (5)0.4111 (3)0.23671 (9)0.0791 (9)
O30.8607 (3)0.1789 (2)0.17127 (7)0.0767 (7)
O10.6832 (4)0.0450 (2)0.22383 (8)0.0845 (8)
O20.6958 (5)0.0440 (3)0.29863 (9)0.1111 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1428 (11)0.1448 (9)0.0630 (6)0.0000 (9)0.0027 (6)0.0123 (6)
C30.057 (2)0.086 (2)0.065 (2)0.002 (2)0.0010 (19)0.009 (2)
C40.067 (3)0.089 (3)0.068 (2)0.002 (2)0.002 (2)0.0044 (19)
C50.084 (3)0.096 (3)0.053 (2)0.012 (2)0.0074 (19)0.0018 (17)
C10.082 (3)0.096 (3)0.074 (3)0.008 (3)0.009 (2)0.003 (2)
C20.072 (3)0.100 (3)0.061 (2)0.005 (2)0.001 (2)0.0071 (19)
C60.082 (3)0.132 (4)0.056 (2)0.024 (3)0.001 (2)0.000 (2)
C100.131 (4)0.107 (3)0.066 (2)0.005 (3)0.007 (3)0.0180 (19)
C70.144 (5)0.155 (5)0.057 (2)0.018 (4)0.007 (3)0.011 (3)
C110.093 (4)0.161 (5)0.060 (2)0.010 (3)0.009 (2)0.007 (3)
C90.182 (6)0.129 (4)0.075 (3)0.010 (4)0.010 (4)0.028 (3)
C80.193 (7)0.155 (5)0.071 (3)0.011 (5)0.012 (3)0.038 (3)
C140.165 (6)0.146 (4)0.110 (3)0.015 (4)0.009 (4)0.025 (3)
C130.098 (4)0.294 (8)0.088 (3)0.019 (5)0.027 (3)0.011 (4)
C120.325 (10)0.197 (6)0.130 (4)0.106 (7)0.031 (5)0.073 (4)
C180.097 (3)0.098 (3)0.097 (3)0.007 (3)0.010 (3)0.010 (2)
C150.082 (3)0.101 (3)0.107 (3)0.010 (3)0.002 (3)0.022 (3)
C170.106 (4)0.085 (3)0.141 (4)0.004 (3)0.015 (4)0.016 (3)
C160.088 (3)0.088 (3)0.152 (4)0.009 (3)0.003 (3)0.021 (3)
N10.081 (3)0.088 (2)0.0686 (17)0.0027 (19)0.0051 (18)0.0100 (16)
O30.0764 (17)0.1003 (17)0.0532 (13)0.0049 (14)0.0025 (13)0.0071 (12)
O10.097 (2)0.0833 (17)0.0735 (15)0.0071 (15)0.0035 (14)0.0038 (13)
O20.136 (3)0.103 (2)0.0939 (18)0.016 (2)0.0152 (19)0.0119 (16)
Geometric parameters (Å, º) top
Cl1—C21.709 (3)C9—C81.518 (7)
C3—N11.321 (4)C9—C121.530 (7)
C3—C21.347 (4)C9—H90.9800
C3—C41.512 (4)C8—H8A0.9700
C4—O31.393 (4)C8—H8B0.9700
C4—O11.441 (4)C14—H14A0.9600
C4—H40.9800C14—H14B0.9600
C5—O31.453 (3)C14—H14C0.9600
C5—C101.507 (5)C13—H13A0.9600
C5—C61.536 (5)C13—H13B0.9600
C5—H50.9800C13—H13C0.9600
C1—O21.206 (4)C12—H12A0.9600
C1—O11.375 (4)C12—H12B0.9600
C1—C21.418 (5)C12—H12C0.9600
C6—C111.522 (6)C18—N11.466 (4)
C6—C71.535 (5)C18—C171.492 (5)
C6—H60.9800C18—H18A0.9700
C10—C91.542 (5)C18—H18B0.9700
C10—H10A0.9700C15—C161.469 (6)
C10—H10B0.9700C15—N11.476 (4)
C7—C81.504 (6)C15—H15A0.9700
C7—H7A0.9700C15—H15B0.9700
C7—H7B0.9700C17—C161.308 (5)
C11—C141.524 (6)C17—H170.9300
C11—C131.535 (6)C16—H160.9300
C11—H110.9800
N1—C3—C2133.1 (3)C12—C9—H9108.6
N1—C3—C4119.9 (3)C10—C9—H9108.6
C2—C3—C4107.0 (3)C7—C8—C9112.1 (5)
O3—C4—O1109.9 (3)C7—C8—H8A109.2
O3—C4—C3109.8 (3)C9—C8—H8A109.2
O1—C4—C3105.0 (3)C7—C8—H8B109.2
O3—C4—H4110.7C9—C8—H8B109.2
O1—C4—H4110.7H8A—C8—H8B107.9
C3—C4—H4110.7C11—C14—H14A109.5
O3—C5—C10112.2 (3)C11—C14—H14B109.5
O3—C5—C6105.0 (3)H14A—C14—H14B109.5
C10—C5—C6112.8 (4)C11—C14—H14C109.5
O3—C5—H5108.9H14A—C14—H14C109.5
C10—C5—H5108.9H14B—C14—H14C109.5
C6—C5—H5108.9C11—C13—H13A109.5
O2—C1—O1119.6 (4)C11—C13—H13B109.5
O2—C1—C2130.8 (3)H13A—C13—H13B109.5
O1—C1—C2109.6 (3)C11—C13—H13C109.5
C3—C2—C1110.1 (3)H13A—C13—H13C109.5
C3—C2—Cl1130.7 (3)H13B—C13—H13C109.5
C1—C2—Cl1119.2 (3)C9—C12—H12A109.5
C11—C6—C7113.7 (4)C9—C12—H12B109.5
C11—C6—C5114.4 (3)H12A—C12—H12B109.5
C7—C6—C5108.6 (4)C9—C12—H12C109.5
C11—C6—H6106.5H12A—C12—H12C109.5
C7—C6—H6106.5H12B—C12—H12C109.5
C5—C6—H6106.5N1—C18—C17101.4 (3)
C5—C10—C9111.4 (3)N1—C18—H18A111.5
C5—C10—H10A109.3C17—C18—H18A111.5
C9—C10—H10A109.3N1—C18—H18B111.5
C5—C10—H10B109.3C17—C18—H18B111.5
C9—C10—H10B109.3H18A—C18—H18B109.3
H10A—C10—H10B108.0C16—C15—N1102.0 (3)
C8—C7—C6112.2 (4)C16—C15—H15A111.4
C8—C7—H7A109.2N1—C15—H15A111.4
C6—C7—H7A109.2C16—C15—H15B111.4
C8—C7—H7B109.2N1—C15—H15B111.4
C6—C7—H7B109.2H15A—C15—H15B109.2
H7A—C7—H7B107.9C16—C17—C18112.1 (4)
C6—C11—C14114.0 (4)C16—C17—H17123.9
C6—C11—C13111.5 (5)C18—C17—H17123.9
C14—C11—C13111.4 (5)C17—C16—C15112.5 (4)
C6—C11—H11106.5C17—C16—H16123.7
C14—C11—H11106.5C15—C16—H16123.7
C13—C11—H11106.5C3—N1—C18124.5 (3)
C8—C9—C12111.8 (5)C3—N1—C15123.3 (3)
C8—C9—C10108.9 (4)C18—N1—C15111.7 (3)
C12—C9—C10110.4 (4)C4—O3—C5116.2 (3)
C8—C9—H9108.6C1—O1—C4108.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.932.423.320 (6)164
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H26ClNO3
Mr339.85
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.192 (2), 9.622 (3), 27.534 (9)
V3)1905.4 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.23 × 0.20 × 0.16
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.952, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
9627, 3363, 1708
Rint0.053
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.129, 1.02
No. of reflections3363
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.14
Absolute structureFlack (1983), 1398 Friedel pairs
Absolute structure parameter0.14 (12)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.932.423.320 (6)164
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (grant No. 20772035) and the Natural Science Foundation of Guangdong Province, China (grant No. 5300082).

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHe, L., Liu, Y.-M., Li, M. & Chen, Q.-H. (2006). Chem. J. Chin. Univ. 27, 464–467.  CAS Google Scholar
First citationKim, Y., Nam, N.-H., You, Y.-J. & Ahn, B.-Z. (2002). Bioorg. Med. Chem. Lett. 12, 719–722.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLattmann, E., Billington, D. C. & Langley, C. A. (1999). Drug Des. Discov. 16, 243–250.  PubMed CAS Google Scholar
First citationLattmann, E., Dunn, S., Niamsanit, S. & Sattayasai, N. (2005). Bioorg. Med. Chem. Lett. 15, 919–921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLattmann, E., Sattayasai, N., Schwalbe, C. S., Niamsanit, S., Billington, D. C., Lattmann, P., Langley, C. A., Singh, H. & Dunn, S. (2006). Curr. Drug Discov. Technol. 3, 125–134.  CSD CrossRef PubMed CAS Google Scholar
First citationRowland, S., Clark, P., Gordon, R., Mullen, A., Guay, J., Dufresne, L., Brideau, C., Cote, B., Ducharme, Y. & Mancini, J. (2007). Eur. J. Pharmacol. 560, 216–224.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, X.-M., Wang, Z.-Y., Li, J.-X. & Fu, J.-H. (2009). Chin. J. Org. Chem. 11, 1804–1810.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds