metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis[μ-4-(di­ethyl­amino)­benzoato-κ2O:O′]bis­­[(N,N-di­ethyl­nicotinamide-κN1)cobalt(II)]

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Ankara University, 06100 Tandoğan, Ankara, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 25 November 2010; accepted 30 November 2010; online 4 December 2010)

In the centrosymmetric binuclear title complex, [Co2(C11H14NO2)4(C10H14N2O)2], the two CoII cations [Co⋯Co = 2.6199 (5) Å] are bridged by four 4-(diethyl­amino)­benzoate (DEAB) anions. The four nearest O atoms around each CoII ion form a distorted square-planar arrangement, the distorted square-pyramidal coordination geometry being completed by the pyridine N atom of an N,N-diethyl­nicotinamide (DENA) ligand. The dihedral angle between the benzene ring and the carboxyl­ate group is 7.06 (11)° in one of the independent DEAB ligands and 4.42 (9)° in the other. The benzene rings of the two independent DEAB ligands are oriented at a dihedral angle of 86.35 (8)°. The pyridine ring is oriented at dihedral angles of 31.43 (6) and 57.92 (7)° with respect to the two benzene rings. In the crystal, weak inter­molecular C—H⋯O inter­actions link the mol­ecules into a three-dimensional network. Weak C—H⋯π inter­actions are also present in the crystal structure.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Speier & Fulop (1989[Speier, G. & Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331-2333.]); Usubaliev et al. (1980[Usubaliev, B. T., Movsumov, E. M., Musaev, F. N., Nadzhafov, G. N., Amiraslanov, I. R. & Mamedov, Kh. S. (1980). Koord. Khim. 6, 1091-1096.]); Hökelek et al. (1995[Hökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020-2023.], 2009a[Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m955-m956.],b[Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1328-m1329.],c[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1582-m1583.]); Necefoğlu et al. (2010a[Necefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010a). Acta Cryst. E66, m334-m335.],b[Necefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010b). Acta Cryst. E66, m485-m486.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C11H14NO2)4(C10H14N2O)2]

  • Mr = 1243.25

  • Monoclinic, P 21 /n

  • a = 10.3518 (2) Å

  • b = 13.4393 (2) Å

  • c = 22.5105 (3) Å

  • β = 94.189 (2)°

  • V = 3123.32 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 100 K

  • 0.44 × 0.36 × 0.21 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.771, Tmax = 0.881

  • 29642 measured reflections

  • 7775 independent reflections

  • 6209 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.119

  • S = 1.04

  • 7775 reflections

  • 385 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.86 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.0287 (15)
Co1—O2 2.0262 (16)
Co1—O3 2.0347 (15)
Co1—O4 2.0223 (15)
Co1—N1 2.0702 (18)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O5i 0.97 2.49 3.380 (3) 153
C24—H24⋯O5ii 0.93 2.57 3.307 (3) 136
C19—H19ACg1iii 0.97 2.94 3.872 (3) 162
C31—H31BCg1iv 0.97 2.88 3.637 (2) 136
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y, -z; (iv) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound is a binuclear compound, consisting of two DENA and four diethylaminobenzoate (DEAB) ligands. The structures of similar complexes of the Cu2+ and Zn2+ ions, [Cu(C6H5COO)2(C5H5N)]2 (Usubaliev et al., 1980); [Cu(C6H5CO2)2(Py)]2 (Speier & Fulop, 1989); [Cu2(C6H5COO)4(C10H14N2O)2] (Hökelek et al., 1995) [Cu2(C8H7O2)4(C6H6N2O)2] (Necefoğlu et al., 2010a) [Zn2(C11H14NO2)4(C10H14N2O)2] (Hökelek et al., 2009a); [Zn2(C8H8NO2)4(C10H14N2O)2].2H2O (Hökelek et al., 2009b); [Zn2(C9H10NO2)4(C10H14N2O)2] (Hökelek et al., 2009c); [Zn2(C8H7O2)4(C10H14N2O)2] (Necefoğlu et al., 2010b) have also been determined. In these structures, the benzoate ion acts as a bidentate ligand.

The title dimeric complex, [Co2(DEAB)4(DENA)2], has a centre of symmetry and two CoII atoms are surrounded by four DEAB groups and two DENA ligands. The DENA ligands are coordinated to Co atoms through pyridine N atoms only. The DEAB groups act as bridging ligands. The Co···Co' distance is 2.6199 (5) Å. The average Co-O distance is 2.0280 (15) Å (Table 1), and four O atoms of the bridging DEAB ligands around each Co atom form a distorted square plane. The Co atom lies 0.1857 (3) Å below the least-squares plane. The average O-Co-O bond angle is 89.36 (7)°. A distorted square-pyramidal arrangement around each Co atom is completed by the pyridine N atom of DENA ligand at 2.0702 (18) Å from the Co atom (Table 1). The N1-Co1···Co1' angle is 171.59 (5)° and the dihedral angle between plane through Co1, O1, O2, C1, Co1', O1', O2', C1' and the plane through Co1, O3, O4, C12, Co1', O3', O4', C12' is 89.51 (6)°. The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2-C7) and B (C13-C18) are 7.06 (11) and 4.42 (9) °, respectively, while that between rings A and B is A/B = 86.35 (8)°. Ring C (N1/C23-C27) is oriented with respect to rings A and B at dihedral angles A/C = 31.43 (6) and B/C = 57.92 (7) °.

In the crystal structure, weak intermolecular C-H···O interactions (Table 2) link the molecules into a two-dimensional network, in which they may be effective in the stabilization of the structure. Two weak C-H···π interactions (Table 2) are also found.

Related literature top

For niacin, see: Krishnamachari (1974). For N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Speier & Fulop (1989); Usubaliev et al. (1980); Hökelek et al. (1995); Hökelek et al. (2009a,b,c); Necefoğlu et al. (2010a,b).

Experimental top

The title compound was prepared by the reaction of CoSO4.7H2O (1.41 g, 5 mmol) in H2O (50 ml) and DENA (1.78 g, 10 mmol) in H2O (50 ml) with sodium p-diethylaminobenzoate (2.16 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving blue single crystals.

Refinement top

H atoms were positioned geometrically with C-H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Structure description top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound is a binuclear compound, consisting of two DENA and four diethylaminobenzoate (DEAB) ligands. The structures of similar complexes of the Cu2+ and Zn2+ ions, [Cu(C6H5COO)2(C5H5N)]2 (Usubaliev et al., 1980); [Cu(C6H5CO2)2(Py)]2 (Speier & Fulop, 1989); [Cu2(C6H5COO)4(C10H14N2O)2] (Hökelek et al., 1995) [Cu2(C8H7O2)4(C6H6N2O)2] (Necefoğlu et al., 2010a) [Zn2(C11H14NO2)4(C10H14N2O)2] (Hökelek et al., 2009a); [Zn2(C8H8NO2)4(C10H14N2O)2].2H2O (Hökelek et al., 2009b); [Zn2(C9H10NO2)4(C10H14N2O)2] (Hökelek et al., 2009c); [Zn2(C8H7O2)4(C10H14N2O)2] (Necefoğlu et al., 2010b) have also been determined. In these structures, the benzoate ion acts as a bidentate ligand.

The title dimeric complex, [Co2(DEAB)4(DENA)2], has a centre of symmetry and two CoII atoms are surrounded by four DEAB groups and two DENA ligands. The DENA ligands are coordinated to Co atoms through pyridine N atoms only. The DEAB groups act as bridging ligands. The Co···Co' distance is 2.6199 (5) Å. The average Co-O distance is 2.0280 (15) Å (Table 1), and four O atoms of the bridging DEAB ligands around each Co atom form a distorted square plane. The Co atom lies 0.1857 (3) Å below the least-squares plane. The average O-Co-O bond angle is 89.36 (7)°. A distorted square-pyramidal arrangement around each Co atom is completed by the pyridine N atom of DENA ligand at 2.0702 (18) Å from the Co atom (Table 1). The N1-Co1···Co1' angle is 171.59 (5)° and the dihedral angle between plane through Co1, O1, O2, C1, Co1', O1', O2', C1' and the plane through Co1, O3, O4, C12, Co1', O3', O4', C12' is 89.51 (6)°. The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2-C7) and B (C13-C18) are 7.06 (11) and 4.42 (9) °, respectively, while that between rings A and B is A/B = 86.35 (8)°. Ring C (N1/C23-C27) is oriented with respect to rings A and B at dihedral angles A/C = 31.43 (6) and B/C = 57.92 (7) °.

In the crystal structure, weak intermolecular C-H···O interactions (Table 2) link the molecules into a two-dimensional network, in which they may be effective in the stabilization of the structure. Two weak C-H···π interactions (Table 2) are also found.

For niacin, see: Krishnamachari (1974). For N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Speier & Fulop (1989); Usubaliev et al. (1980); Hökelek et al. (1995); Hökelek et al. (2009a,b,c); Necefoğlu et al. (2010a,b).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms are omitted for clarity. Primed atoms are generated by the symmetry operator:(') - x, 1 - y, - z.
Tetrakis[µ-4-(diethylamino)benzoato- κ2O:O']bis[(N,N-diethylnicotinamide- κN1)cobalt(II)] top
Crystal data top
[Co2(C11H14NO2)4(C10H14N2O)2]F(000) = 1316
Mr = 1243.25Dx = 1.322 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9913 reflections
a = 10.3518 (2) Åθ = 2.2–28.3°
b = 13.4393 (2) ŵ = 0.60 mm1
c = 22.5105 (3) ÅT = 100 K
β = 94.189 (2)°Block, blue
V = 3123.32 (9) Å30.44 × 0.36 × 0.21 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
7775 independent reflections
Radiation source: fine-focus sealed tube6209 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1311
Tmin = 0.771, Tmax = 0.881k = 1715
29642 measured reflectionsl = 2830
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0516P)2 + 3.5237P]
where P = (Fo2 + 2Fc2)/3
7775 reflections(Δ/σ)max < 0.001
385 parametersΔρmax = 1.86 e Å3
1 restraintΔρmin = 0.63 e Å3
Crystal data top
[Co2(C11H14NO2)4(C10H14N2O)2]V = 3123.32 (9) Å3
Mr = 1243.25Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.3518 (2) ŵ = 0.60 mm1
b = 13.4393 (2) ÅT = 100 K
c = 22.5105 (3) Å0.44 × 0.36 × 0.21 mm
β = 94.189 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
7775 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6209 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 0.881Rint = 0.030
29642 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.119H-atom parameters constrained
S = 1.04Δρmax = 1.86 e Å3
7775 reflectionsΔρmin = 0.63 e Å3
385 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.08277 (3)0.50124 (2)0.046881 (12)0.01343 (9)
O10.21346 (15)0.45553 (12)0.01024 (7)0.0193 (3)
O20.07212 (15)0.54348 (12)0.09087 (7)0.0213 (3)
O30.02198 (15)0.35760 (11)0.05110 (7)0.0204 (3)
O40.12056 (16)0.64540 (11)0.02910 (7)0.0207 (3)
O50.39349 (16)0.22715 (12)0.22409 (8)0.0272 (4)
N10.19986 (17)0.48455 (13)0.12480 (8)0.0155 (4)
N20.54359 (17)0.28424 (13)0.16426 (9)0.0184 (4)
N30.57041 (18)0.27458 (14)0.20266 (8)0.0192 (4)
N40.1917 (3)0.08369 (19)0.07254 (13)0.0586 (9)
C10.1838 (2)0.44190 (15)0.06537 (10)0.0164 (4)
C20.2870 (2)0.40483 (15)0.10227 (10)0.0161 (4)
C30.4103 (2)0.38332 (16)0.07660 (10)0.0174 (4)
H30.42950.39740.03650.021*
C40.5050 (2)0.34162 (16)0.10906 (10)0.0181 (4)
H40.58610.32750.09040.022*
C50.4795 (2)0.32034 (16)0.17039 (10)0.0169 (4)
C60.3572 (2)0.34872 (17)0.19684 (10)0.0201 (4)
H60.33950.34030.23760.024*
C70.2632 (2)0.38885 (16)0.16323 (10)0.0188 (4)
H70.18280.40540.18170.023*
C80.5472 (2)0.25945 (19)0.26694 (10)0.0238 (5)
H8A0.63030.25460.28400.029*
H8B0.50350.31790.28390.029*
C90.4673 (3)0.1681 (2)0.28582 (12)0.0304 (6)
H9A0.45430.16630.32850.046*
H9B0.38490.17130.26890.046*
H9C0.51240.10920.27200.046*
C100.6810 (2)0.22247 (17)0.17283 (10)0.0202 (4)
H10A0.71880.26420.14090.024*
H10B0.74610.21240.20110.024*
C110.6460 (3)0.12205 (18)0.14698 (11)0.0273 (5)
H11A0.72270.09110.12890.041*
H11B0.60870.08020.17820.041*
H11C0.58460.13160.11750.041*
C120.0614 (2)0.31422 (16)0.01624 (10)0.0173 (4)
C130.0922 (2)0.20945 (16)0.02986 (10)0.0187 (4)
C140.1889 (2)0.15828 (17)0.00377 (11)0.0241 (5)
H140.23240.18990.03610.029*
C150.2217 (3)0.06189 (18)0.00965 (12)0.0313 (6)
H150.28720.02990.01350.038*
C160.1573 (3)0.01105 (19)0.05801 (13)0.0363 (7)
C170.0571 (3)0.06262 (18)0.09112 (12)0.0322 (6)
H170.01070.03080.12250.039*
C180.0274 (2)0.15955 (17)0.07739 (11)0.0237 (5)
H180.03740.19240.10040.028*
C190.3105 (3)0.1314 (2)0.04357 (14)0.0422 (7)
H19A0.34460.17950.07050.051*
H19B0.37640.08130.03440.051*
C200.2775 (3)0.1820 (2)0.01213 (16)0.0477 (8)
H20A0.35470.20890.03220.072*
H20B0.21710.23480.00250.072*
H20C0.23930.13480.03770.072*
C210.1063 (5)0.1455 (3)0.11570 (18)0.0771 (14)
H21A0.11270.21540.10520.093*
H21B0.01650.12500.11490.093*
C220.1526 (4)0.1287 (3)0.1752 (2)0.0805 (13)
H22A0.10520.17040.20370.121*
H22B0.24320.14450.17450.121*
H22C0.13980.06020.18630.121*
C230.1870 (2)0.54421 (16)0.17171 (10)0.0172 (4)
H230.12880.59690.16770.021*
C240.2571 (2)0.53051 (17)0.22588 (10)0.0202 (4)
H240.24750.57410.25730.024*
C250.3415 (2)0.45098 (17)0.23237 (10)0.0196 (4)
H250.38870.43980.26850.024*
C260.3553 (2)0.38771 (16)0.18422 (10)0.0169 (4)
C270.2831 (2)0.40772 (16)0.13115 (10)0.0165 (4)
H270.29270.36630.09860.020*
C280.4338 (2)0.29336 (16)0.19214 (10)0.0181 (4)
C290.6145 (2)0.18977 (17)0.17123 (11)0.0241 (5)
H29A0.61800.16990.21270.029*
H29B0.70270.20000.16070.029*
C300.5542 (3)0.10637 (19)0.13335 (14)0.0355 (6)
H30A0.60060.04570.14220.053*
H30B0.55850.12240.09200.053*
H30C0.46530.09820.14190.053*
C310.6028 (2)0.36507 (17)0.13149 (10)0.0209 (5)
H31A0.69130.37500.14780.025*
H31B0.55550.42620.13700.025*
C320.6032 (3)0.3432 (2)0.06586 (12)0.0313 (6)
H32A0.64300.39750.04630.047*
H32B0.51570.33510.04930.047*
H32C0.65100.28330.06010.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01556 (14)0.01128 (15)0.01370 (14)0.00036 (11)0.00279 (10)0.00104 (10)
O10.0209 (7)0.0199 (8)0.0177 (8)0.0017 (6)0.0049 (6)0.0005 (6)
O20.0182 (7)0.0254 (8)0.0207 (8)0.0029 (7)0.0043 (6)0.0011 (7)
O30.0260 (8)0.0135 (7)0.0216 (8)0.0054 (6)0.0012 (6)0.0013 (6)
O40.0275 (8)0.0131 (7)0.0215 (8)0.0015 (6)0.0008 (6)0.0037 (6)
O50.0278 (9)0.0215 (9)0.0339 (10)0.0041 (7)0.0120 (7)0.0105 (7)
N10.0158 (8)0.0128 (8)0.0185 (9)0.0021 (7)0.0050 (7)0.0009 (7)
N20.0171 (8)0.0159 (9)0.0222 (10)0.0012 (7)0.0022 (7)0.0042 (7)
N30.0192 (9)0.0223 (10)0.0167 (9)0.0029 (7)0.0047 (7)0.0013 (7)
N40.086 (2)0.0262 (12)0.0576 (17)0.0294 (13)0.0359 (15)0.0207 (12)
C10.0200 (10)0.0109 (9)0.0190 (10)0.0019 (8)0.0060 (8)0.0006 (8)
C20.0174 (9)0.0129 (9)0.0185 (10)0.0012 (8)0.0050 (8)0.0010 (8)
C30.0215 (10)0.0147 (10)0.0161 (10)0.0001 (8)0.0025 (8)0.0008 (8)
C40.0172 (10)0.0180 (10)0.0193 (10)0.0011 (8)0.0020 (8)0.0000 (8)
C50.0174 (10)0.0156 (10)0.0185 (10)0.0019 (8)0.0059 (8)0.0005 (8)
C60.0217 (10)0.0231 (11)0.0157 (10)0.0007 (9)0.0025 (8)0.0026 (8)
C70.0165 (10)0.0195 (11)0.0204 (11)0.0008 (8)0.0017 (8)0.0004 (8)
C80.0231 (11)0.0319 (13)0.0171 (11)0.0038 (10)0.0069 (9)0.0034 (9)
C90.0311 (13)0.0335 (14)0.0265 (13)0.0028 (11)0.0015 (10)0.0082 (11)
C100.0183 (10)0.0204 (11)0.0226 (11)0.0016 (9)0.0068 (8)0.0017 (9)
C110.0363 (13)0.0214 (12)0.0240 (12)0.0005 (10)0.0022 (10)0.0002 (9)
C120.0200 (10)0.0134 (10)0.0190 (10)0.0004 (8)0.0064 (8)0.0002 (8)
C130.0246 (11)0.0134 (10)0.0184 (11)0.0022 (8)0.0026 (8)0.0006 (8)
C140.0320 (12)0.0181 (11)0.0212 (11)0.0049 (9)0.0042 (9)0.0041 (9)
C150.0408 (14)0.0199 (12)0.0311 (14)0.0116 (11)0.0117 (11)0.0042 (10)
C160.0547 (17)0.0178 (12)0.0341 (15)0.0142 (12)0.0137 (13)0.0082 (10)
C170.0472 (15)0.0181 (12)0.0289 (13)0.0091 (11)0.0138 (12)0.0103 (10)
C180.0306 (12)0.0166 (11)0.0230 (12)0.0071 (9)0.0037 (9)0.0028 (9)
C190.0583 (18)0.0207 (13)0.0479 (17)0.0097 (13)0.0050 (14)0.0037 (12)
C200.0459 (17)0.0360 (16)0.062 (2)0.0028 (14)0.0069 (15)0.0019 (14)
C210.113 (3)0.047 (2)0.065 (2)0.049 (2)0.030 (2)0.0196 (17)
C220.070 (2)0.070 (3)0.099 (3)0.024 (2)0.007 (2)0.019 (2)
C230.0184 (10)0.0137 (10)0.0200 (11)0.0011 (8)0.0040 (8)0.0006 (8)
C240.0240 (11)0.0171 (10)0.0197 (11)0.0024 (9)0.0030 (9)0.0039 (8)
C250.0207 (10)0.0200 (11)0.0180 (10)0.0018 (9)0.0001 (8)0.0019 (9)
C260.0164 (9)0.0152 (10)0.0194 (11)0.0009 (8)0.0036 (8)0.0030 (8)
C270.0175 (10)0.0145 (10)0.0178 (10)0.0002 (8)0.0045 (8)0.0004 (8)
C280.0188 (10)0.0165 (10)0.0191 (11)0.0012 (8)0.0013 (8)0.0018 (8)
C290.0205 (11)0.0220 (12)0.0302 (13)0.0057 (9)0.0039 (9)0.0080 (10)
C300.0405 (15)0.0180 (12)0.0485 (17)0.0036 (11)0.0076 (13)0.0009 (11)
C310.0177 (10)0.0175 (11)0.0278 (12)0.0018 (8)0.0037 (9)0.0037 (9)
C320.0389 (14)0.0290 (13)0.0269 (13)0.0101 (11)0.0086 (11)0.0037 (10)
Geometric parameters (Å, º) top
Co1—Co1i2.6199 (5)C12—C131.481 (3)
Co1—O12.0287 (15)C13—C141.392 (3)
Co1—O22.0262 (16)C14—C151.378 (3)
Co1—O32.0347 (15)C14—H140.9300
Co1—O42.0223 (15)C15—C161.411 (4)
Co1—N12.0702 (18)C15—H150.9300
O1—C11.270 (3)C17—C161.414 (4)
O2—C1i1.268 (3)C17—H170.9300
O3—C121.266 (3)C18—C131.393 (3)
O4—C12i1.273 (3)C18—C171.379 (3)
O5—C281.236 (3)C18—H180.9300
N1—C231.340 (3)C19—C201.488 (4)
N1—C271.346 (3)C19—H19A0.9700
N2—C281.343 (3)C19—H19B0.9700
N2—C291.469 (3)C20—H20A0.9600
N2—C311.472 (3)C20—H20B0.9600
N3—C81.464 (3)C20—H20C0.9600
N4—C161.368 (3)C21—N41.513 (4)
N4—C191.494 (4)C21—C221.474 (6)
C1—O2i1.268 (3)C21—H21A0.9700
C1—C21.486 (3)C21—H21B0.9700
C2—C71.393 (3)C22—H22A0.9600
C3—C21.392 (3)C22—H22B0.9600
C3—C41.384 (3)C22—H22C0.9600
C3—H30.9300C23—C241.385 (3)
C4—C51.416 (3)C23—H230.9300
C4—H40.9300C24—C251.381 (3)
C5—N31.375 (3)C24—H240.9300
C5—C61.412 (3)C25—H250.9300
C6—C71.385 (3)C26—C251.393 (3)
C6—H60.9300C26—C281.510 (3)
C7—H70.9300C27—C261.388 (3)
C8—C91.523 (3)C27—H270.9300
C8—H8A0.9700C29—C301.515 (4)
C8—H8B0.9700C29—H29A0.9700
C9—H9A0.9600C29—H29B0.9700
C9—H9B0.9600C30—H30A0.9600
C9—H9C0.9600C30—H30B0.9600
C10—N31.462 (3)C30—H30C0.9600
C10—C111.524 (3)C31—C321.506 (3)
C10—H10A0.9700C31—H31A0.9700
C10—H10B0.9700C31—H31B0.9700
C11—H11A0.9600C32—H32A0.9600
C11—H11B0.9600C32—H32B0.9600
C11—H11C0.9600C32—H32C0.9600
C12—O4i1.273 (3)
O1—Co1—Co1i84.99 (5)C15—C14—C13121.6 (2)
O1—Co1—O388.00 (7)C15—C14—H14119.2
O1—Co1—N197.35 (7)C13—C14—H14119.2
O2—Co1—Co1i84.43 (5)C14—C15—C16120.9 (2)
O2—Co1—O1169.35 (6)C14—C15—H15119.5
O2—Co1—O389.11 (7)C16—C15—H15119.5
O2—Co1—N192.95 (7)N4—C16—C15121.2 (2)
O3—Co1—Co1i80.75 (5)N4—C16—C17121.6 (2)
O3—Co1—N191.24 (6)C15—C16—C17117.2 (2)
O4—Co1—Co1i88.70 (5)C16—C17—H17119.6
O4—Co1—O190.98 (7)C18—C17—C16120.8 (2)
O4—Co1—O289.99 (7)C18—C17—H17119.6
O4—Co1—O3169.45 (6)C13—C18—H18119.2
O4—Co1—N199.31 (7)C17—C18—C13121.6 (2)
N1—Co1—Co1i171.59 (5)C17—C18—H18119.2
C1—O1—Co1122.57 (14)N4—C19—H19A109.8
C1i—O2—Co1123.37 (14)N4—C19—H19B109.8
C12—O3—Co1127.39 (14)C20—C19—N4109.3 (3)
C12i—O4—Co1118.59 (14)C20—C19—H19A109.8
C23—N1—C27118.36 (19)C20—C19—H19B109.8
C23—N1—Co1121.14 (14)H19A—C19—H19B108.3
C27—N1—Co1120.25 (15)C19—C20—H20A109.5
C28—N2—C29117.52 (18)C19—C20—H20B109.5
C28—N2—C31124.37 (18)C19—C20—H20C109.5
C29—N2—C31117.91 (18)H20A—C20—H20B109.5
C5—N3—C10120.94 (18)H20A—C20—H20C109.5
C5—N3—C8121.00 (18)H20B—C20—H20C109.5
C10—N3—C8117.01 (18)N4—C21—H21A110.4
C16—N4—C19121.0 (2)N4—C21—H21B110.4
C16—N4—C21120.9 (3)C22—C21—N4106.6 (4)
C19—N4—C21117.9 (2)C22—C21—H21A110.4
O1—C1—C2117.53 (19)C22—C21—H21B110.4
O2i—C1—O1124.6 (2)H21A—C21—H21B108.6
O2i—C1—C2117.88 (19)C21—C22—H22A109.5
C3—C2—C1120.80 (19)C21—C22—H22B109.5
C3—C2—C7117.9 (2)C21—C22—H22C109.5
C7—C2—C1121.32 (19)H22A—C22—H22B109.5
C2—C3—H3119.0H22A—C22—H22C109.5
C4—C3—C2121.9 (2)H22B—C22—H22C109.5
C4—C3—H3119.0N1—C23—C24122.6 (2)
C3—C4—C5120.5 (2)N1—C23—H23118.7
C3—C4—H4119.7C24—C23—H23118.7
C5—C4—H4119.7C23—C24—H24120.6
N3—C5—C4121.31 (19)C25—C24—C23118.9 (2)
N3—C5—C6121.7 (2)C25—C24—H24120.6
C6—C5—C4117.01 (19)C24—C25—C26119.3 (2)
C5—C6—H6119.4C24—C25—H25120.3
C7—C6—C5121.3 (2)C26—C25—H25120.3
C7—C6—H6119.4C25—C26—C28120.36 (19)
C2—C7—H7119.4C27—C26—C25118.2 (2)
C6—C7—C2121.2 (2)C27—C26—C28121.0 (2)
C6—C7—H7119.4N1—C27—C26122.7 (2)
N3—C8—C9115.8 (2)N1—C27—H27118.7
N3—C8—H8A108.3C26—C27—H27118.7
N3—C8—H8B108.3O5—C28—N2122.6 (2)
C9—C8—H8A108.3O5—C28—C26118.14 (19)
C9—C8—H8B108.3N2—C28—C26119.22 (19)
H8A—C8—H8B107.4N2—C29—C30113.4 (2)
C8—C9—H9A109.5N2—C29—H29A108.9
C8—C9—H9B109.5N2—C29—H29B108.9
C8—C9—H9C109.5C30—C29—H29A108.9
H9A—C9—H9B109.5C30—C29—H29B108.9
H9A—C9—H9C109.5H29A—C29—H29B107.7
H9B—C9—H9C109.5C29—C30—H30A109.5
N3—C10—C11113.57 (19)C29—C30—H30B109.5
N3—C10—H10A108.9C29—C30—H30C109.5
N3—C10—H10B108.9H30A—C30—H30B109.5
C11—C10—H10A108.9H30A—C30—H30C109.5
C11—C10—H10B108.9H30B—C30—H30C109.5
H10A—C10—H10B107.7N2—C31—C32112.25 (19)
C10—C11—H11A109.5N2—C31—H31A109.2
C10—C11—H11B109.5N2—C31—H31B109.2
C10—C11—H11C109.5C32—C31—H31A109.2
H11A—C11—H11B109.5C32—C31—H31B109.2
H11A—C11—H11C109.5H31A—C31—H31B107.9
H11B—C11—H11C109.5C31—C32—H32A109.5
O3—C12—O4i124.6 (2)C31—C32—H32B109.5
O3—C12—C13117.19 (19)C31—C32—H32C109.5
O4i—C12—C13118.26 (19)H32A—C32—H32B109.5
C14—C13—C12121.0 (2)H32A—C32—H32C109.5
C14—C13—C18117.8 (2)H32B—C32—H32C109.5
C18—C13—C12121.2 (2)
Co1i—Co1—O1—C10.51 (16)C21—N4—C16—C1713.4 (6)
O2—Co1—O1—C17.0 (4)C16—N4—C19—C2088.1 (4)
O3—Co1—O1—C181.40 (16)C21—N4—C19—C2088.3 (4)
O4—Co1—O1—C188.10 (16)O1—C1—C2—C31.8 (3)
N1—Co1—O1—C1172.39 (16)O1—C1—C2—C7179.3 (2)
Co1i—Co1—O2—C1i2.46 (16)O2i—C1—C2—C3177.3 (2)
O1—Co1—O2—C1i9.0 (5)O2i—C1—C2—C71.5 (3)
O3—Co1—O2—C1i83.25 (17)C1—C2—C7—C6176.1 (2)
O4—Co1—O2—C1i86.23 (17)C3—C2—C7—C62.8 (3)
N1—Co1—O2—C1i174.45 (17)C4—C3—C2—C1175.0 (2)
Co1i—Co1—O3—C120.78 (17)C4—C3—C2—C73.9 (3)
O1—Co1—O3—C1286.04 (18)C2—C3—C4—C50.7 (3)
O2—Co1—O3—C1283.71 (18)C3—C4—C5—N3176.9 (2)
O4—Co1—O3—C121.4 (5)C3—C4—C5—C63.5 (3)
N1—Co1—O3—C12176.65 (18)C4—C5—N3—C8175.4 (2)
Co1i—Co1—O4—C12i0.42 (16)C4—C5—N3—C1016.7 (3)
O1—Co1—O4—C12i84.55 (16)C6—C5—N3—C84.2 (3)
O2—Co1—O4—C12i84.85 (16)C6—C5—N3—C10163.7 (2)
O3—Co1—O4—C12i0.2 (5)N3—C5—C6—C7175.8 (2)
N1—Co1—O4—C12i177.84 (16)C4—C5—C6—C74.6 (3)
O1—Co1—N1—C23148.47 (16)C5—C6—C7—C21.5 (3)
O1—Co1—N1—C2737.35 (16)C11—C10—N3—C575.1 (3)
O2—Co1—N1—C2334.21 (17)C11—C10—N3—C893.3 (2)
O2—Co1—N1—C27139.96 (16)O3—C12—C13—C14175.7 (2)
O3—Co1—N1—C23123.39 (16)O3—C12—C13—C183.0 (3)
O3—Co1—N1—C2750.79 (16)O4i—C12—C13—C143.9 (3)
O4—Co1—N1—C2356.26 (17)O4i—C12—C13—C18177.4 (2)
O4—Co1—N1—C27129.56 (16)C12—C13—C14—C15177.7 (2)
Co1—O1—C1—O2i1.2 (3)C18—C13—C14—C151.0 (4)
Co1—O1—C1—C2177.85 (13)C13—C14—C15—C160.5 (4)
Co1—O3—C12—O4i1.4 (3)C14—C15—C16—N4178.3 (3)
Co1—O3—C12—C13178.13 (14)C14—C15—C16—C171.0 (5)
Co1—N1—C23—C24175.15 (16)C18—C17—C16—N4177.2 (3)
C27—N1—C23—C240.9 (3)C18—C17—C16—C152.0 (5)
Co1—N1—C27—C26174.00 (16)C17—C18—C13—C140.0 (4)
C23—N1—C27—C260.3 (3)C17—C18—C13—C12178.7 (2)
C29—N2—C28—O52.0 (3)C13—C18—C17—C161.6 (4)
C29—N2—C28—C26177.65 (19)C22—C21—N4—C1692.5 (4)
C31—N2—C28—O5172.7 (2)C22—C21—N4—C1991.1 (4)
C31—N2—C28—C267.6 (3)N1—C23—C24—C251.5 (3)
C28—N2—C29—C3077.2 (3)C23—C24—C25—C260.9 (3)
C31—N2—C29—C30107.8 (2)C27—C26—C25—C240.2 (3)
C28—N2—C31—C32115.2 (2)C28—C26—C25—C24172.4 (2)
C29—N2—C31—C3270.2 (3)C25—C26—C28—O566.0 (3)
C5—N3—C8—C983.0 (3)C25—C26—C28—N2114.4 (2)
C10—N3—C8—C985.4 (2)C27—C26—C28—O5106.4 (3)
C19—N4—C16—C158.9 (5)C27—C26—C28—N273.2 (3)
C19—N4—C16—C17170.2 (3)N1—C27—C26—C250.9 (3)
C21—N4—C16—C15167.4 (4)N1—C27—C26—C28171.70 (19)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10B···O5ii0.972.493.380 (3)153
C24—H24···O5iii0.932.573.307 (3)136
C19—H19A···Cg1iv0.972.943.872 (3)162
C31—H31B···Cg1v0.972.883.637 (2)136
Symmetry codes: (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y, z; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Co2(C11H14NO2)4(C10H14N2O)2]
Mr1243.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.3518 (2), 13.4393 (2), 22.5105 (3)
β (°) 94.189 (2)
V3)3123.32 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.44 × 0.36 × 0.21
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.771, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
29642, 7775, 6209
Rint0.030
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.119, 1.04
No. of reflections7775
No. of parameters385
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.86, 0.63

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Co1—O12.0287 (15)Co1—O42.0223 (15)
Co1—O22.0262 (16)Co1—N12.0702 (18)
Co1—O32.0347 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10B···O5i0.972.493.380 (3)153
C24—H24···O5ii0.932.573.307 (3)136
C19—H19A···Cg1iii0.972.943.872 (3)162
C31—H31B···Cg1iv0.972.883.637 (2)136
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z; (iv) x+1, y+1, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1582–m1583.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m955–m956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1328–m1329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010a). Acta Cryst. E66, m334–m335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNecefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010b). Acta Cryst. E66, m485–m486.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpeier, G. & Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331–2333.  CSD CrossRef Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsubaliev, B. T., Movsumov, E. M., Musaev, F. N., Nadzhafov, G. N., Amiraslanov, I. R. & Mamedov, Kh. S. (1980). Koord. Khim. 6, 1091–1096.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds