organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-bromo-3-hy­dr­oxy­benzoate

aGuangdong University of Technology, Faculty of Chemical Engineering and Light Industry, Guangzhou 510006, Guangdong, People's Republic of China
*Correspondence e-mail: corihhr@yahoo.cn

(Received 25 November 2010; accepted 8 December 2010; online 11 December 2010)

In the title compound, C8H7BrO3, the meth­oxy­carbonyl group is twisted at a dihedral angle of 8.06 (4)° with respect to the benzene ring. In the crystal, mol­ecules are connected by O—H⋯O hydrogen bonds into helical chains running along the b axis.

Related literature

For applications of methyl 3-hy­droxy­benzoate derivatives in the synthesis of various broad-spectrum anti­microbials, see: Zhong et al. (2001[Zhong, Z., Ikeda, A., Shinkai, S., Sakamoto, S. & Yamaguchi, K. (2001). Org. Lett. 3, 1085-1087.]). For the synthesis of the title compound, see: Nie et al. (2005[Nie, Z., Perretta, C., Lu, J., Su, Y., Margosiak, S., Gajiwala, K. S., Cortez, J., Nikulin, V., Yager, K. M., Appelt, K. & Chu, S. (2005). J. Med. Chem. 48, 1596-1609.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7BrO3

  • Mr = 231.05

  • Monoclinic, P 21 /c

  • a = 10.812 (4) Å

  • b = 6.317 (2) Å

  • c = 12.490 (5) Å

  • β = 100.164 (6)°

  • V = 839.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.86 mm−1

  • T = 293 K

  • 0.27 × 0.24 × 0.16 mm

Data collection
  • Bruker SMART CCD 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.354, Tmax = 0.511

  • 4755 measured reflections

  • 1831 independent reflections

  • 1129 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.172

  • S = 1.08

  • 1831 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.87 2.681 (7) 170
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The methyl 3-hydroxybenzoate derivatives as important starting materials have been applied to synthesis various broad-spectrum antimicrobials (Nie et al., 2005) and design cryptophane derivatives in self-assembling of supermolecular chemistry (Zhong et al., 2001). Here we report the structure of the title compound (Fig. 1).

In the crystal structure of the title compound, there are linked by an intermolecular O-H···O hydrogen bond between hydroxyl and carbonyl groups forming an infinite helical chain along the b axis (Table 1 and Fig. 2). And no significant interaction is observed between the chains.

Related literature top

For applications of methyl 3-hydroxybenzoate derivatives in the synthesis of various broad-spectrum antimicrobials, see: Zhong et al. (2001). For the synthesis of the title compound, see: Nie et al. (2005).

Experimental top

The title compound was synthesized as previously reported (Nie et al., 2005). The electrospray ionization mass spectrum (ESI-MS) showed an intense peak of molecular ions at m/z 230. Single crystals suitable for X-ray diffraction were obtained from methanol solution in room temperature.

Refinement top

H atoms were placed in calculated positions with O—H = 0.82 and C—H = 0.93-0.96 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(O,C) for hydroxy H and methyl H atoms and 1.2Ueq(C) for the others.

Structure description top

The methyl 3-hydroxybenzoate derivatives as important starting materials have been applied to synthesis various broad-spectrum antimicrobials (Nie et al., 2005) and design cryptophane derivatives in self-assembling of supermolecular chemistry (Zhong et al., 2001). Here we report the structure of the title compound (Fig. 1).

In the crystal structure of the title compound, there are linked by an intermolecular O-H···O hydrogen bond between hydroxyl and carbonyl groups forming an infinite helical chain along the b axis (Table 1 and Fig. 2). And no significant interaction is observed between the chains.

For applications of methyl 3-hydroxybenzoate derivatives in the synthesis of various broad-spectrum antimicrobials, see: Zhong et al. (2001). For the synthesis of the title compound, see: Nie et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Title molecule showing the 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing of the title compound as viewed along the b axis. Dashed lines indicate helical hydrogen-bonding chain Symmetry: A = -x + 1, y + 1/2, -z+1.5; B = -x + 1, y - 1/2, -z+1.5.
Methyl 4-bromo-3-hydroxybenzoate top
Crystal data top
C8H7BrO3F(000) = 456
Mr = 231.05Dx = 1.828 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1334 reflections
a = 10.812 (4) Åθ = 2.3–24.2°
b = 6.317 (2) ŵ = 4.86 mm1
c = 12.490 (5) ÅT = 293 K
β = 100.164 (6)°Plate, colorless
V = 839.7 (5) Å30.27 × 0.24 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD 1000
diffractometer
1831 independent reflections
Radiation source: fine-focus sealed tube1129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 10.0 pixels mm-1θmax = 27.2°, θmin = 1.9°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 83
Tmin = 0.354, Tmax = 0.511l = 1516
4755 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: difference Fourier map
wR(F2) = 0.172H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0685P)2 + 2.8188P]
where P = (Fo2 + 2Fc2)/3
1831 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C8H7BrO3V = 839.7 (5) Å3
Mr = 231.05Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.812 (4) ŵ = 4.86 mm1
b = 6.317 (2) ÅT = 293 K
c = 12.490 (5) Å0.27 × 0.24 × 0.16 mm
β = 100.164 (6)°
Data collection top
Bruker SMART CCD 1000
diffractometer
1831 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1129 reflections with I > 2σ(I)
Tmin = 0.354, Tmax = 0.511Rint = 0.042
4755 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.08Δρmax = 0.46 e Å3
1831 reflectionsΔρmin = 0.55 e Å3
111 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.92070 (8)1.12616 (14)0.78430 (7)0.0617 (4)
C10.8397 (6)0.8935 (11)0.8349 (5)0.0392 (15)
C20.7180 (6)0.8391 (11)0.7823 (5)0.0382 (15)
C30.6621 (5)0.6667 (10)0.8204 (5)0.0357 (15)
H30.58090.62960.78770.043*
C40.7238 (6)0.5454 (10)0.9072 (5)0.0331 (14)
C50.8426 (6)0.6045 (11)0.9592 (5)0.0425 (16)
H50.88370.52741.01830.051*
C60.8996 (6)0.7797 (12)0.9223 (6)0.0449 (17)
H60.97920.82060.95710.054*
C70.6617 (6)0.3570 (10)0.9440 (5)0.0396 (15)
C80.6834 (8)0.0661 (13)1.0640 (6)0.057 (2)
H8A0.61940.11641.10200.086*
H8B0.74780.00431.11420.086*
H8C0.64710.03141.00820.086*
O10.6635 (5)0.9620 (9)0.6988 (4)0.0565 (14)
H10.59470.91280.67240.085*
O20.5536 (5)0.3093 (9)0.9112 (4)0.0589 (15)
O30.7379 (4)0.2443 (7)1.0147 (4)0.0432 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0603 (5)0.0604 (6)0.0619 (5)0.0167 (4)0.0043 (4)0.0095 (4)
C10.037 (3)0.039 (4)0.041 (3)0.006 (3)0.006 (3)0.002 (3)
C20.037 (3)0.043 (4)0.033 (3)0.003 (3)0.003 (3)0.001 (3)
C30.026 (3)0.043 (4)0.037 (3)0.004 (3)0.001 (2)0.006 (3)
C40.033 (3)0.035 (3)0.030 (3)0.002 (3)0.001 (3)0.003 (3)
C50.041 (4)0.038 (4)0.044 (4)0.004 (3)0.008 (3)0.004 (3)
C60.037 (4)0.043 (4)0.050 (4)0.009 (3)0.003 (3)0.005 (3)
C70.045 (4)0.036 (4)0.037 (3)0.002 (3)0.006 (3)0.005 (3)
C80.072 (5)0.051 (5)0.049 (4)0.003 (4)0.009 (4)0.006 (4)
O10.050 (3)0.057 (3)0.055 (3)0.008 (3)0.011 (2)0.022 (3)
O20.040 (3)0.057 (3)0.072 (3)0.014 (2)0.011 (2)0.014 (3)
O30.044 (3)0.037 (3)0.044 (3)0.005 (2)0.003 (2)0.009 (2)
Geometric parameters (Å, º) top
Br1—C11.876 (7)C5—H50.9300
C1—C61.370 (10)C6—H60.9300
C1—C21.406 (9)C7—O21.206 (8)
C2—O11.349 (8)C7—O31.307 (8)
C2—C31.371 (9)C8—O31.457 (9)
C3—C41.397 (9)C8—H8A0.9600
C3—H30.9300C8—H8B0.9600
C4—C51.384 (9)C8—H8C0.9600
C4—C71.480 (9)O1—H10.8200
C5—C61.385 (10)
C6—C1—C2121.0 (6)C1—C6—C5120.6 (6)
C6—C1—Br1119.8 (5)C1—C6—H6119.7
C2—C1—Br1119.2 (5)C5—C6—H6119.7
O1—C2—C3124.5 (6)O2—C7—O3123.5 (6)
O1—C2—C1117.7 (6)O2—C7—C4124.1 (6)
C3—C2—C1117.7 (6)O3—C7—C4112.4 (5)
C2—C3—C4121.7 (6)O3—C8—H8A109.5
C2—C3—H3119.1O3—C8—H8B109.5
C4—C3—H3119.1H8A—C8—H8B109.5
C5—C4—C3119.5 (6)O3—C8—H8C109.5
C5—C4—C7120.4 (6)H8A—C8—H8C109.5
C3—C4—C7120.1 (5)H8B—C8—H8C109.5
C4—C5—C6119.3 (6)C2—O1—H1109.5
C4—C5—H5120.3C7—O3—C8116.9 (6)
C6—C5—H5120.3
C6—C1—C2—O1178.1 (6)C2—C1—C6—C51.7 (11)
Br1—C1—C2—O11.8 (8)Br1—C1—C6—C5178.5 (5)
C6—C1—C2—C30.9 (10)C4—C5—C6—C10.3 (10)
Br1—C1—C2—C3179.2 (5)C5—C4—C7—O2171.3 (7)
O1—C2—C3—C4179.8 (6)C3—C4—C7—O27.8 (10)
C1—C2—C3—C41.2 (9)C5—C4—C7—O310.2 (9)
C2—C3—C4—C52.6 (10)C3—C4—C7—O3170.7 (6)
C2—C3—C4—C7178.3 (6)O2—C7—O3—C87.1 (10)
C3—C4—C5—C61.8 (10)C4—C7—O3—C8174.4 (5)
C7—C4—C5—C6179.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.872.681 (7)170
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H7BrO3
Mr231.05
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.812 (4), 6.317 (2), 12.490 (5)
β (°) 100.164 (6)
V3)839.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)4.86
Crystal size (mm)0.27 × 0.24 × 0.16
Data collection
DiffractometerBruker SMART CCD 1000
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.354, 0.511
No. of measured, independent and
observed [I > 2σ(I)] reflections
4755, 1831, 1129
Rint0.042
(sin θ/λ)max1)0.643
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.172, 1.08
No. of reflections1831
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.55

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SAINT-Plus (Bruker, 1999, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.872.681 (7)170
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was funded by the 211 project of Guangdong Province.

References

First citationBruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNie, Z., Perretta, C., Lu, J., Su, Y., Margosiak, S., Gajiwala, K. S., Cortez, J., Nikulin, V., Yager, K. M., Appelt, K. & Chu, S. (2005). J. Med. Chem. 48, 1596–1609.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhong, Z., Ikeda, A., Shinkai, S., Sakamoto, S. & Yamaguchi, K. (2001). Org. Lett. 3, 1085–1087.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds