organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri­methyl­pyridinium di­hydrogen phosphate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 10 December 2010; accepted 13 December 2010; online 18 December 2010)

The asymmetric unit of the title compound, C8H12N+·H2PO4, contains two H2PO4 anions and two 2,4,6-trimethyl­pyridinium cations. In the crystal, the anions are linked by O—H⋯O hydrogen bonds, forming supra­molecular chains running along the a axis; the cations are connected to the anion chains by N—H⋯O hydrogen bonds. Weak inter­molecular C—H⋯O hydrogen bonding is also present in the crystal structure.

Related literature

For the properties and structures of pyridine salts, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.], 2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N+·H2PO4

  • Mr = 219.17

  • Monoclinic, P 21

  • a = 7.9501 (16) Å

  • b = 15.324 (3) Å

  • c = 9.0252 (18) Å

  • β = 97.97 (3)°

  • V = 1088.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.30 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 11306 measured reflections

  • 4970 independent reflections

  • 3973 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.101

  • S = 1.02

  • 4970 reflections

  • 275 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2380 Friedel pairs

  • Flack parameter: 0.01 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O8 0.85 (2) 1.77 (2) 2.610 (2) 169 (3)
O3—H3⋯O7i 0.85 (3) 1.72 (3) 2.569 (2) 173 (3)
O5—H5⋯O4ii 0.84 (2) 1.79 (2) 2.627 (3) 173 (3)
O6—H6⋯O2 0.85 (2) 1.69 (2) 2.538 (2) 176 (3)
N1—H1A⋯O4iii 0.86 1.77 2.633 (3) 177
N2—H2A⋯O8iv 0.86 1.78 2.632 (3) 170
C2—H2B⋯O6v 0.93 2.59 3.443 (4) 152
C4—H4A⋯O7i 0.93 2.59 3.481 (4) 161
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+1]; (iv) [-x+1, y+{\script{1\over 2}}, -z+1]; (v) [-x+1, y-{\script{1\over 2}}, -z].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Salts of pyridine attracted more attention as phase transition dielectric materials for its application in memory storage (Fu et al. 2007; Fu & Xiong 2008; Fu et al. 2008; Fu et al. 2009). With the purpose of obtaining phase transition crystals of 2,4,6-trimethylpyridine salts, its interaction with various acids has been studied and we have elaborated a series of new materials with this organic molecule. In this study, we describe the crystal structure of the title compound, di-2,4,6-trimethylpyridinium dihydrogen phosphate.

The dielectric constant of title compound as a function of temperature indicates that the permittivity is basically temperature-independent, suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (425 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed (dielectric constant equaling to 6.9 to 8.7).

The asymmetric unit is composed of two H2PO4- anion and two C8H12N+ cation (Fig.1). Both the pyridine N atoms are protonated, thus indicating two positive charges in the pyridine N atoms. And the H2PO4- anions were showing two negative charges to make the charge balance. The geometric parameters of the title compound are in the normal range.

In the crystal structure, all the H atoms of pyridinium cations and the H2PO4- anions are involved in N—H···O and O—H···O hydrogen bonds. These hydrogen bonds link the ionic units into a one-dimentional chains parallel to the a-axis. Furthermore, the π···π (centroid-to-centroid distance = 3.8403 (8) Å and 4.1676 (8) Å) interactions link the chains into a two-dimentional network parallel to the (0 0 1) plane. (Table 1 and Fig.2).

Related literature top

For the properties and structures of pyridine salts, see: Fu et al. (2007, 2008, 2009); Fu & Xiong (2008).

Experimental top

The commercial 2,4,6-trimethylpyridine (3 mmol) was dissolved in water/H3PO4 (50:1 v/v) solution. The solvent was slowly evaporated in air affording colourless needle-shaped crystals of the title compound suitable for X-ray analysis.

Refinement top

H atoms of H2PO 4- anions were located in a difference Fourier map and freely refined, with the O—H distance constrained to 0.85 Å. Other H atoms were fixed geometrically and treated as riding with C–H = 0.93 Å (aromatic), 0.96 Å (methyl) and N–H = 0.86 Å, with Uiso(H) = 1.2Ueq(C,N) and Uiso(H) = 1.5Ueq(C) for methyl.

Structure description top

Salts of pyridine attracted more attention as phase transition dielectric materials for its application in memory storage (Fu et al. 2007; Fu & Xiong 2008; Fu et al. 2008; Fu et al. 2009). With the purpose of obtaining phase transition crystals of 2,4,6-trimethylpyridine salts, its interaction with various acids has been studied and we have elaborated a series of new materials with this organic molecule. In this study, we describe the crystal structure of the title compound, di-2,4,6-trimethylpyridinium dihydrogen phosphate.

The dielectric constant of title compound as a function of temperature indicates that the permittivity is basically temperature-independent, suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (425 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed (dielectric constant equaling to 6.9 to 8.7).

The asymmetric unit is composed of two H2PO4- anion and two C8H12N+ cation (Fig.1). Both the pyridine N atoms are protonated, thus indicating two positive charges in the pyridine N atoms. And the H2PO4- anions were showing two negative charges to make the charge balance. The geometric parameters of the title compound are in the normal range.

In the crystal structure, all the H atoms of pyridinium cations and the H2PO4- anions are involved in N—H···O and O—H···O hydrogen bonds. These hydrogen bonds link the ionic units into a one-dimentional chains parallel to the a-axis. Furthermore, the π···π (centroid-to-centroid distance = 3.8403 (8) Å and 4.1676 (8) Å) interactions link the chains into a two-dimentional network parallel to the (0 0 1) plane. (Table 1 and Fig.2).

For the properties and structures of pyridine salts, see: Fu et al. (2007, 2008, 2009); Fu & Xiong (2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the two-dimensional network. H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.
2,4,6-Trimethylpyridinium dihydrogen phosphate top
Crystal data top
C8H12N+·H2PO4F(000) = 464
Mr = 219.17Dx = 1.337 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4970 reflections
a = 7.9501 (16) Åθ = 3.2–27.5°
b = 15.324 (3) ŵ = 0.24 mm1
c = 9.0252 (18) ÅT = 298 K
β = 97.97 (3)°Needle, colorless
V = 1088.9 (4) Å30.30 × 0.05 × 0.05 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
4970 independent reflections
Radiation source: fine-focus sealed tube3973 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD profile fitting scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1919
Tmin = 0.910, Tmax = 1.000l = 1111
11306 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.0746P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4970 reflectionsΔρmax = 0.15 e Å3
275 parametersΔρmin = 0.25 e Å3
5 restraintsAbsolute structure: Flack (1983), 2380 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (8)
Crystal data top
C8H12N+·H2PO4V = 1088.9 (4) Å3
Mr = 219.17Z = 4
Monoclinic, P21Mo Kα radiation
a = 7.9501 (16) ŵ = 0.24 mm1
b = 15.324 (3) ÅT = 298 K
c = 9.0252 (18) Å0.30 × 0.05 × 0.05 mm
β = 97.97 (3)°
Data collection top
Rigaku Mercury2
diffractometer
4970 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3973 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.033
11306 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101Δρmax = 0.15 e Å3
S = 1.02Δρmin = 0.25 e Å3
4970 reflectionsAbsolute structure: Flack (1983), 2380 Friedel pairs
275 parametersAbsolute structure parameter: 0.01 (8)
5 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.90061 (8)0.60246 (4)0.30479 (7)0.04278 (17)
P20.39135 (8)0.53464 (4)0.24480 (8)0.04306 (17)
O10.8423 (2)0.51862 (14)0.3826 (2)0.0600 (5)
N10.9315 (3)0.21030 (14)0.3374 (2)0.0439 (5)
H1A0.93670.18650.42420.053*
O50.3427 (2)0.54241 (16)0.4065 (2)0.0618 (5)
O20.7595 (2)0.66752 (12)0.2811 (2)0.0532 (5)
N20.5339 (3)0.80459 (14)0.7547 (2)0.0445 (5)
H2A0.49720.85740.75150.053*
O60.4507 (2)0.62723 (13)0.2008 (3)0.0632 (6)
O30.9432 (2)0.57407 (16)0.1485 (2)0.0602 (6)
O70.2392 (2)0.50926 (13)0.1375 (2)0.0558 (5)
O41.0612 (2)0.63287 (13)0.4013 (2)0.0561 (5)
O80.5398 (2)0.47211 (12)0.2575 (2)0.0561 (5)
C81.0619 (4)0.3360 (2)0.4720 (3)0.0654 (8)
H8A1.13030.29570.53560.098*
H8B0.96970.35600.52150.098*
H8C1.13010.38490.45060.098*
C130.5302 (3)0.76072 (19)0.6246 (3)0.0481 (6)
C50.9927 (3)0.29160 (17)0.3293 (3)0.0490 (6)
C10.8620 (3)0.16344 (18)0.2166 (3)0.0459 (6)
C120.5901 (4)0.6770 (2)0.6307 (3)0.0565 (7)
H12A0.59010.64570.54240.068*
C90.5917 (3)0.77016 (17)0.8891 (3)0.0456 (6)
C100.6513 (3)0.68578 (18)0.8946 (3)0.0512 (7)
H10A0.69240.66090.98650.061*
C20.8552 (4)0.2015 (2)0.0782 (3)0.0553 (7)
H2B0.80700.17120.00640.066*
C60.8017 (4)0.0734 (2)0.2423 (3)0.0633 (8)
H6A0.89240.04040.29730.095*
H6B0.76620.04560.14780.095*
H6C0.70780.07600.29850.095*
C110.6509 (3)0.63792 (17)0.7658 (3)0.0526 (7)
C140.5867 (5)0.8266 (2)1.0239 (3)0.0691 (9)
H14A0.63570.88241.00760.104*
H14B0.65010.79931.10970.104*
H14C0.47100.83421.04070.104*
C30.9196 (4)0.2845 (2)0.0636 (3)0.0580 (7)
C40.9881 (4)0.3288 (2)0.1899 (3)0.0585 (7)
H4A1.03190.38460.18120.070*
C150.7111 (5)0.5453 (2)0.7726 (4)0.0814 (10)
H15A0.78470.53570.86480.122*
H15B0.77210.53390.69000.122*
H15C0.61520.50680.76730.122*
C160.4597 (4)0.8072 (2)0.4839 (3)0.0729 (9)
H16A0.44410.86780.50540.109*
H16B0.35240.78190.44430.109*
H16C0.53720.80180.41190.109*
C70.9177 (5)0.3237 (3)0.0919 (4)0.0923 (12)
H7A0.90960.38610.08600.138*
H7B0.82180.30150.15750.138*
H7C1.02040.30820.13020.138*
H50.254 (2)0.5713 (15)0.413 (3)0.048 (8)*
H10.745 (2)0.4985 (19)0.350 (3)0.060 (9)*
H60.5523 (18)0.643 (2)0.229 (3)0.072 (11)*
H31.037 (3)0.549 (2)0.142 (4)0.089 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0381 (3)0.0457 (4)0.0429 (4)0.0005 (3)0.0001 (3)0.0003 (3)
P20.0388 (3)0.0379 (3)0.0519 (4)0.0018 (3)0.0045 (3)0.0010 (3)
O10.0492 (11)0.0587 (14)0.0693 (13)0.0007 (11)0.0019 (10)0.0212 (10)
N10.0441 (11)0.0414 (12)0.0453 (12)0.0021 (10)0.0025 (9)0.0010 (9)
O50.0510 (11)0.0827 (15)0.0503 (11)0.0086 (12)0.0020 (9)0.0016 (11)
O20.0446 (11)0.0436 (10)0.0695 (13)0.0002 (9)0.0014 (9)0.0022 (9)
N20.0467 (12)0.0372 (11)0.0492 (13)0.0005 (10)0.0053 (10)0.0018 (9)
O60.0416 (11)0.0469 (12)0.0982 (16)0.0006 (9)0.0008 (11)0.0205 (10)
O30.0453 (11)0.0892 (16)0.0445 (11)0.0043 (11)0.0002 (8)0.0064 (10)
O70.0446 (10)0.0650 (13)0.0565 (11)0.0038 (9)0.0023 (8)0.0165 (9)
O40.0421 (10)0.0681 (13)0.0556 (11)0.0002 (9)0.0022 (8)0.0160 (9)
O80.0424 (10)0.0383 (10)0.0862 (14)0.0005 (9)0.0034 (9)0.0012 (9)
C80.074 (2)0.0488 (16)0.0685 (19)0.0032 (16)0.0079 (16)0.0075 (15)
C130.0465 (15)0.0522 (16)0.0439 (15)0.0034 (13)0.0000 (11)0.0035 (12)
C50.0447 (14)0.0375 (14)0.0641 (18)0.0052 (12)0.0048 (12)0.0029 (12)
C10.0396 (13)0.0469 (15)0.0506 (15)0.0012 (12)0.0039 (11)0.0048 (12)
C120.0620 (17)0.0548 (17)0.0520 (16)0.0010 (15)0.0051 (13)0.0139 (14)
C90.0485 (15)0.0424 (14)0.0462 (15)0.0074 (12)0.0072 (11)0.0034 (11)
C100.0540 (16)0.0512 (16)0.0476 (15)0.0020 (13)0.0044 (12)0.0129 (13)
C20.0521 (15)0.0615 (19)0.0521 (17)0.0062 (15)0.0065 (12)0.0039 (14)
C60.0656 (19)0.0533 (18)0.072 (2)0.0094 (15)0.0119 (15)0.0097 (14)
C110.0472 (15)0.0407 (15)0.0696 (19)0.0005 (12)0.0074 (13)0.0007 (13)
C140.102 (3)0.0580 (18)0.0482 (17)0.0005 (19)0.0136 (16)0.0051 (14)
C30.0587 (17)0.0607 (19)0.0554 (17)0.0128 (15)0.0103 (13)0.0066 (14)
C40.0590 (17)0.0442 (15)0.072 (2)0.0042 (14)0.0098 (15)0.0080 (15)
C150.087 (2)0.0502 (19)0.105 (3)0.0163 (18)0.009 (2)0.0011 (18)
C160.088 (2)0.073 (2)0.0536 (18)0.0057 (19)0.0051 (17)0.0082 (16)
C70.107 (3)0.098 (3)0.073 (2)0.012 (3)0.015 (2)0.034 (2)
Geometric parameters (Å, º) top
P1—O21.494 (2)C12—C111.384 (4)
P1—O41.5155 (19)C12—H12A0.9300
P1—O31.558 (2)C9—C101.376 (4)
P1—O11.565 (2)C9—C141.498 (4)
P2—O71.4924 (19)C10—C111.374 (4)
P2—O81.5120 (19)C10—H10A0.9300
P2—O61.564 (2)C2—C31.385 (4)
P2—O51.565 (2)C2—H2B0.9300
O1—H10.849 (10)C6—H6A0.9600
N1—C51.343 (3)C6—H6B0.9600
N1—C11.358 (3)C6—H6C0.9600
N1—H1A0.8600C11—C151.497 (4)
O5—H50.843 (10)C14—H14A0.9600
N2—C91.343 (3)C14—H14B0.9600
N2—C131.351 (3)C14—H14C0.9600
N2—H2A0.8600C3—C41.373 (4)
O6—H60.849 (10)C3—C71.525 (4)
O3—H30.85 (3)C4—H4A0.9300
C8—C51.492 (4)C15—H15A0.9600
C8—H8A0.9600C15—H15B0.9600
C8—H8B0.9600C15—H15C0.9600
C8—H8C0.9600C16—H16A0.9600
C13—C121.367 (4)C16—H16B0.9600
C13—C161.495 (4)C16—H16C0.9600
C5—C41.377 (4)C7—H7A0.9600
C1—C21.372 (4)C7—H7B0.9600
C1—C61.490 (4)C7—H7C0.9600
O2—P1—O4115.66 (12)C11—C10—H10A119.7
O2—P1—O3108.04 (12)C9—C10—H10A119.7
O4—P1—O3109.57 (11)C1—C2—C3120.6 (3)
O2—P1—O1110.44 (11)C1—C2—H2B119.7
O4—P1—O1105.82 (11)C3—C2—H2B119.7
O3—P1—O1106.98 (13)C1—C6—H6A109.5
O7—P2—O8115.98 (11)C1—C6—H6B109.5
O7—P2—O6108.51 (11)H6A—C6—H6B109.5
O8—P2—O6109.55 (10)C1—C6—H6C109.5
O7—P2—O5109.99 (11)H6A—C6—H6C109.5
O8—P2—O5105.56 (12)H6B—C6—H6C109.5
O6—P2—O5106.86 (13)C10—C11—C12118.3 (3)
P1—O1—H1117 (2)C10—C11—C15120.5 (3)
C5—N1—C1123.9 (2)C12—C11—C15121.1 (3)
C5—N1—H1A118.1C9—C14—H14A109.5
C1—N1—H1A118.1C9—C14—H14B109.5
P2—O5—H5115.0 (17)H14A—C14—H14B109.5
C9—N2—C13123.6 (2)C9—C14—H14C109.5
C9—N2—H2A118.2H14A—C14—H14C109.5
C13—N2—H2A118.2H14B—C14—H14C109.5
P2—O6—H6119 (2)C4—C3—C2119.0 (3)
P1—O3—H3120 (2)C4—C3—C7121.4 (3)
C5—C8—H8A109.5C2—C3—C7119.6 (3)
C5—C8—H8B109.5C3—C4—C5120.7 (3)
H8A—C8—H8B109.5C3—C4—H4A119.6
C5—C8—H8C109.5C5—C4—H4A119.6
H8A—C8—H8C109.5C11—C15—H15A109.5
H8B—C8—H8C109.5C11—C15—H15B109.5
N2—C13—C12117.8 (2)H15A—C15—H15B109.5
N2—C13—C16117.5 (3)C11—C15—H15C109.5
C12—C13—C16124.7 (3)H15A—C15—H15C109.5
N1—C5—C4118.0 (3)H15B—C15—H15C109.5
N1—C5—C8117.9 (3)C13—C16—H16A109.5
C4—C5—C8124.0 (3)C13—C16—H16B109.5
N1—C1—C2117.8 (3)H16A—C16—H16B109.5
N1—C1—C6118.0 (2)C13—C16—H16C109.5
C2—C1—C6124.2 (3)H16A—C16—H16C109.5
C13—C12—C11121.3 (3)H16B—C16—H16C109.5
C13—C12—H12A119.4C3—C7—H7A109.5
C11—C12—H12A119.4C3—C7—H7B109.5
N2—C9—C10118.4 (2)H7A—C7—H7B109.5
N2—C9—C14117.5 (2)C3—C7—H7C109.5
C10—C9—C14124.1 (2)H7A—C7—H7C109.5
C11—C10—C9120.7 (3)H7B—C7—H7C109.5
C9—N2—C13—C120.6 (4)N1—C1—C2—C30.8 (4)
C9—N2—C13—C16179.1 (3)C6—C1—C2—C3177.7 (3)
C1—N1—C5—C41.5 (4)C9—C10—C11—C120.5 (4)
C1—N1—C5—C8178.6 (3)C9—C10—C11—C15178.2 (3)
C5—N1—C1—C20.5 (4)C13—C12—C11—C100.7 (4)
C5—N1—C1—C6179.1 (2)C13—C12—C11—C15178.0 (3)
N2—C13—C12—C110.7 (4)C1—C2—C3—C40.9 (4)
C16—C13—C12—C11178.9 (3)C1—C2—C3—C7177.3 (3)
C13—N2—C9—C100.4 (4)C2—C3—C4—C50.1 (4)
C13—N2—C9—C14179.6 (3)C7—C3—C4—C5178.4 (3)
N2—C9—C10—C110.3 (4)N1—C5—C4—C31.3 (4)
C14—C9—C10—C11179.6 (3)C8—C5—C4—C3178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O80.85 (2)1.77 (2)2.610 (2)169 (3)
O3—H3···O7i0.85 (3)1.72 (3)2.569 (2)173 (3)
O5—H5···O4ii0.84 (2)1.79 (2)2.627 (3)173 (3)
O6—H6···O20.85 (2)1.69 (2)2.538 (2)176 (3)
N1—H1A···O4iii0.861.772.633 (3)177
N2—H2A···O8iv0.861.782.632 (3)170
C2—H2B···O6v0.932.593.443 (4)152
C4—H4A···O7i0.932.593.481 (4)161
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+2, y1/2, z+1; (iv) x+1, y+1/2, z+1; (v) x+1, y1/2, z.

Experimental details

Crystal data
Chemical formulaC8H12N+·H2PO4
Mr219.17
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)7.9501 (16), 15.324 (3), 9.0252 (18)
β (°) 97.97 (3)
V3)1088.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11306, 4970, 3973
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.101, 1.02
No. of reflections4970
No. of parameters275
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.25
Absolute structureFlack (1983), 2380 Friedel pairs
Absolute structure parameter0.01 (8)

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O80.85 (2)1.77 (2)2.610 (2)169 (3)
O3—H3···O7i0.85 (3)1.72 (3)2.569 (2)173 (3)
O5—H5···O4ii0.842 (19)1.790 (19)2.627 (3)173 (3)
O6—H6···O20.848 (18)1.691 (17)2.538 (2)176 (3)
N1—H1A···O4iii0.861.772.633 (3)177
N2—H2A···O8iv0.861.782.632 (3)170
C2—H2B···O6v0.932.593.443 (4)152
C4—H4A···O7i0.932.593.481 (4)161
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+2, y1/2, z+1; (iv) x+1, y+1/2, z+1; (v) x+1, y1/2, z.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University, China.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds