organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-(1R*,2S*,3S*)-Di­ethyl 4-methyl-2-phenyl-6-(2-phenyl­hydrazinyl­­idene)cyclo­hex-4-ene-1,3-di­carboxyl­ate

aBaku State University, Z. Khalilov St. 23, Baku, AZ-1148, Azerbaijan
*Correspondence e-mail: Bahruz_81@mail.ru

(Received 1 July 2010; accepted 3 November 2010; online 18 December 2010)

In the title compound, C25H28N2O4, the cyclohexene ring adopts a half-chair conformation and the dihedral angle between the aromatic rings is 59.44 (11)°. In the crystal, a weak intermolecular N—H⋯O hydrogen bond occurs.

Related literature

For general background to Schiff bases, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145-153.]); Offe et al. (1952[Offe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446-447.]); Richardson et al. (1988[Richardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss Inc.]). For a related structure, see: Tamboura et al. (2009[Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160-m161.]).

[Scheme 1]

Experimental

Crystal data
  • C25H28N2O4

  • Mr = 420.49

  • Monoclinic, P 21 /c

  • a = 11.5271 (10) Å

  • b = 13.4599 (12) Å

  • c = 14.4479 (13) Å

  • β = 93.342 (2)°

  • V = 2237.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.983

  • 25227 measured reflections

  • 5548 independent reflections

  • 4052 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.149

  • S = 1.00

  • 5548 reflections

  • 289 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have attracted much attention due to the possibility of their analytical applications (Cimerman et al., 1997). They are also important ligands, which have been reported to have mild bacteriostatic activity and as potential oral iron-chelating drugs for genetic disorders such as thalassemia (Offe et al., 1952; Richardson et al., 1988). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various complexes (Tamboura et al., 2009). (rac)-Diethyl-4-methyl-2-phenyl-6-(2-phenylhydrazono)cyclohex-4-ene-1,3-dicarboxylate (I) have good antibacterial properties. We have synthesized the title compound, (I), and its structure is reported here (Fig. 1)..

Related literature top

For general background to Schiff bases, see: Cimerman et al. (1997); Offe et al. (1952); Richardson et al. (1988). For a related structure, see: Tamboura et al. (2009).

Experimental top

(rac)-diethyl-4-hydroxy-4-methyl-6-oxo-2-phenyl-1,3-dicarboxylate (20 mmol), phenylhydrazine (20 mmol) were dissolved in 20 ml ethanol. The mixture was stirred at 345–350 K for 10 h. After cooling to room temperature white crystals were obtained. The crystals was filtered and washed with ethanol. recrystallization from ethanol (50 ml) yielded colourless block-shaped crystals of the title compound.

Refinement top

The hydrogen atoms of the NH-group (I) molecule were localized in the difference-Fourier map and included in the refinement with fixed positional and isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for CH3-group and Uiso(H) = 1.2Ueq(N) for amino groups]. The other hydrogen atoms were placed in calculated positions with and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Structure description top

Schiff bases have attracted much attention due to the possibility of their analytical applications (Cimerman et al., 1997). They are also important ligands, which have been reported to have mild bacteriostatic activity and as potential oral iron-chelating drugs for genetic disorders such as thalassemia (Offe et al., 1952; Richardson et al., 1988). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various complexes (Tamboura et al., 2009). (rac)-Diethyl-4-methyl-2-phenyl-6-(2-phenylhydrazono)cyclohex-4-ene-1,3-dicarboxylate (I) have good antibacterial properties. We have synthesized the title compound, (I), and its structure is reported here (Fig. 1)..

For general background to Schiff bases, see: Cimerman et al. (1997); Offe et al. (1952); Richardson et al. (1988). For a related structure, see: Tamboura et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numberingscheme. Displacement ellipsoids were drawn at the 50% probability level.
rac-(1R*,2S*,3S*)-Diethyl 4-methyl-2-phenyl-6-(2-phenylhydrazinylidene)cyclohex-4-ene-1,3-dicarboxylate top
Crystal data top
C25H28N2O4F(000) = 896
Mr = 420.49Dx = 1.248 Mg m3
Monoclinic, P21/cMelting point: 444 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.5271 (10) ÅCell parameters from 8834 reflections
b = 13.4599 (12) Åθ = 2.2–28.2°
c = 14.4479 (13) ŵ = 0.09 mm1
β = 93.342 (2)°T = 296 K
V = 2237.8 (3) Å3Block, colourless
Z = 40.30 × 0.30 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
5548 independent reflections
Radiation source: fine-focus sealed tube4052 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1515
Tmin = 0.975, Tmax = 0.983k = 1717
25227 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: difference Fourier map
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0638P)2 + 0.859P]
where P = (Fo2 + 2Fc2)/3
5548 reflections(Δ/σ)max = 0.004
289 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C25H28N2O4V = 2237.8 (3) Å3
Mr = 420.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5271 (10) ŵ = 0.09 mm1
b = 13.4599 (12) ÅT = 296 K
c = 14.4479 (13) Å0.30 × 0.30 × 0.20 mm
β = 93.342 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5548 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
4052 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.022
25227 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.34 e Å3
5548 reflectionsΔρmin = 0.24 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15913 (9)0.34836 (9)0.54219 (8)0.0484 (3)
O20.17111 (13)0.50496 (11)0.59085 (11)0.0709 (4)
N10.30804 (12)0.45097 (10)0.40168 (8)0.0419 (3)
C10.34611 (13)0.41600 (11)0.56061 (9)0.0380 (3)
H1B0.38520.47570.58550.046*
C20.38941 (12)0.32697 (11)0.61990 (9)0.0361 (3)
H2A0.35070.26730.59440.043*
C30.52040 (13)0.31464 (12)0.60926 (10)0.0413 (3)
H3A0.55960.37540.63160.050*
C40.54451 (14)0.30086 (16)0.50773 (12)0.0542 (4)
C50.47578 (14)0.34400 (14)0.44177 (11)0.0490 (4)
H5A0.49290.33450.38030.059*
C60.37661 (13)0.40445 (11)0.46046 (10)0.0382 (3)
C70.23724 (14)0.47893 (11)0.24792 (10)0.0428 (3)
N20.32965 (12)0.45154 (10)0.30993 (8)0.0448 (3)
H2B0.39660.43590.29110.054*
O30.67654 (10)0.24545 (9)0.69781 (9)0.0594 (3)
O40.51562 (11)0.15407 (9)0.68262 (10)0.0594 (3)
C80.25723 (17)0.48808 (14)0.15465 (11)0.0531 (4)
H8A0.33090.47600.13410.064*
C90.16733 (19)0.51528 (16)0.09237 (12)0.0627 (5)
H9A0.18130.52210.02990.075*
C100.05779 (19)0.53242 (15)0.12122 (13)0.0646 (5)
H10A0.00210.55060.07870.078*
C110.03751 (18)0.52248 (17)0.21352 (14)0.0658 (5)
H11A0.03660.53390.23340.079*
C120.12618 (16)0.49575 (15)0.27715 (12)0.0565 (4)
H12A0.11150.48900.33950.068*
C130.21677 (14)0.43063 (12)0.56620 (10)0.0431 (3)
C140.03416 (16)0.34864 (19)0.54926 (17)0.0726 (6)
H14A0.00220.39250.50290.087*
H14B0.01500.37200.61000.087*
C150.0078 (2)0.2468 (3)0.5345 (3)0.0940 (9)
H15A0.089 (3)0.246 (3)0.543 (2)0.141*
H15B0.038 (3)0.204 (3)0.579 (2)0.141*
H15C0.010 (3)0.229 (3)0.464 (3)0.141*
C160.35616 (14)0.33795 (11)0.71930 (10)0.0418 (3)
C170.26498 (15)0.28237 (14)0.75034 (12)0.0519 (4)
H17A0.22610.23800.71010.062*
C180.2309 (2)0.29172 (18)0.83973 (15)0.0698 (6)
H18A0.16960.25370.85930.084*
C190.2866 (3)0.35647 (19)0.89953 (15)0.0816 (7)
H19A0.26410.36210.96010.098*
C200.3760 (3)0.41330 (18)0.87026 (14)0.0831 (7)
H20A0.41330.45830.91080.100*
C210.4114 (2)0.40414 (15)0.78021 (12)0.0633 (5)
H21A0.47240.44270.76090.076*
C220.56773 (13)0.22838 (12)0.66713 (11)0.0430 (3)
C230.73944 (16)0.16560 (15)0.74630 (14)0.0617 (5)
H23A0.75020.11020.70470.074*
H23B0.69680.14240.79800.074*
C240.85377 (18)0.2070 (2)0.78001 (17)0.0780 (7)
H24A0.89820.15640.81270.117*
H24B0.84180.26180.82090.117*
H24C0.89510.22950.72820.117*
C250.6461 (2)0.2380 (3)0.48389 (17)0.1185 (13)
H25A0.65040.23570.41780.178*
H25B0.63630.17190.50720.178*
H25C0.71640.26610.51150.178*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0358 (6)0.0533 (7)0.0561 (7)0.0049 (5)0.0021 (5)0.0080 (5)
O20.0700 (9)0.0599 (8)0.0818 (10)0.0231 (7)0.0039 (7)0.0232 (7)
N10.0497 (7)0.0413 (7)0.0344 (6)0.0034 (6)0.0012 (5)0.0019 (5)
C10.0425 (8)0.0365 (7)0.0343 (7)0.0010 (6)0.0029 (6)0.0003 (5)
C20.0357 (7)0.0364 (7)0.0360 (7)0.0020 (6)0.0000 (5)0.0017 (5)
C30.0348 (7)0.0452 (8)0.0433 (8)0.0026 (6)0.0031 (6)0.0091 (6)
C40.0373 (8)0.0774 (12)0.0486 (9)0.0092 (8)0.0081 (7)0.0155 (8)
C50.0427 (8)0.0659 (11)0.0389 (8)0.0058 (7)0.0065 (6)0.0091 (7)
C60.0397 (7)0.0394 (7)0.0352 (7)0.0023 (6)0.0009 (6)0.0024 (6)
C70.0527 (9)0.0384 (7)0.0367 (7)0.0047 (6)0.0036 (6)0.0012 (6)
N20.0461 (7)0.0538 (8)0.0342 (6)0.0071 (6)0.0004 (5)0.0036 (5)
O30.0478 (7)0.0564 (7)0.0712 (8)0.0034 (5)0.0201 (6)0.0201 (6)
O40.0492 (7)0.0458 (7)0.0826 (9)0.0026 (5)0.0003 (6)0.0151 (6)
C80.0588 (10)0.0610 (10)0.0392 (8)0.0037 (8)0.0005 (7)0.0032 (7)
C90.0834 (14)0.0677 (12)0.0356 (8)0.0030 (10)0.0093 (8)0.0033 (8)
C100.0725 (13)0.0640 (12)0.0546 (11)0.0151 (10)0.0213 (9)0.0022 (9)
C110.0568 (11)0.0783 (13)0.0610 (11)0.0204 (10)0.0070 (9)0.0033 (10)
C120.0607 (11)0.0679 (11)0.0407 (8)0.0168 (9)0.0014 (7)0.0012 (8)
C130.0485 (9)0.0461 (8)0.0343 (7)0.0090 (7)0.0021 (6)0.0034 (6)
C140.0381 (9)0.0907 (16)0.0884 (15)0.0118 (10)0.0004 (9)0.0160 (12)
C150.0479 (12)0.112 (2)0.122 (2)0.0180 (13)0.0054 (13)0.0147 (18)
C160.0499 (9)0.0390 (7)0.0365 (7)0.0062 (6)0.0025 (6)0.0059 (6)
C170.0531 (10)0.0524 (9)0.0511 (9)0.0061 (8)0.0100 (7)0.0106 (7)
C180.0753 (13)0.0769 (14)0.0599 (12)0.0185 (11)0.0279 (10)0.0203 (11)
C190.123 (2)0.0778 (15)0.0462 (11)0.0353 (15)0.0256 (12)0.0136 (10)
C200.138 (2)0.0670 (13)0.0436 (10)0.0085 (14)0.0038 (12)0.0099 (9)
C210.0915 (15)0.0558 (11)0.0421 (9)0.0110 (10)0.0010 (9)0.0008 (8)
C220.0402 (8)0.0459 (8)0.0427 (8)0.0002 (6)0.0003 (6)0.0056 (6)
C230.0590 (11)0.0592 (11)0.0649 (11)0.0090 (9)0.0131 (9)0.0151 (9)
C240.0550 (12)0.0930 (17)0.0841 (15)0.0032 (11)0.0133 (10)0.0266 (13)
C250.0849 (17)0.206 (4)0.0673 (14)0.085 (2)0.0294 (13)0.0412 (18)
Geometric parameters (Å, º) top
O1—C131.327 (2)C10—H10A0.9300
O1—C141.450 (2)C11—C121.382 (3)
O2—C131.1944 (19)C11—H11A0.9300
N1—C61.2884 (19)C12—H12A0.9300
N1—N21.3630 (17)C14—C151.465 (4)
C1—C131.511 (2)C14—H14A0.9700
C1—C61.5169 (19)C14—H14B0.9700
C1—C21.5392 (19)C15—H15A0.95 (4)
C1—H1B0.9800C15—H15B0.99 (4)
C2—C161.515 (2)C15—H15C1.08 (4)
C2—C31.536 (2)C16—C211.381 (2)
C2—H2A0.9800C16—C171.386 (2)
C3—C221.514 (2)C17—C181.377 (3)
C3—C41.520 (2)C17—H17A0.9300
C3—H3A0.9800C18—C191.362 (4)
C4—C51.336 (2)C18—H18A0.9300
C4—C251.501 (3)C19—C201.370 (4)
C5—C61.441 (2)C19—H19A0.9300
C5—H5A0.9300C20—C211.391 (3)
C7—C81.386 (2)C20—H20A0.9300
C7—C121.390 (2)C21—H21A0.9300
C7—N21.401 (2)C23—C241.486 (3)
N2—H2B0.8600C23—H23A0.9700
O3—C221.3257 (19)C23—H23B0.9700
O3—C231.453 (2)C24—H24A0.9600
O4—C221.1945 (19)C24—H24B0.9600
C8—C91.382 (3)C24—H24C0.9600
C8—H8A0.9300C25—H25A0.9600
C9—C101.372 (3)C25—H25B0.9600
C9—H9A0.9300C25—H25C0.9600
C10—C111.374 (3)
C13—O1—C14117.62 (14)O1—C13—C1110.96 (12)
C6—N1—N2120.26 (13)O1—C14—C15107.96 (18)
C13—C1—C6110.41 (11)O1—C14—H14A110.1
C13—C1—C2111.15 (12)C15—C14—H14A110.1
C6—C1—C2111.43 (12)O1—C14—H14B110.1
C13—C1—H1B107.9C15—C14—H14B110.1
C6—C1—H1B107.9H14A—C14—H14B108.4
C2—C1—H1B107.9C14—C15—H15A108 (2)
C16—C2—C3114.21 (12)C14—C15—H15B107 (2)
C16—C2—C1111.09 (12)H15A—C15—H15B113 (3)
C3—C2—C1108.50 (11)C14—C15—H15C106 (2)
C16—C2—H2A107.6H15A—C15—H15C111 (3)
C3—C2—H2A107.6H15B—C15—H15C111 (3)
C1—C2—H2A107.6C21—C16—C17118.16 (16)
C22—C3—C4111.04 (14)C21—C16—C2122.30 (15)
C22—C3—C2110.64 (12)C17—C16—C2119.51 (14)
C4—C3—C2110.24 (12)C18—C17—C16121.14 (19)
C22—C3—H3A108.3C18—C17—H17A119.4
C4—C3—H3A108.3C16—C17—H17A119.4
C2—C3—H3A108.3C19—C18—C17120.3 (2)
C5—C4—C25121.29 (17)C19—C18—H18A119.9
C5—C4—C3120.07 (15)C17—C18—H18A119.9
C25—C4—C3118.63 (15)C18—C19—C20119.80 (19)
C4—C5—C6123.75 (15)C18—C19—H19A120.1
C4—C5—H5A118.1C20—C19—H19A120.1
C6—C5—H5A118.1C19—C20—C21120.4 (2)
N1—C6—C5127.86 (14)C19—C20—H20A119.8
N1—C6—C1114.30 (13)C21—C20—H20A119.8
C5—C6—C1117.84 (12)C16—C21—C20120.3 (2)
C8—C7—C12119.29 (15)C16—C21—H21A119.9
C8—C7—N2118.82 (15)C20—C21—H21A119.9
C12—C7—N2121.88 (14)O4—C22—O3123.97 (15)
N1—N2—C7116.63 (13)O4—C22—C3125.21 (14)
N1—N2—H2B121.7O3—C22—C3110.81 (13)
C7—N2—H2B121.7O3—C23—C24106.77 (16)
C22—O3—C23117.95 (14)O3—C23—H23A110.4
C9—C8—C7119.73 (17)C24—C23—H23A110.4
C9—C8—H8A120.1O3—C23—H23B110.4
C7—C8—H8A120.1C24—C23—H23B110.4
C10—C9—C8121.02 (17)H23A—C23—H23B108.6
C10—C9—H9A119.5C23—C24—H24A109.5
C8—C9—H9A119.5C23—C24—H24B109.5
C9—C10—C11119.35 (17)H24A—C24—H24B109.5
C9—C10—H10A120.3C23—C24—H24C109.5
C11—C10—H10A120.3H24A—C24—H24C109.5
C10—C11—C12120.66 (19)H24B—C24—H24C109.5
C10—C11—H11A119.7C4—C25—H25A109.5
C12—C11—H11A119.7C4—C25—H25B109.5
C11—C12—C7119.93 (17)H25A—C25—H25B109.5
C11—C12—H12A120.0C4—C25—H25C109.5
C7—C12—H12A120.0H25A—C25—H25C109.5
O2—C13—O1123.66 (16)H25B—C25—H25C109.5
O2—C13—C1125.35 (16)
C13—C1—C2—C1655.07 (15)C10—C11—C12—C70.2 (3)
C6—C1—C2—C16178.68 (12)C8—C7—C12—C110.8 (3)
C13—C1—C2—C3178.60 (12)N2—C7—C12—C11179.88 (18)
C6—C1—C2—C354.99 (15)C14—O1—C13—O21.9 (2)
C16—C2—C3—C2254.95 (17)C14—O1—C13—C1176.44 (15)
C1—C2—C3—C22179.45 (12)C6—C1—C13—O2113.05 (18)
C16—C2—C3—C4178.17 (13)C2—C1—C13—O2122.76 (18)
C1—C2—C3—C457.33 (16)C6—C1—C13—O168.60 (16)
C22—C3—C4—C5154.18 (17)C2—C1—C13—O155.59 (16)
C2—C3—C4—C531.2 (2)C13—O1—C14—C15170.7 (2)
C22—C3—C4—C2525.6 (3)C3—C2—C16—C2149.1 (2)
C2—C3—C4—C25148.6 (2)C1—C2—C16—C2174.00 (19)
C25—C4—C5—C6179.5 (2)C3—C2—C16—C17132.94 (15)
C3—C4—C5—C60.3 (3)C1—C2—C16—C17103.95 (16)
N2—N1—C6—C54.2 (2)C21—C16—C17—C180.8 (3)
N2—N1—C6—C1176.16 (12)C2—C16—C17—C18178.81 (16)
C4—C5—C6—N1177.79 (18)C16—C17—C18—C190.1 (3)
C4—C5—C6—C12.6 (3)C17—C18—C19—C200.7 (3)
C13—C1—C6—N129.81 (18)C18—C19—C20—C211.0 (4)
C2—C1—C6—N1153.84 (13)C17—C16—C21—C200.5 (3)
C13—C1—C6—C5149.86 (14)C2—C16—C21—C20178.51 (18)
C2—C1—C6—C525.83 (18)C19—C20—C21—C160.3 (3)
C6—N1—N2—C7162.94 (14)C23—O3—C22—O45.6 (3)
C8—C7—N2—N1175.09 (14)C23—O3—C22—C3173.54 (15)
C12—C7—N2—N15.8 (2)C4—C3—C22—O489.5 (2)
C12—C7—C8—C91.1 (3)C2—C3—C22—O433.2 (2)
N2—C7—C8—C9179.83 (17)C4—C3—C22—O389.58 (17)
C7—C8—C9—C100.7 (3)C2—C3—C22—O3147.67 (14)
C8—C9—C10—C110.1 (3)C22—O3—C23—C24175.08 (17)
C9—C10—C11—C120.2 (3)

Experimental details

Crystal data
Chemical formulaC25H28N2O4
Mr420.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.5271 (10), 13.4599 (12), 14.4479 (13)
β (°) 93.342 (2)
V3)2237.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
25227, 5548, 4052
Rint0.022
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.149, 1.00
No. of reflections5548
No. of parameters289
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

We thank Professor Victor N. Khrustalev for fruitful discussions and help with this work.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOffe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446–447.  Google Scholar
First citationRichardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss Inc.  Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds