metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-4-amino-3,5-di­methyl-4H-1,2,4-triazole)bis­­[di­iodidozinc(II)]

aCollege of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China, bCollege of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China, and cSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: rong@ujs.edu.cn

(Received 8 October 2010; accepted 21 November 2010; online 4 December 2010)

In the title compound, [Zn2I4(C4H8N4)2], the ZnII atom is coordinated in a distorted tetra­hedral geometry by two N atoms from the triazole rings of two 4-amino-3,5-dimethyl-4H-1,2,4-triazole (admt) ligands and two iodide ligands. Doubly bridging admt ligands connect two ZnII atoms, forming a centrosymmetric dimer. Weak N—H⋯I and C—H⋯I hydrogen bonds play an important role in the inter­molecular packing.

Related literature

For background to transition metal complexes of 1,2,4-triazole derivatives, see: Liu et al. (1999[Liu, J. C., Xu, Y., Duan, C. Y., Wang, S. L., Liao, F. L., Zhuang, J. Z. & You, X. Z. (1999). Inorg. Chim. Acta, 295, 229-233.], 2003[Liu, J. C., Guo, G. C., Huang, J. S. & You, X. Z. (2003). Inorg. Chem. 42, 235-243.]); Zhao et al. (2002[Zhao, Q. H., Li, H. F., Chen, Z. D. & Fang, R. B. (2002). Inorg. Chim. Acta, 36, 142-146.]); Yi et al. (2004[Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2004). Inorg. Chem. 43, 33-43.]); Lavrenova et al. (1992[Lavrenova, L. G., Baidina, I. A., Ikorskii, V. N., Sheludjkova, L. A. & Larionov, S. V. (1992). Zh. Neorg. Khim. 37, 630-634.]); Haasnoot (2000[Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.]); Zhang et al. (2007[Zhang, Y.-M., Zhang, Y.-P., Li, B.-L. & Zhang, Y. (2007). Acta Cryst. C63, m120-m122.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2I4(C4H8N4)2]

  • Mr = 862.63

  • Monoclinic, P 21 /c

  • a = 7.4674 (19) Å

  • b = 13.442 (3) Å

  • c = 11.412 (3) Å

  • β = 102.598 (6)°

  • V = 1117.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.68 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku corporation, Tokyo, Japan.]) Tmin = 0.207, Tmax = 0.309

  • 10214 measured reflections

  • 2038 independent reflections

  • 1760 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.098

  • S = 1.04

  • 2038 reflections

  • 108 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.35 e Å−3

  • Δρmin = −1.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯I2i 0.86 (2) 2.98 (5) 3.706 (7) 144 (7)
N4—H4A⋯I1ii 0.86 (2) 3.23 (8) 3.720 (7) 119 (7)
N4—H4B⋯I1iii 0.86 (2) 3.27 (4) 4.090 (7) 161 (7)
C3—H3A⋯I1iv 0.96 3.24 3.930 (8) 130
C3—H3B⋯I1iii 0.96 3.43 3.888 (8) 112
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,2,4-Triazole and its derivatives are very interesting ligands because they combine the coordination geometry of both pyrazole and imidazole with regard to the arrangement of their three heteroatoms. A large number of mononuclear, oligonuclear and polynuclear transition metal complexes of 1,2,4-triazole derivatives have been synthesized and characterized due to their magnetic properties and novel topologies (Haasnoot, 2000). For 4-amino-3,5-dimethyl-1,2,4-triazole (admt), several MnII (Liu et al., 1999), CoII, NiII (Zhao et al., 2002), CuII (Liu et al., 2003) and CdII compounds (Yi et al., 2004) were synthesized. However, to best of our knowledge, only one ZnII-admt compound, [Zn2(admt)2Cl4], was synthesized (Lavrenova et al., 1992). Here, we report the preparation and crystal structure of a dimeric ZnII complex of [Zn(admt)I2]2.

The structure of the title compound is made up of neutral dimeric metallacycle. THe title compound has the same molecular structure as its chloro derivative [Zn2(admt)2Cl4], but the two compounds have different packing patterns and are not isotructural (Lavrenova et al., 1992). In each dimeric metallacycle, as shown in Fig. 1, two zincII centers are connected by two admt ligands, resulting in a discrete Zn2(admt)2 6-membered metallacycle which represents the smallest closed cyclic structure with a 1:1 metal-to-ligand ratio. Two triazole rings are coplanar. Each zincII center is four-coordinated with two nitrogen donors of two admt ligands (Zn1—N1 2.013 (5) Å; Zn1—N2i (symmetry code i: -x + 1,-y + 1,-z) 2.046 (5) Å)and two I- anions ligands (Zn1—I1 2.560 (1) Å; Zn1—I2 2.549 (1) Å), forming a distorted tetrahedral geometry. The Zn—N (triazole) bond lengths in the title compound are consistent with values in other Zn-triazole complexes (Zhang et al., 2007; Lavrenova et al., 1992). The N—Zn—N, N—Zn—I and I—Zn—I bond angles in the title compound are in the range of 106.8 (2) to 113.75 (3)°, near to the ideal tetrahedral value of ca. 109.5°.

The ligand admt is a 4-substituted 1,2,4-triazole and exhibits in the title compound the N1,N2-bidentate bridging coordination mode. Two admt ligands bridge two Zn(II) atoms to form a dimer with a Zn···Zn distance of 3.803 (2) Å. For a 4-substituted 1,2,4-triazole, by blocking the N4 donor position through substitution, only the N1 monodentate and N1,N2-bidentate coordination modes are possible. The N1,N2-bidentate coordination mode in the dimer has been observed.

There are weak hydrogen bonding interactions between the hydrogen atom of the amino NH2 group and the I- anion of adjacent dimers (N4···I2ii = 3.706 (7) Å; N4···I1iii = 3.720 (7) Å; N4···I1iv = 4.090 (7) Å) (symmetry codes: ii = -x+2, y+1/2, -z+1/2; iii = x+1, y, z; iv = -x+1, y+1/2, -z+1/2. There are also weak inter-dimer hydrogen bonding interactions between methyl hydrogen atoms and I- anions (C3···I1i = 3.930 (8) Å; C3···I1iv = 3.888 (8) Å). These hydrogen bonding interactions do direct the packing of the crystal structure of the title compound (Fig. 2). No obvious π-π stacking interactions between the triazole rings is observed.

Related literature top

For background to transition metal complexes of 1,2,4-triazole derivatives, see: Liu et al. (1999, 2003); Zhao et al. (2002); Yi et al. (2004); Lavrenova et al. (1992); Haasnoot (2000); Zhang et al. (2007).

Experimental top

A 15 ml aqueous solution of 4-amino-3,5-dimethyl-1,2,4-triazole (admt) (1.0 mmol) was added to a 10 ml aqueous solution of Zn(NO3)2.6H2O (1.0 mmol) and KI (2.0 mmol) with stirring. The resultant solution was stored at room temperature and colourless crystal were obtained after about two weeks. Anal. Calcd. for C8H16I4N8Zn2: C, 11.14; H, 1.87; N, 12.99%. Found: C, 11.09; H, 1.83; N, 12.93%.

Refinement top

The H atoms of the amino group were obtained from difference Fourier maps and were refined with N—H distances of 0.86Å and Uiso(H) = 1.2Ueq(N). All other H atoms were placed in idealized positions and refined as riding with C—H distances of 0.96Å and Uiso(H) = 1.5Ueq(C).

Structure description top

1,2,4-Triazole and its derivatives are very interesting ligands because they combine the coordination geometry of both pyrazole and imidazole with regard to the arrangement of their three heteroatoms. A large number of mononuclear, oligonuclear and polynuclear transition metal complexes of 1,2,4-triazole derivatives have been synthesized and characterized due to their magnetic properties and novel topologies (Haasnoot, 2000). For 4-amino-3,5-dimethyl-1,2,4-triazole (admt), several MnII (Liu et al., 1999), CoII, NiII (Zhao et al., 2002), CuII (Liu et al., 2003) and CdII compounds (Yi et al., 2004) were synthesized. However, to best of our knowledge, only one ZnII-admt compound, [Zn2(admt)2Cl4], was synthesized (Lavrenova et al., 1992). Here, we report the preparation and crystal structure of a dimeric ZnII complex of [Zn(admt)I2]2.

The structure of the title compound is made up of neutral dimeric metallacycle. THe title compound has the same molecular structure as its chloro derivative [Zn2(admt)2Cl4], but the two compounds have different packing patterns and are not isotructural (Lavrenova et al., 1992). In each dimeric metallacycle, as shown in Fig. 1, two zincII centers are connected by two admt ligands, resulting in a discrete Zn2(admt)2 6-membered metallacycle which represents the smallest closed cyclic structure with a 1:1 metal-to-ligand ratio. Two triazole rings are coplanar. Each zincII center is four-coordinated with two nitrogen donors of two admt ligands (Zn1—N1 2.013 (5) Å; Zn1—N2i (symmetry code i: -x + 1,-y + 1,-z) 2.046 (5) Å)and two I- anions ligands (Zn1—I1 2.560 (1) Å; Zn1—I2 2.549 (1) Å), forming a distorted tetrahedral geometry. The Zn—N (triazole) bond lengths in the title compound are consistent with values in other Zn-triazole complexes (Zhang et al., 2007; Lavrenova et al., 1992). The N—Zn—N, N—Zn—I and I—Zn—I bond angles in the title compound are in the range of 106.8 (2) to 113.75 (3)°, near to the ideal tetrahedral value of ca. 109.5°.

The ligand admt is a 4-substituted 1,2,4-triazole and exhibits in the title compound the N1,N2-bidentate bridging coordination mode. Two admt ligands bridge two Zn(II) atoms to form a dimer with a Zn···Zn distance of 3.803 (2) Å. For a 4-substituted 1,2,4-triazole, by blocking the N4 donor position through substitution, only the N1 monodentate and N1,N2-bidentate coordination modes are possible. The N1,N2-bidentate coordination mode in the dimer has been observed.

There are weak hydrogen bonding interactions between the hydrogen atom of the amino NH2 group and the I- anion of adjacent dimers (N4···I2ii = 3.706 (7) Å; N4···I1iii = 3.720 (7) Å; N4···I1iv = 4.090 (7) Å) (symmetry codes: ii = -x+2, y+1/2, -z+1/2; iii = x+1, y, z; iv = -x+1, y+1/2, -z+1/2. There are also weak inter-dimer hydrogen bonding interactions between methyl hydrogen atoms and I- anions (C3···I1i = 3.930 (8) Å; C3···I1iv = 3.888 (8) Å). These hydrogen bonding interactions do direct the packing of the crystal structure of the title compound (Fig. 2). No obvious π-π stacking interactions between the triazole rings is observed.

For background to transition metal complexes of 1,2,4-triazole derivatives, see: Liu et al. (1999, 2003); Zhao et al. (2002); Yi et al. (2004); Lavrenova et al. (1992); Haasnoot (2000); Zhang et al. (2007).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The dimeric structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x + 1, -y + 1, -z.]
[Figure 2] Fig. 2. Cell packing plot of the title compound. The dashed lines represent N—H···I hydrogen bond interactions.
Bis(µ-4-amino-3,5-dimethyl-4H-1,2,4-triazole)bis[diiodidozinc(II)] top
Crystal data top
[Zn2I4(C4H8N4)2]F(000) = 784
Mr = 862.63Dx = 2.563 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 3727 reflections
a = 7.4674 (19) Åθ = 3.0–25.4°
b = 13.442 (3) ŵ = 7.68 mm1
c = 11.412 (3) ÅT = 293 K
β = 102.598 (6)°Block, colorless
V = 1117.9 (5) Å30.30 × 0.20 × 0.20 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
2038 independent reflections
Radiation source: fine-focus sealed tube1760 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω scansh = 88
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1614
Tmin = 0.207, Tmax = 0.309l = 1313
10214 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0483P)2 + 3.598P]
where P = (Fo2 + 2Fc2)/3
2038 reflections(Δ/σ)max < 0.001
108 parametersΔρmax = 1.35 e Å3
2 restraintsΔρmin = 1.11 e Å3
Crystal data top
[Zn2I4(C4H8N4)2]V = 1117.9 (5) Å3
Mr = 862.63Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.4674 (19) ŵ = 7.68 mm1
b = 13.442 (3) ÅT = 293 K
c = 11.412 (3) Å0.30 × 0.20 × 0.20 mm
β = 102.598 (6)°
Data collection top
Rigaku Mercury CCD
diffractometer
2038 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
1760 reflections with I > 2σ(I)
Tmin = 0.207, Tmax = 0.309Rint = 0.030
10214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.35 e Å3
2038 reflectionsΔρmin = 1.11 e Å3
108 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.42494 (9)0.40526 (5)0.10329 (6)0.0386 (2)
I10.16668 (7)0.43239 (4)0.21514 (5)0.0657 (2)
I20.56923 (7)0.23271 (4)0.13413 (6)0.0743 (2)
N10.6190 (7)0.5117 (4)0.1541 (4)0.0405 (12)
N20.6793 (7)0.5755 (4)0.0763 (5)0.0417 (12)
N30.8344 (7)0.6026 (4)0.2567 (4)0.0387 (12)
N40.9608 (9)0.6397 (5)0.3571 (6)0.0565 (15)
C10.8137 (9)0.6303 (5)0.1401 (6)0.0439 (15)
C20.7150 (8)0.5286 (5)0.2633 (5)0.0391 (14)
C30.9265 (11)0.7049 (6)0.0964 (7)0.060 (2)
H3A0.99100.67410.04180.090*
H3B1.01330.73250.16310.090*
H3C0.84920.75690.05560.090*
C40.7035 (11)0.4766 (6)0.3741 (6)0.0603 (19)
H4C0.59540.43580.36000.090*
H4D0.69750.52440.43560.090*
H4E0.81010.43550.39930.090*
H4A1.069 (5)0.632 (6)0.345 (7)0.072*
H4B0.963 (12)0.7033 (17)0.353 (8)0.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0331 (4)0.0396 (4)0.0418 (4)0.0002 (3)0.0052 (3)0.0039 (3)
I10.0538 (3)0.0680 (4)0.0837 (4)0.0007 (2)0.0337 (3)0.0101 (3)
I20.0540 (3)0.0465 (3)0.1169 (5)0.0152 (2)0.0064 (3)0.0084 (3)
N10.037 (3)0.043 (3)0.040 (3)0.004 (2)0.006 (2)0.007 (2)
N20.039 (3)0.044 (3)0.039 (3)0.004 (2)0.003 (2)0.001 (2)
N30.034 (3)0.039 (3)0.038 (3)0.000 (2)0.001 (2)0.005 (2)
N40.051 (4)0.063 (4)0.048 (3)0.012 (3)0.005 (3)0.015 (3)
C10.046 (4)0.039 (3)0.042 (4)0.004 (3)0.001 (3)0.006 (3)
C20.035 (3)0.040 (3)0.040 (3)0.002 (3)0.003 (3)0.002 (3)
C30.065 (5)0.058 (4)0.054 (4)0.028 (4)0.008 (4)0.005 (3)
C40.060 (5)0.072 (5)0.046 (4)0.008 (4)0.005 (3)0.008 (4)
Geometric parameters (Å, º) top
Zn1—N12.029 (5)N4—H4A0.86 (2)
Zn1—N2i2.044 (5)N4—H4B0.86 (2)
Zn1—I22.5493 (10)C1—C31.465 (9)
Zn1—I12.5603 (10)C2—C41.464 (9)
N1—C21.314 (8)C3—H3A0.9600
N1—N21.378 (7)C3—H3B0.9600
N2—C11.327 (8)C3—H3C0.9600
N2—Zn1i2.044 (5)C4—H4C0.9600
N3—C21.349 (8)C4—H4D0.9600
N3—C11.358 (8)C4—H4E0.9600
N3—N41.408 (7)
N1—Zn1—N2i106.8 (2)N2—C1—N3107.2 (6)
N1—Zn1—I2110.38 (15)N2—C1—C3128.0 (6)
N2i—Zn1—I2108.08 (15)N3—C1—C3124.8 (6)
N1—Zn1—I1109.00 (15)N1—C2—N3107.7 (5)
N2i—Zn1—I1108.58 (16)N1—C2—C4127.9 (6)
I2—Zn1—I1113.73 (3)N3—C2—C4124.4 (6)
C2—N1—N2108.4 (5)C1—C3—H3A109.5
C2—N1—Zn1126.9 (4)C1—C3—H3B109.5
N2—N1—Zn1124.6 (4)H3A—C3—H3B109.5
C1—N2—N1107.9 (5)C1—C3—H3C109.5
C1—N2—Zn1i123.8 (4)H3A—C3—H3C109.5
N1—N2—Zn1i128.2 (4)H3B—C3—H3C109.5
C2—N3—C1108.8 (5)C2—C4—H4C109.5
C2—N3—N4123.4 (5)C2—C4—H4D109.5
C1—N3—N4127.8 (6)H4C—C4—H4D109.5
N3—N4—H4A108 (6)C2—C4—H4E109.5
N3—N4—H4B109 (6)H4C—C4—H4E109.5
H4A—N4—H4B94 (8)H4D—C4—H4E109.5
N2i—Zn1—N1—C2177.2 (5)Zn1i—N2—C1—C37.6 (10)
I2—Zn1—N1—C265.6 (5)C2—N3—C1—N21.6 (7)
I1—Zn1—N1—C260.0 (5)N4—N3—C1—N2179.7 (6)
N2i—Zn1—N1—N26.8 (6)C2—N3—C1—C3176.4 (7)
I2—Zn1—N1—N2110.5 (4)N4—N3—C1—C31.7 (11)
I1—Zn1—N1—N2124.0 (4)N2—N1—C2—N30.5 (7)
C2—N1—N2—C10.5 (7)Zn1—N1—C2—N3177.1 (4)
Zn1—N1—N2—C1176.2 (4)N2—N1—C2—C4177.8 (7)
C2—N1—N2—Zn1i175.0 (4)Zn1—N1—C2—C41.2 (10)
Zn1—N1—N2—Zn1i8.3 (7)C1—N3—C2—N11.3 (7)
N1—N2—C1—N31.3 (7)N4—N3—C2—N1179.5 (6)
Zn1i—N2—C1—N3174.5 (4)C1—N3—C2—C4177.1 (6)
N1—N2—C1—C3176.7 (7)N4—N3—C2—C41.1 (10)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···I2ii0.86 (2)2.98 (5)3.706 (7)144 (7)
N4—H4A···I1iii0.86 (2)3.23 (8)3.720 (7)119 (7)
N4—H4B···I1iv0.86 (2)3.27 (4)4.090 (7)161 (7)
C3—H3A···I1i0.963.243.930 (8)130
C3—H3B···I1iv0.963.433.888 (8)112
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn2I4(C4H8N4)2]
Mr862.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.4674 (19), 13.442 (3), 11.412 (3)
β (°) 102.598 (6)
V3)1117.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)7.68
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.207, 0.309
No. of measured, independent and
observed [I > 2σ(I)] reflections
10214, 2038, 1760
Rint0.030
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 1.04
No. of reflections2038
No. of parameters108
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.35, 1.11

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···I2i0.86 (2)2.98 (5)3.706 (7)144 (7)
N4—H4A···I1ii0.86 (2)3.23 (8)3.720 (7)119 (7)
N4—H4B···I1iii0.86 (2)3.27 (4)4.090 (7)161 (7)
C3—H3A···I1iv0.963.243.930 (8)129.9
C3—H3B···I1iii0.963.433.888 (8)111.6
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z.
 

References

First citationHaasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185.  Web of Science CrossRef CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku corporation, Tokyo, Japan.  Google Scholar
First citationLavrenova, L. G., Baidina, I. A., Ikorskii, V. N., Sheludjkova, L. A. & Larionov, S. V. (1992). Zh. Neorg. Khim. 37, 630–634.  CAS Google Scholar
First citationLiu, J. C., Guo, G. C., Huang, J. S. & You, X. Z. (2003). Inorg. Chem. 42, 235–243.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, J. C., Xu, Y., Duan, C. Y., Wang, S. L., Liao, F. L., Zhuang, J. Z. & You, X. Z. (1999). Inorg. Chim. Acta, 295, 229–233.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYi, L., Ding, B., Zhao, B., Cheng, P., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2004). Inorg. Chem. 43, 33–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, Y.-M., Zhang, Y.-P., Li, B.-L. & Zhang, Y. (2007). Acta Cryst. C63, m120–m122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, Q. H., Li, H. F., Chen, Z. D. & Fang, R. B. (2002). Inorg. Chim. Acta, 36, 142–146.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds