organic compounds
3′-O-Acetyl-2′-deoxyuridine
aDepartamento de Química, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil, bChemistry Department, State University of New York, College at Buffalo, 1300 Elmwood Ave, Buffalo, NY 14222-1095, USA, and cDepartment of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812-2496, USA
*Correspondence e-mail: nazareay@buffalostate.edu
In the two independent but very similar molecules of the title compound, C11H14N2O6, both nucleobase fragments are nearly planar (both within 0.01 Å) while the furanose rings exhibit 2E-endo envelope conformations. In the crystal, the two 3′-O-acetyl-2′-deoxyuridine molecules form a pseudosymmetric dimer of two bases connected via two nearly identical resonance-assisted N—H⋯O hydrogen bonds. The resulting pair is further connected with neighboring pairs via two similar O—H⋯O bonds involving the only hydroxyl group of the 2′-deoxyfuranose fragment and the remaining carbonyl oxygen of the nucleobase. These interactions result in the formation of an infinite `double band' along the b axis that can be considered as a self-assembled analogue of a polynucleotide molecule with non-canonical Watson–Crick base pairs. The infinite chains of 3′-O-acetyl-2′-deoxyuridine pairs are additionally held together by C—H⋯O interactions involving C atoms of the uracyl base and O atoms of carbonyl groups. Only weak C—H⋯O contacts exist between neighboring chains.
Related literature
For syntheses of this and similar compounds, see: Smrt & Sorm (1960); Cabral et al. (2008). For related structures of uridines, see: de Graaff et al. (1977); Green et al. (1975); Low & Wilson (1984); Luo et al. (2007); Marck et al. (1982); Rahman & Wilson (1972); Suck et al. (1972). For conformations of five-membered rings, see: Schwarz (1973); Cremer & Pople (1975); Boeyens & Dobson (1987). For analysis of see: Flack (1983), Hooft et al. (2008). For hydrogen bonding in nucleotide chemistry, see: Gilli & Gilli (2009); Desiraju & Steiner (1999); Jeffrey (1997); Nagaswamy et al.(2000) and references therein. For similar UU-4-carbonyl–imino pairs in RNA structures, see: Ban et al. (2000); Jiang & Patel (1998).
Experimental
Crystal data
|
Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S160053681004938X/zl2331sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681004938X/zl2331Isup2.hkl
The synthesis of the title compound was accomplished via a transetherification procedure dubbed "protecting group transfer" (Cabral et al., 2008). 3'-Acetyl-2'-deoxyuridine obtained in this way showed the same properties as the one obtained before by an independent procedure (Smrt & Sorm, 1960). Crystallization from a hexane-acetone system yielded colourless crystals suitable for single-crystal diffractometry (m.p. 460–461 K).
The
of the title compound was known from the synthetic route; it was also examined using Analysis of the using likelihood methods (Hooft et al., 2008) was performed using PLATON (Spek, 2009); 1867 Bijvoet pairs were employed. The results confirmed that the had been correctly assigned: the probability that the structure is inverted is smaller than 10-11 with probability of racemic at 0.001. Because no atom heavier than O is present, the standard deviation of the is relatively high. All H atoms were positioned geometrically with Uiso(H) = 1.2 or 1.5 Ueq(C).Modified
have received much attention as potential chemotherapeutic agents due to their ability to interfere with the polymerases engaged in replication processes in metastatic or virus invaded cells. In fact, most of the antiviral compounds approved for commercialization are nucleoside analogs which were obtained by modifications of the ribonucleosides or deoxyribonucleosides at a nucleobase moiety, at a carbohydrate moiety or at both of them. The title compound has attracted our attention as a possible intermediate in a synthesis of such agents.The α radiation was necessary for determination of the absolute structure.
of the title compound is known from the synthetic route which does not affect stereogenic atoms of the starting compound. Nevertheless, we preferred to obtain a direct experimental confirmation using X-ray diffractometry data. Because there are no heavy atoms in a chiral molecule of title compound, Cu KIn the
of title compound (Fig.1), all bond lengths and bond angles have standard dimensions.The six-membered rings in both crystallographically independent molecules are flat within 0.01 Å. Figure 2 shows that the furanose ring in the first molecule adopts an Φ = 67.1 (8)° and 66.6 (7) ° for both independent molecules. These suggest the 2E (ideal Φ = 72°), slightly distorted towards twist 2T1 (Φ= 54°), with atoms C(6) and C(26) in corners of the respective envelopes. The conformation of the 3'-substituted 2'-deoxydeoxyuridine reported here is different from the conformation of the unsubstituted 2'-deoxyuridine molecule: in this case Φ = 83 and Φ = 89 ° for two independent molecules which is close to a twisted 2T3 conformation (Φ=90°) of the furanose ring (CSD code DOURID, Rahman & Wilson, 1972). An 2E conformation was observed in several other molecules of the uridine family (see, for example 2'-deoxy-3',5'-diacetyldeoxyuridine (WEVJOX, Luo et al., 2007) Φ = 67 °; 3,5-diacetyluridine (DAURID, de Graaff et al., 1977) Φ =76 °; and 2'-chloro-2'-deoxyuridine (CDURID, Suck et al., 1972) Φ =69 °). 3E and 3T2 conformations exist in uridine (BEURID10, Green et al., 1975) with Φ =282 ° and 273 °. Twisted conformations OT5 and 3T4 are observed in 2'deoxy-2'-fluorodeoxyuridine (BOFWIC, Marck et al., 1982) Φ =339 ° and 2,3,5-triacetyluridine (CIHNIK, Low & Wilson, 1984) Φ =313 °. Therefore, no direct correlation between the substituents, their properties, and the furanose ring conformation is obvious.
with atoms O3, C7, C8, and C5 being within 0.02 Å from their mean plane, and atom C6 at a distance of 0.48 Å. A quantitative analysis of the ring conformations was performed using the method of Cremer and Pople (Cremer & Pople, 1975; Boeyens & Dobson, 1987) for the calculation of parameters of puckering. The polar parameters for the furanose ring are Q = 0.301 (4) and 0.320 (4) Å,In the crystal of the title compound, the two independent acetyldeoxyuridine molecules form a pseudosymmetric dimer of two bases connected via two nearly identical N—H···O hydrogen bonds (Table 1, Figure 3). Such pseudosymmetric arrangment corresponds to a UU42 mode of π-delocalization of the resonance fragment. This observation is also supported by longer C=O bond lengths in the participating carbonyl groups (1.236 (5) and 1.230 (5) Å) when compared to the other carbonyl groups of the same nucleobase (1.223 (5) and 1.212 (5) Å).
(Jeffrey, 1997). Relatively short N···O separations (Table 1) demonstrate strong resonance-assisted hydrogen bonds. All eight cycle-forming atoms are located close to the mean plane (Figure 3), making possibleThe resulting dimer is further connected with neighboring dimers via two similar O—H···O bonds involving the only hydroxy group of deoxyfuranose fragment and the remaining carbonyl oxygen of the base. These interactions result in the formation of infinitive "double bands" along the b axis of the crystal cell (Figure 4). Such a structure can be considered as a primitive self-assembled analogue of an RNA
with non-canonical Watson-Crick base pairs. Two examples of similar UU-4-carbonyl-immino pairs in RNA structures can be found in an NMR structure (Jiang & Patel, 1998) and in a low resolution solid state structure (Ban et al., 2000). More information about flipped pyrimidine-pyrimidine mismatches can be found in (Nagaswamy et al., 2000).The infinitive chains of acetyldeoxyuridine pairs in the title compound are additionally kept together by CH···O interactions involving carbon atoms of the uracyl base and oxygen atoms of carbonyl groups (Table 1, Figure 4 and 5). Similar bonds were observed in various uracyl-containg structures (Desiraju & Steiner, 1999). A short intramolecular contact between carbonyl oxygen O1 and hydrogen atom H5A may additionaly stabilize the conformation of the molecule.
Only weak C—H···O contacts exist between neighboring chains.
For syntheses of this and similar compounds, see: Smrt & Sorm (1960); Cabral et al. (2008). For related structures of uridines, see: de Graaff et al. (1977); Green et al. (1975); Low & Wilson (1984); Luo et al. (2007); Marck et al. (1982); Rahman & Wilson (1972); Suck et al. (1972). For conformations of five-membered rings, see: Schwarz (1973); Cremer & Pople (1975); Boeyens & Dobson (1987). For analysis of
see: Flack (1983), Hooft et al. (2008). For hydrogen bonding in nucleotide chemistry, see: Gilli & Gilli (2009); Desiraju & Steiner (1999); Jeffrey (1997); Nagaswamy et al.(2000) and references therein. For similar UU-4-carbonyl–imino pairs in RNA structures, see: Ban et al. (2000); Jiang & Patel (1998).Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell
CrystalClear-SM Expert (Rigaku, 2009); data reduction: CrystalClear-SM Expert (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. Two molecules of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. | |
Fig. 2. Conformation of deoxyfuranose ring of molecule 1: mean plane through the C5, C7, C8, and O3 atoms. | |
Fig. 3. Geometry of resonance-enhanced hydrogen bonding between two uracyl bases. | |
Fig. 4. Two pairs of acetyldeoxyuridine molecules connected via N—H···O hydrogen bonds (blue), O—H···O hydrogen bonds (red) and C—H···O hydrogen bonds (black). | |
Fig. 5. An infinitive chain of acetyldeoxyuridine pairs. View along the a axis. | |
Fig. 6. Packing of the title molecules. View along the b axis. | |
Fig. 7. A five-pair fragment of infinitive band of 3'-O-acetyl-2'-deoxyuridine molecules. |
C11H14N2O6 | F(000) = 1136 |
Mr = 270.24 | Dx = 1.418 Mg m−3 |
Monoclinic, C2 | Melting point: 461 K |
Hall symbol: C 2y | Cu Kα radiation, λ = 1.54187 Å |
a = 22.8919 (4) Å | Cell parameters from 9690 reflections |
b = 6.8676 (1) Å | θ = 6.8–68.2° |
c = 17.2789 (12) Å | µ = 1.00 mm−1 |
β = 111.307 (8)° | T = 291 K |
V = 2530.8 (2) Å3 | Block, colourless |
Z = 8 | 0.2 × 0.15 × 0.1 mm |
Rigaku R-AXIS RAPID II imaging plate diffractometer | 4372 independent reflections |
Radiation source: fine-focus sealed tube | 2609 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.069 |
Detector resolution: 10 pixels mm-1 | θmax = 67.0°, θmin = 6.8° |
ω scans | h = −27→22 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −8→7 |
Tmin = 0.84, Tmax = 0.88 | l = −17→20 |
11957 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.048 | w = 1/[σ2(Fo2) + (0.0552P)2 + 0.1596P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.149 | (Δ/σ)max < 0.001 |
S = 1.10 | Δρmax = 0.24 e Å−3 |
4372 reflections | Δρmin = −0.24 e Å−3 |
346 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0016 (2) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1927 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.0 (2) |
C11H14N2O6 | V = 2530.8 (2) Å3 |
Mr = 270.24 | Z = 8 |
Monoclinic, C2 | Cu Kα radiation |
a = 22.8919 (4) Å | µ = 1.00 mm−1 |
b = 6.8676 (1) Å | T = 291 K |
c = 17.2789 (12) Å | 0.2 × 0.15 × 0.1 mm |
β = 111.307 (8)° |
Rigaku R-AXIS RAPID II imaging plate diffractometer | 4372 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2609 reflections with I > 2σ(I) |
Tmin = 0.84, Tmax = 0.88 | Rint = 0.069 |
11957 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.149 | Δρmax = 0.24 e Å−3 |
S = 1.10 | Δρmin = −0.24 e Å−3 |
4372 reflections | Absolute structure: Flack (1983), 1927 Friedel pairs |
346 parameters | Absolute structure parameter: 0.0 (2) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.46379 (15) | 0.4346 (4) | 0.81776 (18) | 0.0769 (9) | |
O2 | 0.40640 (14) | 0.0919 (4) | 1.00331 (19) | 0.0794 (9) | |
O3 | 0.46084 (12) | −0.0505 (4) | 0.68957 (16) | 0.0697 (8) | |
O4 | 0.54767 (15) | −0.3837 (5) | 0.7567 (2) | 0.0912 (11) | |
H1 | 0.5257 | −0.4439 | 0.7769 | 0.137* | |
O5 | 0.56917 (13) | 0.1405 (4) | 0.63582 (18) | 0.0689 (8) | |
O6 | 0.59476 (16) | −0.0887 (6) | 0.5611 (2) | 0.0920 (11) | |
N1 | 0.46541 (16) | 0.1042 (5) | 0.8110 (2) | 0.0590 (9) | |
N2 | 0.43469 (16) | 0.2568 (5) | 0.9092 (2) | 0.0631 (9) | |
H2 | 0.4267 | 0.3631 | 0.9297 | 0.076* | |
C1 | 0.45611 (19) | 0.2760 (6) | 0.8447 (2) | 0.0562 (10) | |
C2 | 0.4246 (2) | 0.0868 (7) | 0.9442 (3) | 0.0698 (12) | |
C3 | 0.4369 (2) | −0.0844 (7) | 0.9075 (3) | 0.0809 (15) | |
H3A | 0.4314 | −0.2061 | 0.9274 | 0.097* | |
C4 | 0.4567 (2) | −0.0696 (7) | 0.8439 (3) | 0.0743 (13) | |
H4A | 0.4649 | −0.1836 | 0.8206 | 0.089* | |
C5 | 0.48799 (18) | 0.1107 (6) | 0.7418 (2) | 0.0563 (10) | |
H5A | 0.4743 | 0.2322 | 0.7107 | 0.068* | |
C6 | 0.55755 (18) | 0.0894 (6) | 0.7668 (2) | 0.0612 (11) | |
H6A | 0.5749 | 0.0100 | 0.8163 | 0.073* | |
H6B | 0.5781 | 0.2153 | 0.7767 | 0.073* | |
C7 | 0.56437 (19) | −0.0114 (6) | 0.6914 (2) | 0.0609 (11) | |
H7A | 0.6012 | −0.0965 | 0.7082 | 0.073* | |
C8 | 0.5048 (2) | −0.1272 (6) | 0.6545 (3) | 0.0640 (11) | |
H8A | 0.4877 | −0.1063 | 0.5943 | 0.077* | |
C9 | 0.5126 (2) | −0.3445 (7) | 0.6714 (3) | 0.0788 (14) | |
H9A | 0.4716 | −0.4047 | 0.6559 | 0.095* | |
H9B | 0.5339 | −0.4016 | 0.6375 | 0.095* | |
C10 | 0.5876 (2) | 0.0811 (9) | 0.5732 (3) | 0.0784 (14) | |
C11 | 0.5960 (3) | 0.2490 (9) | 0.5245 (3) | 0.110 (2) | |
H11A | 0.6366 | 0.2416 | 0.5201 | 0.164* | |
H11B | 0.5928 | 0.3680 | 0.5518 | 0.164* | |
H11C | 0.5641 | 0.2462 | 0.4699 | 0.164* | |
O21 | 0.70463 (14) | 0.1998 (4) | 0.87917 (18) | 0.0703 (8) | |
O22 | 0.61778 (17) | 0.5604 (4) | 1.0291 (2) | 0.1020 (13) | |
O23 | 0.78772 (13) | 0.6734 (4) | 0.82972 (16) | 0.0676 (8) | |
O24 | 0.71663 (15) | 1.0090 (5) | 0.7407 (2) | 0.0874 (10) | |
H24 | 0.7181 | 1.0662 | 0.7830 | 0.131* | |
O25 | 0.76788 (13) | 0.4633 (5) | 0.65709 (18) | 0.0737 (9) | |
O26 | 0.80745 (19) | 0.6677 (7) | 0.5882 (2) | 0.1077 (13) | |
N21 | 0.71512 (15) | 0.5305 (5) | 0.87739 (19) | 0.0575 (9) | |
N22 | 0.66228 (16) | 0.3867 (5) | 0.9545 (2) | 0.0647 (9) | |
H22 | 0.6502 | 0.2828 | 0.9722 | 0.078* | |
C21 | 0.6952 (2) | 0.3601 (7) | 0.9015 (3) | 0.0588 (11) | |
C22 | 0.6469 (2) | 0.5612 (7) | 0.9816 (3) | 0.0710 (13) | |
C23 | 0.6674 (2) | 0.7311 (6) | 0.9510 (2) | 0.0638 (12) | |
H23A | 0.6586 | 0.8544 | 0.9663 | 0.077* | |
C24 | 0.6993 (2) | 0.7113 (5) | 0.9002 (2) | 0.0610 (11) | |
H24A | 0.7114 | 0.8228 | 0.8794 | 0.073* | |
C25 | 0.74536 (19) | 0.5179 (6) | 0.8160 (2) | 0.0582 (10) | |
H25A | 0.7679 | 0.3940 | 0.8225 | 0.070* | |
C26 | 0.69949 (18) | 0.5388 (7) | 0.7270 (2) | 0.0625 (11) | |
H26A | 0.6828 | 0.4134 | 0.7034 | 0.075* | |
H26B | 0.6651 | 0.6248 | 0.7238 | 0.075* | |
C27 | 0.73937 (19) | 0.6245 (6) | 0.6843 (2) | 0.0614 (11) | |
H27A | 0.7148 | 0.7069 | 0.6375 | 0.074* | |
C28 | 0.7886 (2) | 0.7422 (6) | 0.7511 (3) | 0.0641 (11) | |
H28A | 0.8298 | 0.7140 | 0.7485 | 0.077* | |
C29 | 0.7786 (2) | 0.9609 (7) | 0.7462 (3) | 0.0813 (14) | |
H29A | 0.8087 | 1.0218 | 0.7951 | 0.098* | |
H29B | 0.7856 | 1.0113 | 0.6979 | 0.098* | |
C30 | 0.7987 (2) | 0.5034 (9) | 0.6061 (3) | 0.0817 (15) | |
C31 | 0.8202 (2) | 0.3226 (9) | 0.5769 (3) | 0.108 (2) | |
H31A | 0.8428 | 0.3565 | 0.5417 | 0.162* | |
H31B | 0.7846 | 0.2443 | 0.5463 | 0.162* | |
H31C | 0.8472 | 0.2506 | 0.6240 | 0.162* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.111 (2) | 0.0498 (18) | 0.092 (2) | −0.0016 (18) | 0.0627 (19) | 0.0023 (17) |
O2 | 0.103 (2) | 0.065 (2) | 0.098 (2) | 0.0078 (17) | 0.070 (2) | 0.0114 (17) |
O3 | 0.0616 (17) | 0.0763 (19) | 0.0791 (19) | −0.0050 (16) | 0.0350 (15) | −0.0208 (16) |
O4 | 0.087 (2) | 0.080 (2) | 0.102 (2) | −0.0043 (18) | 0.0301 (19) | 0.0241 (19) |
O5 | 0.080 (2) | 0.0643 (19) | 0.0775 (19) | 0.0011 (16) | 0.0471 (16) | 0.0052 (16) |
O6 | 0.108 (3) | 0.099 (3) | 0.087 (2) | −0.001 (2) | 0.058 (2) | −0.018 (2) |
N1 | 0.077 (2) | 0.045 (2) | 0.072 (2) | 0.0068 (17) | 0.0471 (19) | 0.0022 (17) |
N2 | 0.085 (2) | 0.045 (2) | 0.078 (2) | 0.0013 (18) | 0.052 (2) | 0.0004 (18) |
C1 | 0.064 (3) | 0.048 (2) | 0.069 (3) | 0.000 (2) | 0.039 (2) | 0.000 (2) |
C2 | 0.084 (3) | 0.060 (3) | 0.080 (3) | 0.002 (2) | 0.048 (3) | 0.005 (3) |
C3 | 0.119 (4) | 0.049 (3) | 0.106 (4) | 0.007 (3) | 0.078 (3) | 0.005 (3) |
C4 | 0.101 (4) | 0.047 (3) | 0.095 (3) | −0.006 (2) | 0.059 (3) | 0.001 (2) |
C5 | 0.064 (3) | 0.052 (2) | 0.065 (2) | −0.004 (2) | 0.038 (2) | −0.003 (2) |
C6 | 0.061 (2) | 0.065 (3) | 0.068 (2) | −0.005 (2) | 0.036 (2) | −0.007 (2) |
C7 | 0.061 (3) | 0.057 (3) | 0.074 (3) | 0.001 (2) | 0.035 (2) | 0.005 (2) |
C8 | 0.078 (3) | 0.058 (3) | 0.059 (2) | −0.001 (2) | 0.029 (2) | −0.005 (2) |
C9 | 0.090 (3) | 0.063 (3) | 0.089 (3) | −0.006 (3) | 0.040 (3) | −0.010 (3) |
C10 | 0.077 (3) | 0.097 (4) | 0.073 (3) | −0.011 (3) | 0.040 (3) | −0.016 (3) |
C11 | 0.135 (5) | 0.127 (5) | 0.091 (4) | −0.033 (4) | 0.069 (4) | 0.012 (4) |
O21 | 0.092 (2) | 0.0456 (18) | 0.086 (2) | 0.0012 (16) | 0.0480 (17) | −0.0062 (16) |
O22 | 0.160 (3) | 0.062 (2) | 0.141 (3) | 0.013 (2) | 0.124 (3) | 0.006 (2) |
O23 | 0.0711 (18) | 0.0721 (19) | 0.0663 (17) | −0.0189 (15) | 0.0328 (14) | −0.0018 (15) |
O24 | 0.084 (2) | 0.081 (3) | 0.103 (3) | 0.0105 (18) | 0.0398 (18) | −0.015 (2) |
O25 | 0.083 (2) | 0.077 (2) | 0.078 (2) | −0.0012 (18) | 0.0493 (17) | −0.0081 (17) |
O26 | 0.119 (3) | 0.125 (3) | 0.107 (3) | 0.007 (3) | 0.074 (2) | 0.025 (3) |
N21 | 0.067 (2) | 0.052 (2) | 0.063 (2) | 0.0026 (16) | 0.0364 (17) | 0.0013 (17) |
N22 | 0.084 (2) | 0.050 (2) | 0.082 (2) | 0.0043 (18) | 0.055 (2) | 0.0060 (18) |
C21 | 0.071 (3) | 0.050 (3) | 0.060 (2) | −0.005 (2) | 0.030 (2) | 0.001 (2) |
C22 | 0.098 (4) | 0.049 (3) | 0.077 (3) | 0.010 (2) | 0.045 (3) | 0.004 (2) |
C23 | 0.087 (3) | 0.046 (3) | 0.072 (3) | 0.007 (2) | 0.045 (3) | −0.001 (2) |
C24 | 0.083 (3) | 0.040 (2) | 0.069 (3) | 0.002 (2) | 0.038 (2) | 0.005 (2) |
C25 | 0.064 (2) | 0.053 (3) | 0.068 (3) | −0.001 (2) | 0.038 (2) | 0.003 (2) |
C26 | 0.061 (3) | 0.065 (3) | 0.066 (3) | −0.006 (2) | 0.029 (2) | −0.007 (2) |
C27 | 0.064 (3) | 0.062 (3) | 0.064 (2) | 0.004 (2) | 0.031 (2) | −0.002 (2) |
C28 | 0.066 (3) | 0.064 (3) | 0.076 (3) | −0.001 (2) | 0.043 (2) | 0.003 (2) |
C29 | 0.093 (4) | 0.071 (3) | 0.093 (3) | −0.008 (3) | 0.048 (3) | −0.006 (3) |
C30 | 0.068 (3) | 0.108 (5) | 0.076 (3) | −0.004 (3) | 0.034 (3) | −0.002 (3) |
C31 | 0.092 (4) | 0.141 (6) | 0.113 (4) | −0.020 (4) | 0.063 (3) | −0.052 (4) |
O1—C1 | 1.223 (5) | O21—C21 | 1.212 (5) |
O2—C2 | 1.236 (5) | O22—C22 | 1.230 (5) |
O3—C5 | 1.421 (5) | O23—C25 | 1.404 (4) |
O3—C8 | 1.449 (4) | O23—C28 | 1.445 (4) |
O4—C9 | 1.425 (5) | O24—C29 | 1.425 (5) |
O4—H1 | 0.8200 | O24—H24 | 0.8200 |
O5—C10 | 1.358 (5) | O25—C30 | 1.342 (5) |
O5—C7 | 1.449 (5) | O25—C27 | 1.447 (5) |
O6—C10 | 1.207 (6) | O26—C30 | 1.206 (6) |
N1—C4 | 1.367 (5) | N21—C21 | 1.375 (5) |
N1—C1 | 1.366 (5) | N21—C24 | 1.390 (5) |
N1—C5 | 1.467 (4) | N21—C25 | 1.464 (5) |
N2—C2 | 1.373 (5) | N22—C22 | 1.379 (5) |
N2—C1 | 1.376 (4) | N22—C21 | 1.392 (5) |
N2—H2 | 0.8600 | N22—H22 | 0.8600 |
C2—C3 | 1.412 (6) | C22—C23 | 1.429 (6) |
C3—C4 | 1.336 (5) | C23—C24 | 1.337 (5) |
C3—H3A | 0.9300 | C23—H23A | 0.9300 |
C4—H4A | 0.9300 | C24—H24A | 0.9300 |
C5—C6 | 1.498 (5) | C25—C26 | 1.522 (5) |
C5—H5A | 0.9800 | C25—H25A | 0.9800 |
C6—C7 | 1.532 (5) | C26—C27 | 1.488 (5) |
C6—H6A | 0.9700 | C26—H26A | 0.9700 |
C6—H6B | 0.9700 | C26—H26B | 0.9700 |
C7—C8 | 1.506 (6) | C27—C28 | 1.520 (6) |
C7—H7A | 0.9800 | C27—H27A | 0.9800 |
C8—C9 | 1.519 (6) | C28—C29 | 1.517 (7) |
C8—H8A | 0.9800 | C28—H28A | 0.9800 |
C9—H9A | 0.9700 | C29—H29A | 0.9700 |
C9—H9B | 0.9700 | C29—H29B | 0.9700 |
C10—C11 | 1.482 (7) | C30—C31 | 1.489 (7) |
C11—H11A | 0.9600 | C31—H31A | 0.9600 |
C11—H11B | 0.9600 | C31—H31B | 0.9600 |
C11—H11C | 0.9600 | C31—H31C | 0.9600 |
C5—O3—C8 | 109.8 (3) | C25—O23—C28 | 109.6 (3) |
C9—O4—H1 | 109.5 | C29—O24—H24 | 109.5 |
C10—O5—C7 | 115.6 (4) | C30—O25—C27 | 117.6 (4) |
C4—N1—C1 | 120.5 (3) | C21—N21—C24 | 121.7 (3) |
C4—N1—C5 | 120.9 (4) | C21—N21—C25 | 117.7 (3) |
C1—N1—C5 | 118.5 (3) | C24—N21—C25 | 119.9 (3) |
C2—N2—C1 | 127.2 (4) | C22—N22—C21 | 127.1 (4) |
C2—N2—H2 | 116.4 | C22—N22—H22 | 116.4 |
C1—N2—H2 | 116.4 | C21—N22—H22 | 116.4 |
O1—C1—N1 | 122.7 (4) | O21—C21—N21 | 124.0 (4) |
O1—C1—N2 | 122.5 (4) | O21—C21—N22 | 122.0 (4) |
N1—C1—N2 | 114.7 (4) | N21—C21—N22 | 114.0 (4) |
O2—C2—N2 | 120.1 (4) | O22—C22—N22 | 119.3 (4) |
O2—C2—C3 | 125.3 (4) | O22—C22—C23 | 125.5 (4) |
N2—C2—C3 | 114.6 (4) | N22—C22—C23 | 115.2 (4) |
C4—C3—C2 | 119.3 (4) | C24—C23—C22 | 119.4 (4) |
C4—C3—H3A | 120.4 | C24—C23—H23A | 120.3 |
C2—C3—H3A | 120.4 | C22—C23—H23A | 120.3 |
C3—C4—N1 | 123.5 (4) | C23—C24—N21 | 122.5 (4) |
C3—C4—H4A | 118.2 | C23—C24—H24A | 118.7 |
N1—C4—H4A | 118.2 | N21—C24—H24A | 118.7 |
O3—C5—N1 | 107.0 (3) | O23—C25—N21 | 108.2 (3) |
O3—C5—C6 | 106.3 (3) | O23—C25—C26 | 106.2 (3) |
N1—C5—C6 | 114.5 (3) | N21—C25—C26 | 113.1 (3) |
O3—C5—H5A | 109.6 | O23—C25—H25A | 109.7 |
N1—C5—H5A | 109.6 | N21—C25—H25A | 109.7 |
C6—C5—H5A | 109.6 | C26—C25—H25A | 109.7 |
C5—C6—C7 | 103.0 (3) | C27—C26—C25 | 102.5 (3) |
C5—C6—H6A | 111.2 | C27—C26—H26A | 111.3 |
C7—C6—H6A | 111.2 | C25—C26—H26A | 111.3 |
C5—C6—H6B | 111.2 | C27—C26—H26B | 111.3 |
C7—C6—H6B | 111.2 | C25—C26—H26B | 111.3 |
H6A—C6—H6B | 109.1 | H26A—C26—H26B | 109.2 |
O5—C7—C8 | 112.0 (3) | O25—C27—C26 | 106.8 (3) |
O5—C7—C6 | 107.1 (3) | O25—C27—C28 | 110.8 (3) |
C8—C7—C6 | 104.0 (3) | C26—C27—C28 | 104.6 (3) |
O5—C7—H7A | 111.2 | O25—C27—H27A | 111.4 |
C8—C7—H7A | 111.2 | C26—C27—H27A | 111.4 |
C6—C7—H7A | 111.2 | C28—C27—H27A | 111.4 |
O3—C8—C7 | 106.9 (3) | O23—C28—C29 | 108.8 (4) |
O3—C8—C9 | 109.1 (4) | O23—C28—C27 | 106.3 (3) |
C7—C8—C9 | 114.3 (4) | C29—C28—C27 | 115.4 (4) |
O3—C8—H8A | 108.8 | O23—C28—H28A | 108.7 |
C7—C8—H8A | 108.8 | C29—C28—H28A | 108.7 |
C9—C8—H8A | 108.8 | C27—C28—H28A | 108.7 |
O4—C9—C8 | 111.6 (4) | O24—C29—C28 | 111.1 (4) |
O4—C9—H9A | 109.3 | O24—C29—H29A | 109.4 |
C8—C9—H9A | 109.3 | C28—C29—H29A | 109.4 |
O4—C9—H9B | 109.3 | O24—C29—H29B | 109.4 |
C8—C9—H9B | 109.3 | C28—C29—H29B | 109.4 |
H9A—C9—H9B | 108.0 | H29A—C29—H29B | 108.0 |
O6—C10—O5 | 122.0 (5) | O26—C30—O25 | 122.4 (5) |
O6—C10—C11 | 126.8 (5) | O26—C30—C31 | 125.9 (5) |
O5—C10—C11 | 111.2 (5) | O25—C30—C31 | 111.6 (5) |
C10—C11—H11A | 109.5 | C30—C31—H31A | 109.5 |
C10—C11—H11B | 109.5 | C30—C31—H31B | 109.5 |
H11A—C11—H11B | 109.5 | H31A—C31—H31B | 109.5 |
C10—C11—H11C | 109.5 | C30—C31—H31C | 109.5 |
H11A—C11—H11C | 109.5 | H31A—C31—H31C | 109.5 |
H11B—C11—H11C | 109.5 | H31B—C31—H31C | 109.5 |
C4—N1—C1—O1 | 179.5 (4) | C24—N21—C21—O21 | 175.5 (4) |
C5—N1—C1—O1 | 2.5 (6) | C25—N21—C21—O21 | 4.8 (6) |
C4—N1—C1—N2 | −3.3 (6) | C24—N21—C21—N22 | −4.2 (6) |
C5—N1—C1—N2 | 179.8 (3) | C25—N21—C21—N22 | −174.8 (3) |
C2—N2—C1—O1 | −179.8 (4) | C22—N22—C21—O21 | −177.5 (4) |
C2—N2—C1—N1 | 3.0 (6) | C22—N22—C21—N21 | 2.1 (6) |
C1—N2—C2—O2 | 178.5 (4) | C21—N22—C22—O22 | −179.5 (4) |
C1—N2—C2—C3 | −1.3 (7) | C21—N22—C22—C23 | 0.1 (7) |
O2—C2—C3—C4 | −179.8 (5) | O22—C22—C23—C24 | 179.3 (4) |
N2—C2—C3—C4 | −0.1 (7) | N22—C22—C23—C24 | −0.3 (6) |
C2—C3—C4—N1 | −0.5 (8) | C22—C23—C24—N21 | −1.8 (7) |
C1—N1—C4—C3 | 2.3 (7) | C21—N21—C24—C23 | 4.3 (6) |
C5—N1—C4—C3 | 179.2 (4) | C25—N21—C24—C23 | 174.7 (4) |
C8—O3—C5—N1 | −144.8 (3) | C28—O23—C25—N21 | −144.4 (3) |
C8—O3—C5—C6 | −22.1 (4) | C28—O23—C25—C26 | −22.7 (4) |
C4—N1—C5—O3 | 36.1 (5) | C21—N21—C25—O23 | −151.1 (3) |
C1—N1—C5—O3 | −146.9 (3) | C24—N21—C25—O23 | 38.1 (5) |
C4—N1—C5—C6 | −81.4 (5) | C21—N21—C25—C26 | 91.5 (4) |
C1—N1—C5—C6 | 95.6 (5) | C24—N21—C25—C26 | −79.3 (5) |
O3—C5—C6—C7 | 31.3 (4) | O23—C25—C26—C27 | 32.7 (4) |
N1—C5—C6—C7 | 149.2 (3) | N21—C25—C26—C27 | 151.3 (3) |
C10—O5—C7—C8 | −78.8 (5) | C30—O25—C27—C26 | 170.3 (4) |
C10—O5—C7—C6 | 167.8 (3) | C30—O25—C27—C28 | −76.3 (5) |
C5—C6—C7—O5 | 90.1 (4) | C25—C26—C27—O25 | 88.0 (4) |
C5—C6—C7—C8 | −28.7 (4) | C25—C26—C27—C28 | −29.6 (4) |
C5—O3—C8—C7 | 3.2 (4) | C25—O23—C28—C29 | 128.5 (4) |
C5—O3—C8—C9 | 127.3 (4) | C25—O23—C28—C27 | 3.6 (4) |
O5—C7—C8—O3 | −99.0 (4) | O25—C27—C28—O23 | −97.5 (4) |
C6—C7—C8—O3 | 16.3 (4) | C26—C27—C28—O23 | 17.3 (4) |
O5—C7—C8—C9 | 140.2 (4) | O25—C27—C28—C29 | 141.8 (4) |
C6—C7—C8—C9 | −104.5 (4) | C26—C27—C28—C29 | −103.5 (4) |
O3—C8—C9—O4 | −72.2 (5) | O23—C28—C29—O24 | −68.0 (5) |
C7—C8—C9—O4 | 47.4 (6) | C27—C28—C29—O24 | 51.4 (5) |
C7—O5—C10—O6 | 5.4 (7) | C27—O25—C30—O26 | 6.2 (7) |
C7—O5—C10—C11 | −175.3 (4) | C27—O25—C30—C31 | −174.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H1···O1i | 0.82 | 1.98 | 2.798 (5) | 173 |
N2—H2···O22ii | 0.86 | 1.98 | 2.803 (5) | 161 |
N22—H22···O2ii | 0.86 | 1.99 | 2.817 (5) | 160 |
O24—H24···O21iii | 0.82 | 2.02 | 2.828 (5) | 170 |
C3—H3A···O22iv | 0.93 | 2.24 | 3.117 (6) | 157 |
C23—H23A···O2v | 0.93 | 2.39 | 3.254 (5) | 154 |
C24—H24A···O21iii | 0.93 | 2.59 | 3.381 (5) | 143 |
C31—H31B···O26vi | 0.96 | 2.56 | 3.428 (8) | 150 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, y, −z+2; (iii) x, y+1, z; (iv) −x+1, y−1, −z+2; (v) −x+1, y+1, −z+2; (vi) −x+3/2, y−1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C11H14N2O6 |
Mr | 270.24 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 291 |
a, b, c (Å) | 22.8919 (4), 6.8676 (1), 17.2789 (12) |
β (°) | 111.307 (8) |
V (Å3) | 2530.8 (2) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 1.00 |
Crystal size (mm) | 0.2 × 0.15 × 0.1 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID II imaging plate |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.84, 0.88 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11957, 4372, 2609 |
Rint | 0.069 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.149, 1.10 |
No. of reflections | 4372 |
No. of parameters | 346 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.24 |
Absolute structure | Flack (1983), 1927 Friedel pairs |
Absolute structure parameter | 0.0 (2) |
Computer programs: CrystalClear-SM Expert (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H1···O1i | 0.82 | 1.98 | 2.798 (5) | 173 |
N2—H2···O22ii | 0.86 | 1.982 | 2.803 (5) | 161 |
N22—H22···O2ii | 0.86 | 1.99 | 2.817 (5) | 160 |
O24—H24···O21iii | 0.82 | 2.02 | 2.828 (5) | 170 |
C3—H3A···O22iv | 0.93 | 2.24 | 3.117 (6) | 157 |
C23—H23A···O2v | 0.93 | 2.39 | 3.254 (5) | 154 |
C24—H24A···O21iii | 0.93 | 2.59 | 3.381 (5) | 143 |
C31—H31B···O26vi | 0.96 | 2.56 | 3.428 (8) | 150 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, y, −z+2; (iii) x, y+1, z; (iv) −x+1, y−1, −z+2; (v) −x+1, y+1, −z+2; (vi) −x+3/2, y−1/2, −z+1. |
Acknowledgements
This study was supported by the NSF (grant CHE-0922366 for X-ray diffractometer) and by SUNY (grant No 1073053).
References
Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. (2000). Science, 289, 905–920. Web of Science CrossRef PubMed CAS Google Scholar
Boeyens, J. C. A. & Dobson, S. M. (1987). Stereochemistry of Metallic Macrocycles, in Stereochemical and Stereophysical Behaviour of Macrocycles, edited by I. Bernal, pp. 2–102. Amsterdam: Elsevier. Google Scholar
Cabral, N. L. D., Hoeltgebaum Thiesen, L. & Doboszewski, B. (2008). Nucleosides Nucleotides Nucl. Acids, 27, 931–948. Web of Science CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond. Oxford University Press. Google Scholar
Graaff, R. A. G., Admiraal, G., Koen, E. H. & Romers, C. (1977). Acta Cryst. B33, 2459–2464. CSD CrossRef IUCr Journals Google Scholar
Green, E. A., Rosenstein, R. D., Shiono, R., Abraham, D. J., Trus, B. L. & Marsh, R. E. (1975). Acta Cryst. B31, 102–107. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press. Google Scholar
Jiang, L. & Patel, D. J. (1998). Nat. Struct. Biol. 5, 769–774. Web of Science CrossRef CAS PubMed Google Scholar
Low, J. N. & Wilson, C. C. (1984). Acta Cryst. C40, 1030–1032. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Luo, Q., Tang, D.-H., Zhen, Z. & Liu, X.-H. (2007). Acta Cryst. E63, o4–o6. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Marck, C., Lesyng, B. & Saenger, W. (1982). J. Mol. Struct. 82, 77–94. CSD CrossRef CAS Web of Science Google Scholar
Nagaswamy, U., Voss, N., Zhang, Z. & Fox, G. E. (2000). Nucleic Acid Res. 28, 375–376. Web of Science CrossRef PubMed CAS Google Scholar
Rahman, A. & Wilson, H. R. (1972). Acta Cryst. B28, 2260–2270. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan. Google Scholar
Schwarz, J. C. P. (1973). J. Chem. Soc. Chem. Commun. pp. 505–508. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smrt, J. & Sorm, F. (1960). Coll. Czech. Chem. Commun. 25, 553–558. CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suck, D., Saenger, W. & Hobbs, J. (1972). Biochim. Biophys. Acta, 259, 157–163. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Modified nucleosides have received much attention as potential chemotherapeutic agents due to their ability to interfere with the polymerases engaged in replication processes in metastatic or virus invaded cells. In fact, most of the antiviral compounds approved for commercialization are nucleoside analogs which were obtained by modifications of the ribonucleosides or deoxyribonucleosides at a nucleobase moiety, at a carbohydrate moiety or at both of them. The title compound has attracted our attention as a possible intermediate in a synthesis of such agents.
The absolute structure of the title compound is known from the synthetic route which does not affect stereogenic atoms of the starting compound. Nevertheless, we preferred to obtain a direct experimental confirmation using X-ray diffractometry data. Because there are no heavy atoms in a chiral molecule of title compound, Cu Kα radiation was necessary for determination of the absolute structure.
In the crystal structure of title compound (Fig.1), all bond lengths and bond angles have standard dimensions.
The six-membered rings in both crystallographically independent molecules are flat within 0.01 Å. Figure 2 shows that the furanose ring in the first molecule adopts an envelope conformation with atoms O3, C7, C8, and C5 being within 0.02 Å from their mean plane, and atom C6 at a distance of 0.48 Å. A quantitative analysis of the ring conformations was performed using the method of Cremer and Pople (Cremer & Pople, 1975; Boeyens & Dobson, 1987) for the calculation of parameters of puckering. The polar parameters for the furanose ring are Q = 0.301 (4) and 0.320 (4) Å, Φ = 67.1 (8)° and 66.6 (7) ° for both independent molecules. These suggest the envelope conformation 2E (ideal Φ = 72°), slightly distorted towards twist 2T1 (Φ= 54°), with atoms C(6) and C(26) in corners of the respective envelopes. The conformation of the 3'-substituted 2'-deoxydeoxyuridine reported here is different from the conformation of the unsubstituted 2'-deoxyuridine molecule: in this case Φ = 83 and Φ = 89 ° for two independent molecules which is close to a twisted 2T3 conformation (Φ=90°) of the furanose ring (CSD code DOURID, Rahman & Wilson, 1972). An 2E conformation was observed in several other molecules of the uridine family (see, for example 2'-deoxy-3',5'-diacetyldeoxyuridine (WEVJOX, Luo et al., 2007) Φ = 67 °; 3,5-diacetyluridine (DAURID, de Graaff et al., 1977) Φ =76 °; and 2'-chloro-2'-deoxyuridine (CDURID, Suck et al., 1972) Φ =69 °). 3E and 3T2 conformations exist in uridine (BEURID10, Green et al., 1975) with Φ =282 ° and 273 °. Twisted conformations OT5 and 3T4 are observed in 2'deoxy-2'-fluorodeoxyuridine (BOFWIC, Marck et al., 1982) Φ =339 ° and 2,3,5-triacetyluridine (CIHNIK, Low & Wilson, 1984) Φ =313 °. Therefore, no direct correlation between the substituents, their properties, and the furanose ring conformation is obvious.
In the crystal of the title compound, the two independent acetyldeoxyuridine molecules form a pseudosymmetric dimer of two bases connected via two nearly identical N—H···O hydrogen bonds (Table 1, Figure 3). Such pseudosymmetric arrangment corresponds to a UU42 mode of base pairing (Jeffrey, 1997). Relatively short N···O separations (Table 1) demonstrate strong resonance-assisted hydrogen bonds. All eight cycle-forming atoms are located close to the mean plane (Figure 3), making possible π-delocalization of the resonance fragment. This observation is also supported by longer C=O bond lengths in the participating carbonyl groups (1.236 (5) and 1.230 (5) Å) when compared to the other carbonyl groups of the same nucleobase (1.223 (5) and 1.212 (5) Å).
The resulting dimer is further connected with neighboring dimers via two similar O—H···O bonds involving the only hydroxy group of deoxyfuranose fragment and the remaining carbonyl oxygen of the base. These interactions result in the formation of infinitive "double bands" along the b axis of the crystal cell (Figure 4). Such a structure can be considered as a primitive self-assembled analogue of an RNA polymer molecule with non-canonical Watson-Crick base pairs. Two examples of similar UU-4-carbonyl-immino pairs in RNA structures can be found in an NMR structure (Jiang & Patel, 1998) and in a low resolution solid state structure (Ban et al., 2000). More information about flipped pyrimidine-pyrimidine mismatches can be found in (Nagaswamy et al., 2000).
The infinitive chains of acetyldeoxyuridine pairs in the title compound are additionally kept together by CH···O interactions involving carbon atoms of the uracyl base and oxygen atoms of carbonyl groups (Table 1, Figure 4 and 5). Similar bonds were observed in various uracyl-containg structures (Desiraju & Steiner, 1999). A short intramolecular contact between carbonyl oxygen O1 and hydrogen atom H5A may additionaly stabilize the conformation of the molecule.
Only weak C—H···O contacts exist between neighboring chains.