metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(2-oxo-2H-chromene-3-carboxyl­ato-κ2O2,O3)cadmium

aCollege of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
*Correspondence e-mail: xieyabo@bjut.edu.cn

(Received 1 December 2010; accepted 20 December 2010; online 24 December 2010)

In the title mononuclear cadmium complex, [Cd(C10H5O4)2(H2O)2], the CdII atom, located on a crystallographic inversion center, exhibits a slightly distorted octa­hedral geometry and is six-coordinated by two O atoms from water mol­ecules in the axial positions and four O atoms from two deprotonated coumarin-3-carb­oxy­lic acid ligands in the equatorial plane. Angles around the CdII atom vary between 81.00 (5) and 99.00 (0)°. The Cd—O bond lengths vary between 2.1961 (13) and 2.3360 (13) Å. O—H⋯O hydrogen bonds between the H atoms of coordinated water mol­ecules and the O atoms of carboxyl­ate groups link the complex mol­ecules into layers parallel to the ab plane.

Related literature

For background to topological networks, see: Lin et al. (2010[Lin, J. D., Long, X. F., Lin, P. & Du, S. W. (2010). Cryst. Growth Des. 10, 146-157.]). For applications of self-assembling systems with organic ligands containing O donors, see: Bischof et al. (2010[Bischof, S. M., Ess, D. H., Meier, S. K., Oxgaard, J., Nielsen, R. J., Bhalla, G., Goddard, W. A. & Periana, R. A. (2010). Organometallics, 29, 742-756.]); Chen et al. (2008[Chen, L. F., Li, Z. J., Qin, Y. Y., Cheng, J. K. & Yao, Y. G. (2008). J. Mol. Struct. 892, 278-282.]); Ghoshal et al. (2007[Ghoshal, D., Ghosh, A. K., Mostafa, G., Ribas, J. & Chaudhuri, N. R. (2007). Inorg. Chim. Acta, 360, 1771-1775.]); Li & Zhou (2009[Li, J. R. & Zhou, H. C. (2009). Angew. Chem. Int. Ed. 48, 1-5.]). For related structures, see: Georgieva et al. (2007[Georgieva, I., Trendafilova, N., Aquino, A. J. A. & Lischka, H. (2007). Inorg. Chem. 46, 10926-10936.]); Li et al. (2009[Li, N., Gou, L., Hu, H. M., Chen, S. H., Chen, X. L., Wang, B. W., Wu, Q. R., Yang, M. L. & Xue, G. L. (2009). Inorg. Chim. Acta, 362, 3475-3483.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C10H5O4)2(H2O)2]

  • Mr = 526.72

  • Triclinic, [P \overline 1]

  • a = 6.6736 (13) Å

  • b = 6.8838 (14) Å

  • c = 10.477 (2) Å

  • α = 93.37 (3)°

  • β = 91.46 (3)°

  • γ = 112.07 (3)°

  • V = 444.68 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 110 K

  • 0.20 × 0.15 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.793, Tmax = 0.824

  • 2812 measured reflections

  • 2040 independent reflections

  • 2033 reflections with I > 2σ(I)

  • Rint = 0.009

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.045

  • S = 1.12

  • 2040 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4i 0.85 1.90 2.6877 (18) 153
O1W—H1WB⋯O4ii 0.85 1.94 2.721 (2) 153
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past decades, much attention has been paid to the design and synthesis of self-assembling metal complex systems with organic ligands containing O donors due to their fascinating structural diversity (Lin et al., 2010) and potential applications in the areas of catalysis (Bischof et al., 2010), magnetism (Ghoshal et al., 2007), gas adsorption (Li & Zhou, 2009), and luminescence (Chen et al., 2008). Coumarin-3-carboxylic acid is such a ligand and complexes containing it have been reported (Georgieva et al., 2007). Herein, we report the synthesis and crystal structure of a new mononuclear cadmium complex coordinated by coumarin-3-carboxylic acid.

The molecule of the title mononuclear cadmium(II) complex, [Cd(C10H5O4)2(H2O)2], occupies a special position with the metal center being located on a crystallographic inversion center. Each CdII atom exhibits a slightly distorted octahedral geometry and is six-coordinated by two O atoms from water molecules in the axial positions and four O atoms from two deprotonated coumarin-3-carboxylic acid ligands in the equatorial plane. Angles around the CdII atom vary between 81.02 (6)° and 98.98 (8)°. The Cd—O bond distances between the CdII atom and the O atoms vary between 2.196 (2) and 2.336 (2) Å, all of which are comparable to those reported for other cadmium-oxygen donor complexes (e.g., Li et al., 2009). The (C1C2C3C4C5C6) ring and the (C6C5C7C8C9O1) ring are almost coplanar, and the dihedral angles is 1.673 (5)°. The dihedral angle between The C8C9C10O2 plane and the O2O3Cd1 plane is 28.541 (7)°. O-H···O hydrogen bonds between the hydrogen atoms of coordinated water molecules and the O atoms of carboxyl groups joins the complexes into two-dimensional layers parallel the ab plane (Table 1, Fig. 2).

Related literature top

For background to topological networks, see: Lin et al. (2010). For applications of self-assembling systems with organic ligands containing O donors, see: Bischof et al. (2010); Chen et al. (2008); Ghoshal et al. (2007); Li & Zhou (2009). For related structures, see: Georgieva et al. (2007); Li et al. (2009).

Experimental top

The title complex was synthesized by carefully layering a solution of Cd(NO3)2.4H2O (30.8 mg, 0.1 mmol) in ethanol (10 ml) on top of a solution of coumarin-3-carboxylic acid (19.0 mg, 0.1 mmol) and LiOH (8.4 mg, 0.2 mmol) in H2O (10 ml) in a test-tube. After about one month at room temperature, colorless block-shaped single crystals suitable for X-ray investigation appeared at the boundary between the ethanol solution and the water layer with a yield of 23% (12.1 mg). Decomposition temperature: near 573K. FT-IR (KBr, cm-1): 636, 748, 777, 1183, 1281, 1394, 1450, 1562, 1604, 1674.

Refinement top

Carbon H atoms were placed geometrically (C—H = 0.93 Å) and treated as riding with Uiso(H) = 1.2Ueq(C). Water H atoms were located in calculated positions and treated in the subsequent refinement as riding atoms, with O-H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Structure description top

In the past decades, much attention has been paid to the design and synthesis of self-assembling metal complex systems with organic ligands containing O donors due to their fascinating structural diversity (Lin et al., 2010) and potential applications in the areas of catalysis (Bischof et al., 2010), magnetism (Ghoshal et al., 2007), gas adsorption (Li & Zhou, 2009), and luminescence (Chen et al., 2008). Coumarin-3-carboxylic acid is such a ligand and complexes containing it have been reported (Georgieva et al., 2007). Herein, we report the synthesis and crystal structure of a new mononuclear cadmium complex coordinated by coumarin-3-carboxylic acid.

The molecule of the title mononuclear cadmium(II) complex, [Cd(C10H5O4)2(H2O)2], occupies a special position with the metal center being located on a crystallographic inversion center. Each CdII atom exhibits a slightly distorted octahedral geometry and is six-coordinated by two O atoms from water molecules in the axial positions and four O atoms from two deprotonated coumarin-3-carboxylic acid ligands in the equatorial plane. Angles around the CdII atom vary between 81.02 (6)° and 98.98 (8)°. The Cd—O bond distances between the CdII atom and the O atoms vary between 2.196 (2) and 2.336 (2) Å, all of which are comparable to those reported for other cadmium-oxygen donor complexes (e.g., Li et al., 2009). The (C1C2C3C4C5C6) ring and the (C6C5C7C8C9O1) ring are almost coplanar, and the dihedral angles is 1.673 (5)°. The dihedral angle between The C8C9C10O2 plane and the O2O3Cd1 plane is 28.541 (7)°. O-H···O hydrogen bonds between the hydrogen atoms of coordinated water molecules and the O atoms of carboxyl groups joins the complexes into two-dimensional layers parallel the ab plane (Table 1, Fig. 2).

For background to topological networks, see: Lin et al. (2010). For applications of self-assembling systems with organic ligands containing O donors, see: Bischof et al. (2010); Chen et al. (2008); Ghoshal et al. (2007); Li & Zhou (2009). For related structures, see: Georgieva et al. (2007); Li et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level for non-hydrogen atoms, hydrogen atoms are shown as small circles of arbitrary radius. [Symmetry code: i = -x + 2, -y + 1, -z].
[Figure 2] Fig. 2. Partial packing view of title compound, showing the formation of network built from hydrogen bonds.
Diaquabis(2-oxo-2H-chromene-3-carboxylato- κ2O2,O3)cadmium top
Crystal data top
[Cd(C10H5O4)2(H2O)2]Z = 1
Mr = 526.72F(000) = 262
Triclinic, P1Dx = 1.967 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6736 (13) ÅCell parameters from 2723 reflections
b = 6.8838 (14) Åθ = 3.2–28.3°
c = 10.477 (2) ŵ = 1.29 mm1
α = 93.37 (3)°T = 110 K
β = 91.46 (3)°Block, colorless
γ = 112.07 (3)°0.20 × 0.15 × 0.15 mm
V = 444.68 (15) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2040 independent reflections
Radiation source: fine-focus sealed tube2033 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.009
φ and ω scansθmax = 28.3°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 88
Tmin = 0.793, Tmax = 0.824k = 88
2812 measured reflectionsl = 136
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0217P)2 + 0.3208P]
where P = (Fo2 + 2Fc2)/3
2040 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Cd(C10H5O4)2(H2O)2]γ = 112.07 (3)°
Mr = 526.72V = 444.68 (15) Å3
Triclinic, P1Z = 1
a = 6.6736 (13) ÅMo Kα radiation
b = 6.8838 (14) ŵ = 1.29 mm1
c = 10.477 (2) ÅT = 110 K
α = 93.37 (3)°0.20 × 0.15 × 0.15 mm
β = 91.46 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2040 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2033 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.824Rint = 0.009
2812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.045H-atom parameters constrained
S = 1.12Δρmax = 0.42 e Å3
2040 reflectionsΔρmin = 0.44 e Å3
142 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd11.00000.50000.00000.01268 (6)
O10.79598 (18)0.30467 (18)0.37932 (11)0.0144 (2)
O1W1.00099 (19)0.79679 (19)0.10974 (11)0.0163 (2)
H1WA0.87580.79210.08750.024*
H1WB1.12560.88370.09390.024*
O20.93465 (18)0.33456 (19)0.19160 (11)0.0165 (2)
O30.64486 (18)0.35849 (19)0.01845 (11)0.0161 (2)
O40.31702 (18)0.12595 (19)0.01275 (11)0.0164 (2)
C10.6758 (3)0.2758 (3)0.59042 (16)0.0170 (3)
H1A0.81800.29750.62180.020*
C20.5088 (3)0.2453 (3)0.67327 (16)0.0186 (3)
H2A0.53710.24620.76270.022*
C30.2996 (3)0.2132 (3)0.62646 (16)0.0192 (3)
H3A0.18690.19170.68410.023*
C40.2562 (3)0.2127 (3)0.49686 (16)0.0162 (3)
H4A0.11440.19260.46570.019*
C50.4221 (3)0.2421 (2)0.41095 (15)0.0137 (3)
C60.6282 (3)0.2734 (2)0.46024 (15)0.0138 (3)
C70.3889 (3)0.2351 (2)0.27516 (15)0.0131 (3)
H7A0.24870.21230.23980.016*
C80.5526 (3)0.2604 (2)0.19545 (15)0.0123 (3)
C90.7689 (3)0.3026 (2)0.24937 (15)0.0127 (3)
C100.5040 (3)0.2474 (2)0.05228 (15)0.0127 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.00892 (8)0.01495 (9)0.01174 (9)0.00156 (6)0.00160 (5)0.00172 (5)
O10.0121 (5)0.0186 (6)0.0118 (5)0.0048 (4)0.0005 (4)0.0029 (4)
O1W0.0119 (5)0.0180 (6)0.0174 (6)0.0038 (4)0.0014 (4)0.0014 (4)
O20.0116 (5)0.0228 (6)0.0155 (6)0.0062 (5)0.0023 (4)0.0057 (4)
O30.0111 (5)0.0209 (6)0.0138 (5)0.0027 (5)0.0006 (4)0.0037 (4)
O40.0109 (5)0.0179 (6)0.0164 (5)0.0010 (4)0.0018 (4)0.0020 (4)
C10.0190 (8)0.0147 (7)0.0158 (8)0.0048 (6)0.0011 (6)0.0018 (6)
C20.0285 (9)0.0148 (7)0.0119 (7)0.0072 (7)0.0018 (6)0.0015 (6)
C30.0242 (9)0.0162 (8)0.0168 (8)0.0068 (7)0.0083 (6)0.0019 (6)
C40.0158 (7)0.0147 (7)0.0176 (8)0.0048 (6)0.0036 (6)0.0021 (6)
C50.0155 (7)0.0107 (7)0.0140 (7)0.0037 (6)0.0016 (6)0.0012 (5)
C60.0155 (7)0.0108 (7)0.0143 (7)0.0037 (6)0.0036 (6)0.0018 (5)
C70.0116 (7)0.0126 (7)0.0147 (7)0.0041 (6)0.0005 (6)0.0020 (5)
C80.0119 (7)0.0117 (7)0.0129 (7)0.0037 (6)0.0005 (5)0.0018 (5)
C90.0132 (7)0.0118 (7)0.0124 (7)0.0037 (6)0.0005 (5)0.0020 (5)
C100.0114 (7)0.0138 (7)0.0133 (7)0.0055 (6)0.0002 (5)0.0006 (5)
Geometric parameters (Å, º) top
Cd1—O3i2.1961 (13)C1—C21.391 (2)
Cd1—O32.1961 (13)C1—H1A0.9500
Cd1—O1W2.2824 (13)C2—C31.400 (3)
Cd1—O1Wi2.2824 (13)C2—H2A0.9500
Cd1—O2i2.3360 (13)C3—C41.381 (2)
Cd1—O22.3360 (13)C3—H3A0.9500
O1—C91.3673 (19)C4—C51.407 (2)
O1—C61.3810 (19)C4—H4A0.9500
O1W—H1WA0.8500C5—C61.390 (2)
O1W—H1WB0.8500C5—C71.430 (2)
O2—C91.227 (2)C7—C81.357 (2)
O3—C101.257 (2)C7—H7A0.9500
O4—C101.256 (2)C8—C91.453 (2)
C1—C61.390 (2)C8—C101.517 (2)
O3i—Cd1—O3180.0C3—C2—H2A119.6
O3i—Cd1—O1W87.17 (5)C4—C3—C2120.30 (16)
O3—Cd1—O1W92.83 (5)C4—C3—H3A119.8
O3i—Cd1—O1Wi92.83 (5)C2—C3—H3A119.8
O3—Cd1—O1Wi87.17 (5)C3—C4—C5120.02 (16)
O1W—Cd1—O1Wi180.00 (5)C3—C4—H4A120.0
O3i—Cd1—O2i81.00 (5)C5—C4—H4A120.0
O3—Cd1—O2i99.00 (5)C6—C5—C4118.38 (15)
O1W—Cd1—O2i91.77 (5)C6—C5—C7118.06 (14)
O1Wi—Cd1—O2i88.23 (5)C4—C5—C7123.54 (15)
O3i—Cd1—O299.00 (5)O1—C6—C5120.21 (14)
O3—Cd1—O281.00 (5)O1—C6—C1117.23 (15)
O1W—Cd1—O288.23 (5)C5—C6—C1122.57 (15)
O1Wi—Cd1—O291.77 (5)C8—C7—C5121.68 (15)
O2i—Cd1—O2180.00 (3)C8—C7—H7A119.2
C9—O1—C6122.72 (13)C5—C7—H7A119.2
Cd1—O1W—H1WA100.6C7—C8—C9119.32 (14)
Cd1—O1W—H1WB100.5C7—C8—C10118.64 (14)
H1WA—O1W—H1WB130.4C9—C8—C10122.04 (14)
C9—O2—Cd1123.19 (11)O2—C9—O1114.46 (14)
C10—O3—Cd1132.88 (11)O2—C9—C8127.61 (15)
C6—C1—C2117.96 (16)O1—C9—C8117.92 (14)
C6—C1—H1A121.0O4—C10—O3124.02 (15)
C2—C1—H1A121.0O4—C10—C8115.83 (14)
C1—C2—C3120.77 (15)O3—C10—C8120.11 (14)
C1—C2—H2A119.6
O3i—Cd1—O2—C9151.16 (12)C2—C1—C6—C50.0 (2)
O3—Cd1—O2—C928.84 (12)C6—C5—C7—C80.7 (2)
O1W—Cd1—O2—C964.31 (13)C4—C5—C7—C8178.75 (15)
O1Wi—Cd1—O2—C9115.69 (13)C5—C7—C8—C92.1 (2)
O1W—Cd1—O3—C1087.46 (15)C5—C7—C8—C10178.98 (14)
O1Wi—Cd1—O3—C1092.54 (15)Cd1—O2—C9—O1149.14 (10)
O2i—Cd1—O3—C10179.70 (15)Cd1—O2—C9—C832.0 (2)
O2—Cd1—O3—C100.30 (15)C6—O1—C9—O2179.45 (13)
C6—C1—C2—C30.0 (2)C6—O1—C9—C81.5 (2)
C1—C2—C3—C40.4 (3)C7—C8—C9—O2177.95 (16)
C2—C3—C4—C50.7 (2)C10—C8—C9—O20.9 (3)
C3—C4—C5—C60.7 (2)C7—C8—C9—O13.2 (2)
C3—C4—C5—C7177.35 (15)C10—C8—C9—O1177.92 (13)
C9—O1—C6—C51.3 (2)Cd1—O3—C10—O4156.56 (12)
C9—O1—C6—C1178.95 (14)Cd1—O3—C10—C825.5 (2)
C4—C5—C6—O1179.43 (14)C7—C8—C10—O431.7 (2)
C7—C5—C6—O12.4 (2)C9—C8—C10—O4149.44 (15)
C4—C5—C6—C10.3 (2)C7—C8—C10—O3146.42 (16)
C7—C5—C6—C1177.83 (14)C9—C8—C10—O332.5 (2)
C2—C1—C6—O1179.78 (14)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4ii0.851.902.6877 (18)153
O1W—H1WB···O4iii0.851.942.721 (2)153
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd(C10H5O4)2(H2O)2]
Mr526.72
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)6.6736 (13), 6.8838 (14), 10.477 (2)
α, β, γ (°)93.37 (3), 91.46 (3), 112.07 (3)
V3)444.68 (15)
Z1
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.20 × 0.15 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.793, 0.824
No. of measured, independent and
observed [I > 2σ(I)] reflections
2812, 2040, 2033
Rint0.009
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.045, 1.12
No. of reflections2040
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.44

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.851.902.6877 (18)153
O1W—H1WB···O4ii0.851.942.721 (2)153
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21075114), the Science and Technology Development Project of Beijing Education Committee and the Special Environmental Protection Fund for Public Welfare project (201009015).

References

First citationBischof, S. M., Ess, D. H., Meier, S. K., Oxgaard, J., Nielsen, R. J., Bhalla, G., Goddard, W. A. & Periana, R. A. (2010). Organometallics, 29, 742–756.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L. F., Li, Z. J., Qin, Y. Y., Cheng, J. K. & Yao, Y. G. (2008). J. Mol. Struct. 892, 278–282.  CSD CrossRef CAS Google Scholar
First citationGeorgieva, I., Trendafilova, N., Aquino, A. J. A. & Lischka, H. (2007). Inorg. Chem. 46, 10926–10936.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGhoshal, D., Ghosh, A. K., Mostafa, G., Ribas, J. & Chaudhuri, N. R. (2007). Inorg. Chim. Acta, 360, 1771–1775.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, N., Gou, L., Hu, H. M., Chen, S. H., Chen, X. L., Wang, B. W., Wu, Q. R., Yang, M. L. & Xue, G. L. (2009). Inorg. Chim. Acta, 362, 3475–3483.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, J. R. & Zhou, H. C. (2009). Angew. Chem. Int. Ed. 48, 1–5.  Google Scholar
First citationLin, J. D., Long, X. F., Lin, P. & Du, S. W. (2010). Cryst. Growth Des. 10, 146–157.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds