organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Etoricoxibium picrate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dRL Fine Chem., Bangalore 560 064, India, Department of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 4 December 2010; accepted 5 December 2010; online 11 December 2010)

In the cation of the title salt (systematic name: 5-{5-chloro-3-[4-(methyl­sulfon­yl)phen­yl]-2-pyrid­yl}-2-methyl­pyridinium 2,4,6-trinitro­phenolate), C18H16ClN2O2S+·C6H2N3O7, the mean planes of the two pyridine rings in the bipyridine unit are twisted by 33.9 (2)° with respect to each other. The dihedral angles between the mean planes of the sulfonyl­benzene ring and the chloro­pyridine and methyl­pyridine rings are 51.2 (0) and 49.3 (9)°, respectively. The picrate anion inter­acts with the protonated N atom through a bifurcated N—H⋯(O,O) hydrogen bond, forming an R12(6) ring motif with the N atom from the methyl­pyridine group of an adjacent cation. N—H⋯O hydrogen bonds, weak C—H⋯O and ππ stacking inter­actions [centroid–centroid distances = 3.8192 (9)and 3.6749 (9)] occur in the crystal packing, creating a two-dimensional network structure along [110].

Related literature

For the selective COX-2 inhibitor etoricoxib, see: Patrignani et al. (2003[Patrignani, P., Capone, M. L. & Tacconelli, S. (2003). Expert Opin. Pharmacother. 4 265-284.]). For background to coxibs, traditional non-steroidal anti-inflammatory drugs, see: Rimon et al. (2010[Rimon, G., Sidhu, R. S., Lauver, D. A., Lee, J. Y., Sharma, N. P., Yuan, C., Frieler, R. A., Trievel, R. C., Lucchesi, B. R. & Smith, W. L. (2010). PNAS, 107, 28-33.]); Shriner et al. (1980)[Shriner, R. L., Fuson, R. C., Curtin, D. Y. & Morrill, T. C. (1980). Qualitative Identification of Organic Compounds, 6th ed., pp. 236-237. New York: Wiley.]; Patrignani et al. (2003[Patrignani, P., Capone, M. L. & Tacconelli, S. (2003). Expert Opin. Pharmacother. 4 265-284.]). For related structures, see: Malathy Sony et al. (2005[Malathy Sony, S. M., Charles, P., Ponnuswamy, M. N. & Yathirajan, H. S. (2005). Acta Cryst. E61, o108-o110.]); Vasu Dev et al. (1999[Vasu Dev, R., Shashi Rekha, K., Vyas, K., Mohanti, S. B., Rajender Kumar, P. & Om Reddy, G. (1999). Acta Cryst. C55, IUC9900161.]); Yathirajan et al. (2005[Yathirajan, H. S., Narasegowda, R. S., Nagaraja, P. & Bolte, M. (2005). Acta Cryst. E61, o179-o181.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16ClN2O2S+·C6H2N3O7

  • Mr = 587.94

  • Monoclinic, P 21 /c

  • a = 9.0250 (1) Å

  • b = 12.7496 (1) Å

  • c = 21.8011 (3) Å

  • β = 98.114 (1)°

  • V = 2483.43 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.74 mm−1

  • T = 123 K

  • 0.48 × 0.42 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.607, Tmax = 1.000

  • 9467 measured reflections

  • 4932 independent reflections

  • 4454 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.03

  • 4932 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2AB⋯O1B 0.88 1.79 2.6588 (18) 172
N2A—H2AB⋯O7B 0.88 2.46 2.8898 (19) 111
C2A—H2AA⋯O1Ai 0.95 2.56 3.455 (2) 156
C9A—H9AA⋯O1B 0.98 2.60 3.357 (2) 134
C13A—H13A⋯O2Aii 0.95 2.35 3.294 (2) 173
C18A—H18C⋯O2Biii 0.98 2.38 3.249 (2) 147
C5A—H5AA⋯O6Biv 0.95 2.45 3.329 (2) 153
C7A—H7AA⋯O4Bv 0.95 2.52 3.326 (2) 143
Symmetry codes: (i) x, y-1, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) x-1, y, z; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coxibs are the traditional non-steroidal anti-inflammatory drugs that counter the positive effects of aspirin in preventing blood clots. The research, published in the Proceedings of the National Academy of Sciences (Rimon et al., 2010)), indicates that people who are taking aspirin and coxibs together are in fact inhibiting the aspirin's effectiveness in preventing heart attacks and strokes. Some of the important class of coxib drugs are valdecoxib, celecoxib, rofecoxib, lumiracoxib, etoricoxib etc. Etoricoxib (brand name Arcoxia worldwide; also Algix and Tauxib in Italy) is a novel selective COX-2 inhibitor (Patrignani et al., 2003). Like any other COX-2 selective inhibitor, etoricoxib selectively inhibits isoform 2 of the enzyme cyclo-oxigenase (COX-2). The crystal structure of valdecoxib, a non-steroidal anti-inflammatory drug (Malathy Sony et al., 2005), a pseudopolymorph of valdecoxib (Yathirajan et al., 2005) and celecoxib, a COX-II inhibitor (Vasu Dev et al., 1999) have been reported. In the view of the importance of etoricoxib, this paper presents the crystal structure of the title compound, etoricoxib picrate.

In the crystal structure of the title compound, C18H16ClN2O2S+. C6H2N3O7-, there is one cation-anion pair in the asymmetric unit (Fig. 1). In the cation, the mean planes of the two pyridine rings in the bipyridine moiety are twisted by 33.9 (2)° against each other. The dihedral angle between the mean planes of the sulfonylbenzene ring and the chloropyridine and methylpyridine rings are 51.2 (0)° and 49.3 (9)°, respectively. The picrate anion interacts with the protonated N atom through a bifurcated N—H···O hydrogen bond forming a R12(6) ring motif with the N atom from the methylpyridine group of an adjacent cation.

The dihedral angles between the mean planes of the anion benzene ring and three chloropyridine, methylpyridine and sulfonylbenzene rings of the cation are 53.9 (1)°, 49.3 (9)° and 3.8 (8)°, respectively. The mean planes of the two o-NO2 and single p-NO2 groups in the picrate anion are twisted by 3.0 (5)°, 30.4 (7)° and 6.5 (9)° with respect to the mean plane of the 6-membered benzene ring. Bond distances and angles are in normal ranges (Allen et al., 1987). N—H···O hydrogen bonds, weak C—H···O (Table 1) and ππ stacking interactions (Table 2) dominate the crystal packing creating an infinite 2-D network structure along the 110 (Fig. 2).

Related literature top

For the selective COX-2 inhibitor Etoricoxib, see: Patrignani et al. (2003). For background to coxibs, traditional non-steroidal anti-inflammatory drugs, see: Rimon et al. (2010); Shriner et al. (1980); Patrignani et al. (2003). For related structures, see: Malathy Sony et al. (2005); Vasu Dev et al. (1999); Yathirajan et al. (2005). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Etoricoxib (3.59 g, 0.01 mmol) and picric acid (2.29 g, 0.01 mmol) in the ratio 1:1 were mixed together in a hot methanol solution. The mixture was warmed to 330 K for few minutes. The resultant precipitate was dried and recrystallized using DMSO. Crystals of the title compound were obtained by the slow evaporation of DMSO solution at room temperature after a few days. (m.p.: 463 – 465 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.98Å (CH3) or 0.88Å (NH). Isotropic displacement parameters for these atoms were set to 1.18 times (NH), 1.18–1.22 (CH) or 1.50–1.51 (CH3) times Ueq of the parent atom.

Structure description top

Coxibs are the traditional non-steroidal anti-inflammatory drugs that counter the positive effects of aspirin in preventing blood clots. The research, published in the Proceedings of the National Academy of Sciences (Rimon et al., 2010)), indicates that people who are taking aspirin and coxibs together are in fact inhibiting the aspirin's effectiveness in preventing heart attacks and strokes. Some of the important class of coxib drugs are valdecoxib, celecoxib, rofecoxib, lumiracoxib, etoricoxib etc. Etoricoxib (brand name Arcoxia worldwide; also Algix and Tauxib in Italy) is a novel selective COX-2 inhibitor (Patrignani et al., 2003). Like any other COX-2 selective inhibitor, etoricoxib selectively inhibits isoform 2 of the enzyme cyclo-oxigenase (COX-2). The crystal structure of valdecoxib, a non-steroidal anti-inflammatory drug (Malathy Sony et al., 2005), a pseudopolymorph of valdecoxib (Yathirajan et al., 2005) and celecoxib, a COX-II inhibitor (Vasu Dev et al., 1999) have been reported. In the view of the importance of etoricoxib, this paper presents the crystal structure of the title compound, etoricoxib picrate.

In the crystal structure of the title compound, C18H16ClN2O2S+. C6H2N3O7-, there is one cation-anion pair in the asymmetric unit (Fig. 1). In the cation, the mean planes of the two pyridine rings in the bipyridine moiety are twisted by 33.9 (2)° against each other. The dihedral angle between the mean planes of the sulfonylbenzene ring and the chloropyridine and methylpyridine rings are 51.2 (0)° and 49.3 (9)°, respectively. The picrate anion interacts with the protonated N atom through a bifurcated N—H···O hydrogen bond forming a R12(6) ring motif with the N atom from the methylpyridine group of an adjacent cation.

The dihedral angles between the mean planes of the anion benzene ring and three chloropyridine, methylpyridine and sulfonylbenzene rings of the cation are 53.9 (1)°, 49.3 (9)° and 3.8 (8)°, respectively. The mean planes of the two o-NO2 and single p-NO2 groups in the picrate anion are twisted by 3.0 (5)°, 30.4 (7)° and 6.5 (9)° with respect to the mean plane of the 6-membered benzene ring. Bond distances and angles are in normal ranges (Allen et al., 1987). N—H···O hydrogen bonds, weak C—H···O (Table 1) and ππ stacking interactions (Table 2) dominate the crystal packing creating an infinite 2-D network structure along the 110 (Fig. 2).

For the selective COX-2 inhibitor Etoricoxib, see: Patrignani et al. (2003). For background to coxibs, traditional non-steroidal anti-inflammatory drugs, see: Rimon et al. (2010); Shriner et al. (1980); Patrignani et al. (2003). For related structures, see: Malathy Sony et al. (2005); Vasu Dev et al. (1999); Yathirajan et al. (2005). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate N—H···O hydrogen bonds between the cation and anion and a R12(6) ring motif.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the c axis. Dashed lines indicate N—H···O hydrogen bonds and weak C—H···O intermolecular interactions creating a 2-D network along the 110.
5-{5-Chloro-3-[4-(methylsulfonyl)phenyl]-2-pyridyl}-2-methylpyridinium 2,4,6-trinitrophenolate top
Crystal data top
C18H16ClN2O2S+·C6H2N3O7F(000) = 1208
Mr = 587.94Dx = 1.573 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 6755 reflections
a = 9.0250 (1) Åθ = 5.0–74.0°
b = 12.7496 (1) ŵ = 2.74 mm1
c = 21.8011 (3) ÅT = 123 K
β = 98.114 (1)°Prism, pale yellow
V = 2483.43 (5) Å30.48 × 0.42 × 0.24 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
4932 independent reflections
Radiation source: Enhance (Cu) X-ray Source4454 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.5081 pixels mm-1θmax = 74.2°, θmin = 5.0°
ω scansh = 119
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1515
Tmin = 0.607, Tmax = 1.000l = 2618
9467 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0651P)2 + 1.3666P]
where P = (Fo2 + 2Fc2)/3
4932 reflections(Δ/σ)max = 0.001
363 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C18H16ClN2O2S+·C6H2N3O7V = 2483.43 (5) Å3
Mr = 587.94Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.0250 (1) ŵ = 2.74 mm1
b = 12.7496 (1) ÅT = 123 K
c = 21.8011 (3) Å0.48 × 0.42 × 0.24 mm
β = 98.114 (1)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
4932 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
4454 reflections with I > 2σ(I)
Tmin = 0.607, Tmax = 1.000Rint = 0.021
9467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.03Δρmax = 0.44 e Å3
4932 reflectionsΔρmin = 0.38 e Å3
363 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.27058 (5)0.16223 (3)0.30221 (2)0.02597 (12)
S0.06564 (4)0.53861 (3)0.361812 (19)0.01753 (11)
O1A0.02079 (16)0.59365 (10)0.41361 (7)0.0288 (3)
O2A0.00758 (15)0.57350 (10)0.30009 (6)0.0287 (3)
N1A0.06432 (15)0.08812 (11)0.43234 (6)0.0165 (3)
N2A0.42035 (14)0.18006 (10)0.47118 (6)0.0144 (3)
H2AB0.46970.22970.45470.017*
C1A0.13587 (17)0.09020 (13)0.34908 (8)0.0169 (3)
C2A0.04308 (18)0.14008 (13)0.39641 (8)0.0188 (3)
H2AA0.05640.21280.40340.023*
C3A0.08116 (17)0.01546 (12)0.42314 (7)0.0137 (3)
C4A0.01720 (17)0.07282 (13)0.37997 (7)0.0141 (3)
C5A0.12491 (17)0.01675 (13)0.34070 (7)0.0160 (3)
H5AA0.18930.05150.30890.019*
C6A0.21601 (17)0.06182 (12)0.46066 (7)0.0137 (3)
C7A0.29848 (17)0.13998 (12)0.43700 (7)0.0144 (3)
H7AA0.26830.16540.39620.017*
C8A0.47188 (17)0.14885 (13)0.52934 (7)0.0150 (3)
C9A0.60555 (19)0.20386 (14)0.56235 (9)0.0224 (4)
H9AA0.61640.27220.54290.034*
H9AB0.69520.16150.56000.034*
H9AC0.59300.21400.60590.034*
C10A0.39764 (18)0.06695 (13)0.55375 (8)0.0164 (3)
H10A0.43350.04050.59380.020*
C11A0.27134 (18)0.02370 (13)0.51971 (8)0.0156 (3)
H11A0.22140.03270.53660.019*
C12A0.01200 (16)0.18932 (13)0.37508 (7)0.0142 (3)
C13A0.00357 (18)0.23552 (13)0.31785 (8)0.0161 (3)
H13A0.00980.19340.28160.019*
C14A0.01398 (18)0.34369 (13)0.31387 (7)0.0160 (3)
H14A0.02060.37590.27510.019*
C15A0.02176 (17)0.40413 (12)0.36752 (8)0.0146 (3)
C16A0.00510 (18)0.36004 (13)0.42436 (7)0.0156 (3)
H16A0.00630.40280.46010.019*
C17A0.01336 (18)0.25191 (13)0.42787 (7)0.0159 (3)
H17A0.02690.22040.46620.019*
C18A0.2626 (2)0.53815 (15)0.36775 (9)0.0259 (4)
H18A0.29830.60960.36210.039*
H18B0.29330.49230.33570.039*
H18C0.30560.51230.40880.039*
O1B0.56283 (15)0.34250 (10)0.43011 (6)0.0259 (3)
O2B0.72286 (18)0.50574 (12)0.48473 (6)0.0361 (4)
O3B0.6532 (2)0.64555 (11)0.43287 (7)0.0396 (4)
O4B0.71450 (14)0.62738 (10)0.21604 (6)0.0235 (3)
O5B0.69640 (18)0.47710 (12)0.16915 (6)0.0342 (3)
O6B0.60280 (16)0.16893 (10)0.27056 (6)0.0274 (3)
O7B0.58882 (16)0.16083 (10)0.36843 (6)0.0282 (3)
N1B0.67468 (17)0.55080 (12)0.43669 (7)0.0214 (3)
N2B0.69422 (16)0.53193 (12)0.21568 (7)0.0198 (3)
N3B0.59954 (15)0.21143 (11)0.32115 (7)0.0192 (3)
C1B0.60694 (17)0.37936 (13)0.38317 (8)0.0162 (3)
C2B0.65095 (17)0.48942 (13)0.37955 (8)0.0161 (3)
C3B0.67357 (17)0.53950 (13)0.32650 (8)0.0163 (3)
H3BA0.69390.61260.32660.020*
C4B0.66631 (17)0.48133 (13)0.27202 (8)0.0166 (3)
C5B0.64153 (17)0.37444 (13)0.27156 (8)0.0166 (3)
H5BA0.64240.33540.23450.020*
C6B0.61546 (17)0.32465 (13)0.32535 (8)0.0155 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0243 (2)0.0218 (2)0.0298 (2)0.00915 (16)0.00314 (16)0.00647 (16)
S0.0176 (2)0.01094 (19)0.0234 (2)0.00117 (14)0.00049 (15)0.00361 (14)
O1A0.0364 (7)0.0128 (6)0.0385 (8)0.0020 (5)0.0102 (6)0.0017 (5)
O2A0.0292 (7)0.0219 (6)0.0323 (7)0.0034 (5)0.0053 (5)0.0135 (6)
N1A0.0132 (6)0.0127 (6)0.0238 (7)0.0000 (5)0.0027 (5)0.0008 (5)
N2A0.0123 (6)0.0124 (6)0.0188 (7)0.0019 (5)0.0033 (5)0.0007 (5)
C1A0.0130 (7)0.0158 (8)0.0221 (8)0.0039 (6)0.0030 (6)0.0064 (6)
C2A0.0162 (8)0.0114 (7)0.0291 (9)0.0011 (6)0.0038 (7)0.0018 (6)
C3A0.0117 (7)0.0131 (7)0.0168 (7)0.0001 (6)0.0039 (6)0.0007 (6)
C4A0.0125 (7)0.0129 (7)0.0175 (7)0.0003 (6)0.0045 (6)0.0012 (6)
C5A0.0145 (7)0.0163 (8)0.0172 (8)0.0005 (6)0.0018 (6)0.0007 (6)
C6A0.0105 (7)0.0123 (7)0.0185 (8)0.0018 (6)0.0030 (6)0.0020 (6)
C7A0.0130 (7)0.0150 (7)0.0153 (7)0.0005 (6)0.0027 (6)0.0004 (6)
C8A0.0117 (7)0.0152 (7)0.0180 (7)0.0033 (6)0.0017 (6)0.0024 (6)
C9A0.0161 (8)0.0206 (8)0.0288 (9)0.0015 (7)0.0033 (7)0.0007 (7)
C10A0.0148 (7)0.0176 (8)0.0167 (7)0.0023 (6)0.0019 (6)0.0025 (6)
C11A0.0142 (7)0.0136 (7)0.0197 (8)0.0003 (6)0.0046 (6)0.0010 (6)
C12A0.0095 (7)0.0129 (7)0.0197 (8)0.0009 (6)0.0001 (6)0.0001 (6)
C13A0.0150 (7)0.0163 (8)0.0166 (8)0.0020 (6)0.0009 (6)0.0022 (6)
C14A0.0152 (7)0.0176 (8)0.0152 (7)0.0012 (6)0.0014 (6)0.0028 (6)
C15A0.0107 (7)0.0105 (7)0.0220 (8)0.0005 (5)0.0003 (6)0.0018 (6)
C16A0.0167 (7)0.0133 (7)0.0166 (7)0.0015 (6)0.0019 (6)0.0017 (6)
C17A0.0158 (7)0.0158 (8)0.0160 (8)0.0011 (6)0.0023 (6)0.0016 (6)
C18A0.0179 (8)0.0285 (10)0.0304 (10)0.0082 (7)0.0004 (7)0.0005 (8)
O1B0.0329 (7)0.0235 (6)0.0228 (6)0.0118 (5)0.0096 (5)0.0004 (5)
O2B0.0533 (9)0.0336 (8)0.0193 (7)0.0108 (7)0.0028 (6)0.0006 (6)
O3B0.0597 (10)0.0230 (7)0.0363 (8)0.0120 (7)0.0073 (7)0.0082 (6)
O4B0.0237 (6)0.0217 (6)0.0238 (6)0.0061 (5)0.0010 (5)0.0080 (5)
O5B0.0535 (9)0.0311 (8)0.0200 (7)0.0065 (7)0.0119 (6)0.0009 (6)
O6B0.0330 (7)0.0204 (6)0.0288 (7)0.0022 (5)0.0043 (6)0.0056 (5)
O7B0.0353 (7)0.0176 (6)0.0341 (7)0.0001 (5)0.0136 (6)0.0070 (5)
N1B0.0216 (7)0.0219 (7)0.0213 (8)0.0024 (6)0.0052 (6)0.0023 (6)
N2B0.0166 (7)0.0219 (7)0.0203 (7)0.0028 (6)0.0004 (5)0.0040 (6)
N3B0.0140 (6)0.0153 (7)0.0282 (8)0.0015 (5)0.0029 (6)0.0006 (6)
C1B0.0102 (7)0.0176 (8)0.0204 (8)0.0020 (6)0.0009 (6)0.0033 (6)
C2B0.0115 (7)0.0171 (8)0.0193 (8)0.0008 (6)0.0004 (6)0.0018 (6)
C3B0.0112 (7)0.0146 (8)0.0223 (8)0.0001 (6)0.0001 (6)0.0023 (6)
C4B0.0123 (7)0.0190 (8)0.0181 (8)0.0019 (6)0.0011 (6)0.0035 (6)
C5B0.0117 (7)0.0190 (8)0.0186 (8)0.0007 (6)0.0002 (6)0.0011 (6)
C6B0.0108 (7)0.0134 (7)0.0219 (8)0.0020 (6)0.0005 (6)0.0014 (6)
Geometric parameters (Å, º) top
Cl—C1A1.7363 (16)C12A—C17A1.402 (2)
S—O1A1.4355 (14)C13A—C14A1.392 (2)
S—O2A1.4436 (13)C13A—H13A0.9500
S—C18A1.7640 (19)C14A—C15A1.394 (2)
S—C15A1.7679 (16)C14A—H14A0.9500
N1A—C2A1.333 (2)C15A—C16A1.388 (2)
N1A—C3A1.347 (2)C16A—C17A1.392 (2)
N2A—C7A1.340 (2)C16A—H16A0.9500
N2A—C8A1.348 (2)C17A—H17A0.9500
N2A—H2AB0.8800C18A—H18A0.9800
C1A—C5A1.381 (2)C18A—H18B0.9800
C1A—C2A1.388 (2)C18A—H18C0.9800
C2A—H2AA0.9500O1B—C1B1.242 (2)
C3A—C4A1.405 (2)O2B—N1B1.219 (2)
C3A—C6A1.489 (2)O3B—N1B1.224 (2)
C4A—C5A1.398 (2)O4B—N2B1.2305 (19)
C4A—C12A1.490 (2)O5B—N2B1.234 (2)
C5A—H5AA0.9500O6B—N3B1.233 (2)
C6A—C7A1.386 (2)O7B—N3B1.231 (2)
C6A—C11A1.400 (2)N1B—C2B1.461 (2)
C7A—H7AA0.9500N2B—C4B1.441 (2)
C8A—C10A1.387 (2)N3B—C6B1.452 (2)
C8A—C9A1.490 (2)C1B—C6B1.452 (2)
C9A—H9AA0.9800C1B—C2B1.464 (2)
C9A—H9AB0.9800C2B—C3B1.361 (2)
C9A—H9AC0.9800C3B—C4B1.394 (2)
C10A—C11A1.384 (2)C3B—H3BA0.9500
C10A—H10A0.9500C4B—C5B1.381 (2)
C11A—H11A0.9500C5B—C6B1.383 (2)
C12A—C13A1.392 (2)C5B—H5BA0.9500
O1A—S—O2A118.49 (9)C12A—C13A—C14A119.75 (15)
O1A—S—C18A109.69 (9)C12A—C13A—H13A120.1
O2A—S—C18A107.39 (9)C14A—C13A—H13A120.1
O1A—S—C15A109.14 (8)C13A—C14A—C15A119.21 (15)
O2A—S—C15A108.00 (8)C13A—C14A—H14A120.4
C18A—S—C15A103.01 (8)C15A—C14A—H14A120.4
C2A—N1A—C3A119.18 (14)C16A—C15A—C14A121.74 (15)
C7A—N2A—C8A123.92 (14)C16A—C15A—S120.60 (12)
C7A—N2A—H2AB118.0C14A—C15A—S117.54 (12)
C8A—N2A—H2AB118.0C15A—C16A—C17A118.62 (15)
C5A—C1A—C2A120.25 (15)C15A—C16A—H16A120.7
C5A—C1A—Cl120.11 (13)C17A—C16A—H16A120.7
C2A—C1A—Cl119.60 (13)C16A—C17A—C12A120.24 (15)
N1A—C2A—C1A121.42 (15)C16A—C17A—H17A119.9
N1A—C2A—H2AA119.3C12A—C17A—H17A119.9
C1A—C2A—H2AA119.3S—C18A—H18A109.5
N1A—C3A—C4A122.41 (14)S—C18A—H18B109.5
N1A—C3A—C6A114.07 (14)H18A—C18A—H18B109.5
C4A—C3A—C6A123.47 (14)S—C18A—H18C109.5
C5A—C4A—C3A117.60 (14)H18A—C18A—H18C109.5
C5A—C4A—C12A119.48 (14)H18B—C18A—H18C109.5
C3A—C4A—C12A122.92 (14)O2B—N1B—O3B123.86 (16)
C1A—C5A—C4A118.72 (15)O2B—N1B—C2B118.13 (15)
C1A—C5A—H5AA120.6O3B—N1B—C2B117.87 (15)
C4A—C5A—H5AA120.6O4B—N2B—O5B123.07 (15)
C7A—C6A—C11A116.81 (14)O4B—N2B—C4B118.76 (15)
C7A—C6A—C3A121.39 (14)O5B—N2B—C4B118.16 (14)
C11A—C6A—C3A121.65 (14)O7B—N3B—O6B122.22 (15)
N2A—C7A—C6A120.60 (14)O7B—N3B—C6B119.13 (14)
N2A—C7A—H7AA119.7O6B—N3B—C6B118.59 (14)
C6A—C7A—H7AA119.7O1B—C1B—C6B126.59 (15)
N2A—C8A—C10A117.52 (14)O1B—C1B—C2B121.90 (15)
N2A—C8A—C9A117.64 (15)C6B—C1B—C2B111.45 (14)
C10A—C8A—C9A124.83 (15)C3B—C2B—N1B116.85 (15)
C8A—C9A—H9AA109.5C3B—C2B—C1B124.75 (15)
C8A—C9A—H9AB109.5N1B—C2B—C1B118.40 (14)
H9AA—C9A—H9AB109.5C2B—C3B—C4B118.66 (15)
C8A—C9A—H9AC109.5C2B—C3B—H3BA120.7
H9AA—C9A—H9AC109.5C4B—C3B—H3BA120.7
H9AB—C9A—H9AC109.5C5B—C4B—C3B121.29 (15)
C11A—C10A—C8A120.01 (15)C5B—C4B—N2B118.90 (15)
C11A—C10A—H10A120.0C3B—C4B—N2B119.69 (15)
C8A—C10A—H10A120.0C4B—C5B—C6B119.59 (16)
C10A—C11A—C6A120.96 (15)C4B—C5B—H5BA120.2
C10A—C11A—H11A119.5C6B—C5B—H5BA120.2
C6A—C11A—H11A119.5C5B—C6B—N3B115.48 (15)
C13A—C12A—C17A120.20 (15)C5B—C6B—C1B123.50 (15)
C13A—C12A—C4A119.49 (14)N3B—C6B—C1B121.01 (14)
C17A—C12A—C4A120.30 (14)
C3A—N1A—C2A—C1A1.2 (2)C18A—S—C15A—C16A93.67 (14)
C5A—C1A—C2A—N1A4.2 (3)O1A—S—C15A—C14A161.04 (13)
Cl—C1A—C2A—N1A178.19 (12)O2A—S—C15A—C14A30.96 (15)
C2A—N1A—C3A—C4A4.7 (2)C18A—S—C15A—C14A82.46 (14)
C2A—N1A—C3A—C6A172.79 (14)C14A—C15A—C16A—C17A2.8 (2)
N1A—C3A—C4A—C5A7.5 (2)S—C15A—C16A—C17A173.15 (12)
C6A—C3A—C4A—C5A169.75 (14)C15A—C16A—C17A—C12A1.3 (2)
N1A—C3A—C4A—C12A171.79 (15)C13A—C12A—C17A—C16A4.9 (2)
C6A—C3A—C4A—C12A10.9 (2)C4A—C12A—C17A—C16A174.19 (14)
C2A—C1A—C5A—C4A1.2 (2)O2B—N1B—C2B—C3B146.94 (17)
Cl—C1A—C5A—C4A178.77 (12)O3B—N1B—C2B—C3B28.9 (2)
C3A—C4A—C5A—C1A4.4 (2)O2B—N1B—C2B—C1B32.3 (2)
C12A—C4A—C5A—C1A174.96 (14)O3B—N1B—C2B—C1B151.84 (16)
N1A—C3A—C6A—C7A143.34 (15)O1B—C1B—C2B—C3B167.28 (16)
C4A—C3A—C6A—C7A34.2 (2)C6B—C1B—C2B—C3B10.0 (2)
N1A—C3A—C6A—C11A32.2 (2)O1B—C1B—C2B—N1B13.6 (2)
C4A—C3A—C6A—C11A150.31 (15)C6B—C1B—C2B—N1B169.16 (14)
C8A—N2A—C7A—C6A0.2 (2)N1B—C2B—C3B—C4B173.89 (14)
C11A—C6A—C7A—N2A3.6 (2)C1B—C2B—C3B—C4B5.3 (2)
C3A—C6A—C7A—N2A179.32 (14)C2B—C3B—C4B—C5B2.1 (2)
C7A—N2A—C8A—C10A3.2 (2)C2B—C3B—C4B—N2B178.17 (14)
C7A—N2A—C8A—C9A177.65 (15)O4B—N2B—C4B—C5B179.15 (15)
N2A—C8A—C10A—C11A3.0 (2)O5B—N2B—C4B—C5B0.7 (2)
C9A—C8A—C10A—C11A177.88 (16)O4B—N2B—C4B—C3B4.6 (2)
C8A—C10A—C11A—C6A0.4 (2)O5B—N2B—C4B—C3B175.46 (15)
C7A—C6A—C11A—C10A3.6 (2)C3B—C4B—C5B—C6B3.5 (2)
C3A—C6A—C11A—C10A179.36 (14)N2B—C4B—C5B—C6B179.62 (14)
C5A—C4A—C12A—C13A53.2 (2)C4B—C5B—C6B—N3B176.48 (14)
C3A—C4A—C12A—C13A127.46 (17)C4B—C5B—C6B—C1B2.3 (2)
C5A—C4A—C12A—C17A127.70 (16)O7B—N3B—C6B—C5B173.90 (14)
C3A—C4A—C12A—C17A51.6 (2)O6B—N3B—C6B—C5B3.5 (2)
C17A—C12A—C13A—C14A4.4 (2)O7B—N3B—C6B—C1B4.9 (2)
C4A—C12A—C13A—C14A174.62 (14)O6B—N3B—C6B—C1B177.70 (14)
C12A—C13A—C14A—C15A0.5 (2)O1B—C1B—C6B—C5B168.74 (16)
C13A—C14A—C15A—C16A3.2 (2)C2B—C1B—C6B—C5B8.4 (2)
C13A—C14A—C15A—S172.85 (12)O1B—C1B—C6B—N3B12.5 (3)
O1A—S—C15A—C16A22.84 (15)C2B—C1B—C6B—N3B170.35 (13)
O2A—S—C15A—C16A152.91 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AB···O1B0.881.792.6588 (18)172
N2A—H2AB···O7B0.882.462.8898 (19)111
C2A—H2AA···O1Ai0.952.563.455 (2)156
C9A—H9AA···O1B0.982.603.357 (2)134
C13A—H13A···O2Aii0.952.353.294 (2)173
C18A—H18C···O2Biii0.982.383.249 (2)147
C5A—H5AA···O6Biv0.952.453.329 (2)153
C7A—H7AA···O4Bv0.952.523.326 (2)143
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H16ClN2O2S+·C6H2N3O7
Mr587.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)9.0250 (1), 12.7496 (1), 21.8011 (3)
β (°) 98.114 (1)
V3)2483.43 (5)
Z4
Radiation typeCu Kα
µ (mm1)2.74
Crystal size (mm)0.48 × 0.42 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.607, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9467, 4932, 4454
Rint0.021
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.03
No. of reflections4932
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.38

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AB···O1B0.881.792.6588 (18)171.6
N2A—H2AB···O7B0.882.462.8898 (19)110.9
C2A—H2AA···O1Ai0.952.563.455 (2)156.1
C9A—H9AA···O1B0.982.603.357 (2)134.4
C13A—H13A···O2Aii0.952.353.294 (2)172.8
C18A—H18C···O2Biii0.982.383.249 (2)146.9
C5A—H5AA···O6Biv0.952.453.329 (2)153.3
C7A—H7AA···O4Bv0.952.523.326 (2)142.7
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y1/2, z+1/2.
Cg···Cg π-stacking interactions, Cg2, Cg3 and Cg4 are the centroids of rings N2A/C7A/C6A/C11A/C10A/C8A, C12A—C17A and C1B—C6B [Symmetry codes: (i) 1-x, -y, 1-z; (ii) -1+x, y, z] top
CgI···CgJCg···Cg (Å)CgI Perp (Å)CgJ Perp (Å)Slippage (Å)
Cg2···Cg2i3.8192 (9)-3.4367 (6)-3.4367 (6)1.66 (6)
Cg3···Cg4ii3.6749 (9)3.5169 (7)-3.3977 (6)
 

Acknowledgements

HSY thanks the University of Mysore for sanctioning his sabbatical leave and MSS thanks the University of Mysore for access to their research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationMalathy Sony, S. M., Charles, P., Ponnuswamy, M. N. & Yathirajan, H. S. (2005). Acta Cryst. E61, o108–o110.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPatrignani, P., Capone, M. L. & Tacconelli, S. (2003). Expert Opin. Pharmacother. 4 265–284.  Web of Science PubMed CAS Google Scholar
First citationRimon, G., Sidhu, R. S., Lauver, D. A., Lee, J. Y., Sharma, N. P., Yuan, C., Frieler, R. A., Trievel, R. C., Lucchesi, B. R. & Smith, W. L. (2010). PNAS, 107, 28–33.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShriner, R. L., Fuson, R. C., Curtin, D. Y. & Morrill, T. C. (1980). Qualitative Identification of Organic Compounds, 6th ed., pp. 236–237. New York: Wiley.  Google Scholar
First citationVasu Dev, R., Shashi Rekha, K., Vyas, K., Mohanti, S. B., Rajender Kumar, P. & Om Reddy, G. (1999). Acta Cryst. C55, IUC9900161.  CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Narasegowda, R. S., Nagaraja, P. & Bolte, M. (2005). Acta Cryst. E61, o179–o181.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds