metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N-Benzyl-N-(di­phenyl­phosphanylmeth­yl)pyridin-2-amine]­chlorido­methyl­platinum(II)

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: wanchqing@yahoo.com.cn

(Received 18 November 2010; accepted 28 November 2010; online 4 December 2010)

In the mononuclear title complex, [Pt(CH3)Cl(C25H23N2P)], the N-benzyl-N-(diphenyl­phosphanylmeth­yl)pyridin-2-amine functions as a bidentate ligand with the pyridyl N atom and the phosphine P atom chelating the PtII ion, forming a six-membered metallocycle. The PtII atom adopts a square-planar coordination geometry with one methyl group and one chloride ligand bonding to the metal center in a cis relationship. C—H⋯π and C—H⋯Cl inter­actions help to consolidate the packing.

Related literature

For coordination complexes with hemilabile ligands with PN donor sets, see: Espinet & Soulantica (1999[Espinet, P. & Soulantica, K. (1999). Coord. Chem. Rev. 193-195, 499-566.]); Song et al. (2001[Song, H.-B., Zhang, Z.-Z. & Mak, T. C. W. (2001). Inorg. Chem. 40, 5928-5933.]); Wang et al. (2010[Wang, X. B., Feng, J. Z., Huang, J., Zhang, J. Y., Pan, M. & Su, C. Y. (2010). CrystEngComm, 12, 725-729.]). For coordination complexes with the N-benzyl-N-(diphenyl­phosphanylmeth­yl)pyridin-2-amine ligand, see: Li et al. (2003[Li, Q.-S., Xu, F.-B., Cui, D.-J., Yu, K., Zeng, X.-S., Leng, X.-B., Song, H.-B. & Zhang, Z.-Z. (2003). Dalton Trans. pp. 1551-1557.], 2006[Li, Q.-S., Zhao, Y.-J., Xu, F.-B., Song, H.-B. & Zhang, Z.-Z. (2006). Acta Cryst. E62, m2366-m2367.]). For hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]) and for C—H⋯π inter­actions, see: Umezawa et al. (1998[Umezawa, Y., Tsuboyama, S., Honda, K., Uzawa, J. & Nishio, M. (1998). Bull. Chem. Soc. Jpn, 71, 1202-1213.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(CH3)Cl(C25H23N2P)]

  • Mr = 628.00

  • Triclinic, [P \overline 1]

  • a = 9.538 (3) Å

  • b = 10.770 (3) Å

  • c = 13.125 (4) Å

  • α = 98.367 (4)°

  • β = 106.256 (4)°

  • γ = 107.266 (5)°

  • V = 1197.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.06 mm−1

  • T = 293 K

  • 0.33 × 0.24 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.675, Tmax = 1.000

  • 6265 measured reflections

  • 4201 independent reflections

  • 3270 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.123

  • S = 1.01

  • 4201 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 2.18 e Å−3

  • Δρmin = −2.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C15–C20 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯Cg1i 0.93 3.10 4.001 (2) 154
C7—H7B⋯Cl1ii 0.97 2.72 3.392 (2) 127
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Rigid hemilabile ligands such as (2-diphenylphosphanyl)pyridine (Espinet et al., 1999) and 2,6-bis(diphenylphosphanyl)pyridine (Song et al., 2001; Wang et al., 2010) have extensively been studied, including the fascinating structures and the catalytic properties of their metal complexes. We here report a new complex with the N-benzyl-N-(diphenylphosphanylmethyl)pyridin-2-amine ligand (abbreviated as L), namely Pt(L)MeCl.

In the title complex, the pyridyl N atom and the phosphine P atom bond to the square-planar coordinated PtII ion in relative cis sites, generating a six-membered ring similar to the reported Re(L)(CO)3Cl (Li et al., 2006), as shown in Fig. 1. In the crystal structure of the title complex, the main intermolecular non-covalent interactions are C—H(benzene)···π (Umezawa et al., 1998) and C—H(methylene)···Cl (Desiraju & Steiner, 1999) interactions, which connect the mononuclear units along the a direction to form a chain structure. As shown in Fig. 2, the C23ii—H23ii···Cg1 contact exhibits a C23···Cg1 distance of 4.001 (2) Å and a C23—H23···Cg1 bond angle of 154° (Cg1 represents the centroid of the C15—C16—C17—C18—C19—C20 benzene ring [symmetry code: (ii) -x + 2, -y + 2, -z + 2]. Regarding the C7—H7B(methylene)···Cl1i contact, the C7···Cl1i distance is 3.392 (2) Å and the C7—H7B···Cl1i angle equals 127° [symmetry code: (i) x + 1, y, z].

Related literature top

For coordination complexes with hemilabile ligands with PN donor sets, see: Espinet et al. (1999); Song et al. (2001); Wang et al. (2010). For coordinations complexes with the N-benzyl-N-(diphenylphosphanylmethyl)pyridin-2-amine ligand, see: Li et al. (2003, 2006). For hydrogen bonds, see: Desiraju & Steiner (1999) and for C—H···π interactions, see: Umezawa et al. (1998).

Experimental top

N-benzyl-N-(diphenylphosphanylmethyl)pyridin-2-amine (L) was obtained by the reaction of N-benzylpyridin-2-amine with Ph2PH and (HCHO)n, using a developed method of the Mannich reaction in acidic medium as reported in literature (Li et al., 2003). A mixture of Pt(COD)MeCl (0.210 g, 0.6 mmol) and 0.382 g of L (1.0 mmol) in CH2Cl2 (20 ml) was stirred at room temperature for 3 h (COD = 1,5-cyclooctadiene). The clear solution was filtered and the solvent was concentrated to a small volume and diethyl ether was subsequently added to give 0.309 g (82%) of the title complex as a white solid, crystals of which were obtained after four days by recrystallization from CH2Cl2/n-hexane, yield: 0.230 g (61%).

Refinement top

The hydrogen atoms were placed in idealized positions and allowed to ride on the relevant carbon atoms, with C—H = 0.93 Å and Uiso = 1.2Ueq(C) for aromatic H atoms, with C—H = 0.97 Å and Uiso = 1.2Ueq(C) for methylene H atoms, and with C—H = 0.96 Å and Uiso = 1.5Ueq(C) for methyl H atoms.

Structure description top

Rigid hemilabile ligands such as (2-diphenylphosphanyl)pyridine (Espinet et al., 1999) and 2,6-bis(diphenylphosphanyl)pyridine (Song et al., 2001; Wang et al., 2010) have extensively been studied, including the fascinating structures and the catalytic properties of their metal complexes. We here report a new complex with the N-benzyl-N-(diphenylphosphanylmethyl)pyridin-2-amine ligand (abbreviated as L), namely Pt(L)MeCl.

In the title complex, the pyridyl N atom and the phosphine P atom bond to the square-planar coordinated PtII ion in relative cis sites, generating a six-membered ring similar to the reported Re(L)(CO)3Cl (Li et al., 2006), as shown in Fig. 1. In the crystal structure of the title complex, the main intermolecular non-covalent interactions are C—H(benzene)···π (Umezawa et al., 1998) and C—H(methylene)···Cl (Desiraju & Steiner, 1999) interactions, which connect the mononuclear units along the a direction to form a chain structure. As shown in Fig. 2, the C23ii—H23ii···Cg1 contact exhibits a C23···Cg1 distance of 4.001 (2) Å and a C23—H23···Cg1 bond angle of 154° (Cg1 represents the centroid of the C15—C16—C17—C18—C19—C20 benzene ring [symmetry code: (ii) -x + 2, -y + 2, -z + 2]. Regarding the C7—H7B(methylene)···Cl1i contact, the C7···Cl1i distance is 3.392 (2) Å and the C7—H7B···Cl1i angle equals 127° [symmetry code: (i) x + 1, y, z].

For coordination complexes with hemilabile ligands with PN donor sets, see: Espinet et al. (1999); Song et al. (2001); Wang et al. (2010). For coordinations complexes with the N-benzyl-N-(diphenylphosphanylmethyl)pyridin-2-amine ligand, see: Li et al. (2003, 2006). For hydrogen bonds, see: Desiraju & Steiner (1999) and for C—H···π interactions, see: Umezawa et al. (1998).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme of the title complex. Displacement ellipsoids are drawn at the 30% probability level and H atoms are omitted for clarity.
[Figure 2] Fig. 2. The C—H(benzene)···π and C—H(methylene)···Cl interactions between the mononuclear units arranged along the a direction. The Cg1 represents the centroid of the C15—C16—C17—C18—C19—C20 ring (benzene). Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, -y + 2, -z + 2.
[N-Benzyl-N-(diphenylphosphanylmethyl)pyridin-2- amine]chloridomethylplatinum(II) top
Crystal data top
[Pt(CH3)Cl(C25H23N2P)]V = 1197.0 (6) Å3
Mr = 628.00Z = 2
Triclinic, P1F(000) = 612
Hall symbol: -P 1Dx = 1.742 Mg m3
a = 9.538 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.770 (3) ŵ = 6.06 mm1
c = 13.125 (4) ÅT = 293 K
α = 98.367 (4)°Block, colourless
β = 106.256 (4)°0.33 × 0.24 × 0.20 mm
γ = 107.266 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4201 independent reflections
Radiation source: fine-focus sealed tube3270 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 116
Tmin = 0.675, Tmax = 1.000k = 1212
6265 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.065P)2] P = (Fo2 + 2Fc2)/3
4201 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 2.18 e Å3
0 restraintsΔρmin = 2.33 e Å3
Crystal data top
[Pt(CH3)Cl(C25H23N2P)]γ = 107.266 (5)°
Mr = 628.00V = 1197.0 (6) Å3
Triclinic, P1Z = 2
a = 9.538 (3) ÅMo Kα radiation
b = 10.770 (3) ŵ = 6.06 mm1
c = 13.125 (4) ÅT = 293 K
α = 98.367 (4)°0.33 × 0.24 × 0.20 mm
β = 106.256 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4201 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3270 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 1.000Rint = 0.041
6265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.01Δρmax = 2.18 e Å3
4201 reflectionsΔρmin = 2.33 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.99999 (4)0.54883 (4)0.70540 (3)0.03520 (15)
Cl11.1825 (3)0.4495 (3)0.6820 (3)0.0641 (8)
P10.8409 (3)0.6473 (2)0.73503 (19)0.0340 (5)
N10.8123 (9)0.3822 (8)0.5717 (6)0.0402 (19)
N20.6167 (9)0.4091 (8)0.6379 (7)0.048 (2)
C11.1828 (11)0.6965 (10)0.8263 (9)0.051 (3)
H1A1.24170.75760.79410.077*
H1B1.24890.65720.86910.077*
H1C1.14380.74420.87260.077*
C20.6662 (11)0.3300 (10)0.5714 (8)0.043 (2)
C30.5668 (12)0.2033 (10)0.5068 (8)0.053 (3)
H30.46910.16500.51250.063*
C40.6138 (14)0.1358 (11)0.4352 (9)0.057 (3)
H40.54990.05000.39220.069*
C50.7594 (14)0.1978 (11)0.4276 (9)0.057 (3)
H50.79200.15680.37590.068*
C60.8527 (12)0.3189 (11)0.4967 (8)0.045 (2)
H60.95020.35960.49130.054*
C70.4833 (11)0.3477 (11)0.6713 (9)0.054 (3)
H7A0.39190.30190.60600.064*
H7B0.46300.41840.71280.064*
C80.5046 (12)0.2502 (10)0.7386 (8)0.046 (3)
C90.6496 (15)0.2476 (13)0.7969 (10)0.066 (3)
H90.74070.30580.79260.080*
C100.656 (2)0.1572 (17)0.8612 (12)0.090 (5)
H100.75360.15580.89970.109*
C110.527 (3)0.0706 (16)0.8707 (13)0.098 (6)
H110.53520.00920.91300.117*
C120.385 (2)0.0762 (14)0.8161 (14)0.090 (5)
H120.29510.02150.82480.108*
C130.3726 (14)0.1606 (12)0.7495 (11)0.067 (4)
H130.27420.15880.71010.080*
C140.6497 (11)0.5486 (10)0.6317 (8)0.042 (2)
H14A0.57020.58020.64610.051*
H14B0.65100.55670.55920.051*
C150.7980 (11)0.6491 (9)0.8610 (8)0.039 (2)
C160.6740 (13)0.6856 (12)0.8728 (9)0.058 (3)
H160.61840.71640.81830.069*
C170.6329 (15)0.6761 (14)0.9664 (11)0.072 (4)
H170.54940.70000.97330.086*
C180.7140 (15)0.6323 (12)1.0477 (10)0.063 (3)
H180.68680.62711.11010.075*
C190.8370 (15)0.5957 (11)1.0363 (9)0.061 (3)
H190.89230.56401.09040.073*
C200.8774 (13)0.6066 (10)0.9431 (8)0.048 (3)
H200.96210.58400.93700.058*
C210.8791 (11)0.8172 (10)0.7178 (9)0.044 (2)
C220.9235 (16)0.9260 (11)0.8040 (12)0.075 (4)
H220.93220.91340.87380.090*
C230.955 (2)1.0538 (16)0.788 (2)0.107 (6)
H230.99011.12640.84810.129*
C240.9375 (19)1.0761 (16)0.688 (2)0.111 (7)
H240.95311.16220.67790.133*
C250.8956 (16)0.9686 (19)0.6016 (16)0.095 (5)
H250.88330.98260.53180.115*
C260.8710 (13)0.8394 (13)0.6154 (10)0.062 (3)
H260.84930.76870.55660.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0336 (2)0.0378 (2)0.0384 (2)0.01434 (16)0.01476 (16)0.01323 (16)
Cl10.0534 (16)0.084 (2)0.073 (2)0.0448 (16)0.0267 (15)0.0198 (17)
P10.0353 (13)0.0311 (13)0.0347 (13)0.0130 (10)0.0094 (10)0.0080 (10)
N10.046 (5)0.037 (5)0.041 (5)0.014 (4)0.017 (4)0.016 (4)
N20.034 (4)0.043 (5)0.066 (6)0.012 (4)0.021 (4)0.007 (4)
C10.044 (6)0.042 (6)0.058 (7)0.007 (5)0.003 (5)0.027 (5)
C20.036 (5)0.038 (6)0.053 (6)0.015 (5)0.011 (5)0.008 (5)
C30.048 (6)0.042 (6)0.052 (7)0.008 (5)0.012 (5)0.007 (5)
C40.067 (8)0.037 (6)0.059 (7)0.007 (5)0.024 (6)0.005 (5)
C50.082 (8)0.039 (6)0.049 (7)0.022 (6)0.026 (6)0.003 (5)
C60.056 (6)0.054 (7)0.043 (6)0.031 (5)0.031 (5)0.015 (5)
C70.033 (5)0.052 (7)0.068 (7)0.009 (5)0.020 (5)0.001 (6)
C80.054 (7)0.033 (6)0.046 (6)0.003 (5)0.031 (5)0.009 (5)
C90.061 (8)0.067 (9)0.065 (8)0.016 (7)0.023 (6)0.010 (7)
C100.119 (13)0.102 (13)0.071 (10)0.055 (11)0.039 (9)0.034 (9)
C110.182 (19)0.068 (11)0.074 (11)0.050 (12)0.083 (13)0.023 (8)
C120.111 (13)0.050 (9)0.106 (13)0.005 (8)0.073 (11)0.008 (8)
C130.059 (7)0.052 (8)0.080 (9)0.000 (6)0.045 (7)0.011 (7)
C140.038 (5)0.046 (6)0.048 (6)0.026 (5)0.010 (5)0.011 (5)
C150.043 (5)0.033 (5)0.040 (5)0.013 (4)0.013 (4)0.004 (4)
C160.051 (7)0.072 (8)0.054 (7)0.033 (6)0.015 (5)0.007 (6)
C170.075 (9)0.090 (10)0.074 (9)0.044 (8)0.051 (7)0.004 (8)
C180.093 (10)0.054 (8)0.058 (8)0.030 (7)0.049 (7)0.012 (6)
C190.090 (9)0.054 (8)0.058 (7)0.037 (7)0.038 (7)0.021 (6)
C200.059 (7)0.046 (6)0.046 (6)0.028 (5)0.023 (5)0.003 (5)
C210.038 (5)0.039 (6)0.060 (7)0.018 (5)0.016 (5)0.019 (5)
C220.096 (10)0.028 (7)0.107 (11)0.012 (6)0.058 (9)0.012 (7)
C230.106 (13)0.044 (9)0.18 (2)0.013 (8)0.074 (13)0.024 (11)
C240.088 (11)0.042 (9)0.23 (3)0.026 (8)0.081 (14)0.056 (13)
C250.062 (9)0.111 (14)0.143 (15)0.034 (9)0.042 (9)0.100 (13)
C260.052 (7)0.064 (8)0.070 (8)0.019 (6)0.016 (6)0.030 (7)
Geometric parameters (Å, º) top
Pt1—C12.039 (10)C10—H100.9300
Pt1—P12.178 (2)C11—C121.37 (2)
Pt1—N12.219 (8)C11—H110.9300
Pt1—Cl12.361 (3)C12—C131.36 (2)
P1—C151.811 (10)C12—H120.9300
P1—C211.818 (10)C13—H130.9300
P1—C141.828 (10)C14—H14A0.9700
N1—C61.326 (12)C14—H14B0.9700
N1—C21.338 (12)C15—C201.355 (13)
N2—C21.401 (12)C15—C161.392 (13)
N2—C141.461 (12)C16—C171.399 (16)
N2—C71.464 (13)C16—H160.9300
C1—H1A0.9600C17—C181.364 (17)
C1—H1B0.9600C17—H170.9300
C1—H1C0.9600C18—C191.382 (15)
C2—C31.387 (13)C18—H180.9300
C3—C41.357 (14)C19—C201.392 (15)
C3—H30.9300C19—H190.9300
C4—C51.389 (16)C20—H200.9300
C4—H40.9300C21—C221.372 (15)
C5—C61.352 (15)C21—C261.385 (15)
C5—H50.9300C22—C231.38 (2)
C6—H60.9300C22—H220.9300
C7—C81.490 (15)C23—C241.34 (2)
C7—H7A0.9700C23—H230.9300
C7—H7B0.9700C24—C251.37 (2)
C8—C91.391 (16)C24—H240.9300
C8—C131.399 (15)C25—C261.388 (19)
C9—C101.383 (19)C25—H250.9300
C9—H90.9300C26—H260.9300
C10—C111.36 (2)
C1—Pt1—P190.3 (3)C9—C10—H10118.6
C1—Pt1—N1176.2 (4)C10—C11—C12118.2 (15)
P1—Pt1—N193.5 (2)C10—C11—H11120.9
C1—Pt1—Cl186.8 (3)C12—C11—H11120.9
P1—Pt1—Cl1176.99 (10)C13—C12—C11120.7 (14)
N1—Pt1—Cl189.5 (2)C13—C12—H12119.6
C15—P1—C21105.9 (5)C11—C12—H12119.6
C15—P1—C14102.0 (5)C12—C13—C8121.7 (13)
C21—P1—C14104.8 (5)C12—C13—H13119.1
C15—P1—Pt1119.0 (3)C8—C13—H13119.1
C21—P1—Pt1117.2 (3)N2—C14—P1107.1 (6)
C14—P1—Pt1106.0 (3)N2—C14—H14A110.3
C6—N1—C2118.0 (9)P1—C14—H14A110.3
C6—N1—Pt1117.7 (7)N2—C14—H14B110.3
C2—N1—Pt1123.5 (7)P1—C14—H14B110.3
C2—N2—C14116.7 (8)H14A—C14—H14B108.5
C2—N2—C7120.7 (9)C20—C15—C16118.0 (9)
C14—N2—C7117.0 (8)C20—C15—P1121.5 (7)
Pt1—C1—H1A109.5C16—C15—P1120.3 (8)
Pt1—C1—H1B109.5C15—C16—C17120.2 (11)
H1A—C1—H1B109.5C15—C16—H16119.9
Pt1—C1—H1C109.5C17—C16—H16119.9
H1A—C1—H1C109.5C18—C17—C16120.8 (11)
H1B—C1—H1C109.5C18—C17—H17119.6
N1—C2—C3121.4 (9)C16—C17—H17119.6
N1—C2—N2117.4 (9)C17—C18—C19119.3 (11)
C3—C2—N2121.3 (9)C17—C18—H18120.4
C4—C3—C2119.3 (10)C19—C18—H18120.4
C4—C3—H3120.3C18—C19—C20119.3 (11)
C2—C3—H3120.3C18—C19—H19120.3
C3—C4—C5118.5 (11)C20—C19—H19120.3
C3—C4—H4120.8C15—C20—C19122.4 (10)
C5—C4—H4120.8C15—C20—H20118.8
C6—C5—C4118.9 (10)C19—C20—H20118.8
C6—C5—H5120.6C22—C21—C26118.4 (11)
C4—C5—H5120.6C22—C21—P1122.4 (9)
N1—C6—C5123.2 (10)C26—C21—P1119.2 (9)
N1—C6—H6118.4C21—C22—C23120.5 (15)
C5—C6—H6118.4C21—C22—H22119.7
N2—C7—C8114.6 (9)C23—C22—H22119.7
N2—C7—H7A108.6C24—C23—C22121.8 (18)
C8—C7—H7A108.6C24—C23—H23119.1
N2—C7—H7B108.6C22—C23—H23119.1
C8—C7—H7B108.6C23—C24—C25118.1 (16)
H7A—C7—H7B107.6C23—C24—H24120.9
C9—C8—C13117.5 (12)C25—C24—H24120.9
C9—C8—C7123.8 (10)C24—C25—C26121.7 (16)
C13—C8—C7118.6 (11)C24—C25—H25119.2
C10—C9—C8119.0 (13)C26—C25—H25119.2
C10—C9—H9120.5C21—C26—C25119.2 (14)
C8—C9—H9120.5C21—C26—H26120.4
C11—C10—C9122.9 (16)C25—C26—H26120.4
C11—C10—H10118.6
C1—Pt1—P1—C1569.7 (5)C10—C11—C12—C134 (2)
N1—Pt1—P1—C15110.5 (4)C11—C12—C13—C84 (2)
Cl1—Pt1—P1—C1557 (2)C9—C8—C13—C121.5 (16)
C1—Pt1—P1—C2159.9 (5)C7—C8—C13—C12175.0 (11)
N1—Pt1—P1—C21119.9 (4)C2—N2—C14—P190.2 (9)
Cl1—Pt1—P1—C2173 (2)C7—N2—C14—P1115.7 (8)
C1—Pt1—P1—C14176.3 (5)C15—P1—C14—N272.7 (7)
N1—Pt1—P1—C143.5 (4)C21—P1—C14—N2177.1 (6)
Cl1—Pt1—P1—C14171 (2)Pt1—P1—C14—N252.5 (7)
C1—Pt1—N1—C622 (5)C21—P1—C15—C20125.7 (9)
P1—Pt1—N1—C6154.9 (7)C14—P1—C15—C20125.0 (9)
Cl1—Pt1—N1—C625.8 (7)Pt1—P1—C15—C208.8 (10)
C1—Pt1—N1—C2148 (5)C21—P1—C15—C1658.9 (9)
P1—Pt1—N1—C235.2 (8)C14—P1—C15—C1650.5 (9)
Cl1—Pt1—N1—C2144.2 (8)Pt1—P1—C15—C16166.7 (7)
C6—N1—C2—C310.0 (15)C20—C15—C16—C171.0 (16)
Pt1—N1—C2—C3159.9 (8)P1—C15—C16—C17174.6 (10)
C6—N1—C2—N2169.3 (9)C15—C16—C17—C181 (2)
Pt1—N1—C2—N220.8 (13)C16—C17—C18—C191 (2)
C14—N2—C2—N147.3 (12)C17—C18—C19—C201.2 (18)
C7—N2—C2—N1159.6 (10)C16—C15—C20—C191.6 (16)
C14—N2—C2—C3132.0 (10)P1—C15—C20—C19174.0 (9)
C7—N2—C2—C321.1 (15)C18—C19—C20—C151.7 (18)
N1—C2—C3—C46.0 (16)C15—P1—C21—C2221.9 (11)
N2—C2—C3—C4173.3 (10)C14—P1—C21—C22129.3 (10)
C2—C3—C4—C51.3 (17)Pt1—P1—C21—C22113.6 (9)
C3—C4—C5—C64.3 (18)C15—P1—C21—C26161.4 (8)
C2—N1—C6—C57.0 (15)C14—P1—C21—C2654.0 (9)
Pt1—N1—C6—C5163.6 (8)Pt1—P1—C21—C2663.1 (9)
C4—C5—C6—N10.2 (17)C26—C21—C22—C231.6 (19)
C2—N2—C7—C861.9 (13)P1—C21—C22—C23178.3 (11)
C14—N2—C7—C8145.1 (9)C21—C22—C23—C243 (2)
N2—C7—C8—C920.8 (15)C22—C23—C24—C254 (3)
N2—C7—C8—C13162.9 (9)C23—C24—C25—C260 (2)
C13—C8—C9—C100.5 (16)C22—C21—C26—C255.1 (16)
C7—C8—C9—C10176.7 (11)P1—C21—C26—C25178.1 (9)
C8—C9—C10—C110 (2)C24—C25—C26—C214 (2)
C9—C10—C11—C122 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 benzene ring.
D—H···AD—HH···AD···AD—H···A
C23—H23···Cg1i0.933.104.001 (2)154
C7—H7B···Cl1ii0.972.723.392 (2)127
Symmetry codes: (i) x+2, y+2, z+2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Pt(CH3)Cl(C25H23N2P)]
Mr628.00
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.538 (3), 10.770 (3), 13.125 (4)
α, β, γ (°)98.367 (4), 106.256 (4), 107.266 (5)
V3)1197.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)6.06
Crystal size (mm)0.33 × 0.24 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.675, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6265, 4201, 3270
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.123, 1.01
No. of reflections4201
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.18, 2.33

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 benzene ring.
D—H···AD—HH···AD···AD—H···A
C23—H23···Cg1i0.933.104.001 (2)154
C7—H7B···Cl1ii0.972.723.392 (2)127
Symmetry codes: (i) x+2, y+2, z+2; (ii) x1, y, z.
 

Acknowledgements

The authors are grateful for financial support from the Technology Program, Beijing Municipal Education Commission (Ref. No. 09530410099).

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationEspinet, P. & Soulantica, K. (1999). Coord. Chem. Rev. 193–195, 499–566.  Web of Science CrossRef CAS Google Scholar
First citationLi, Q.-S., Xu, F.-B., Cui, D.-J., Yu, K., Zeng, X.-S., Leng, X.-B., Song, H.-B. & Zhang, Z.-Z. (2003). Dalton Trans. pp. 1551–1557.  Web of Science CSD CrossRef Google Scholar
First citationLi, Q.-S., Zhao, Y.-J., Xu, F.-B., Song, H.-B. & Zhang, Z.-Z. (2006). Acta Cryst. E62, m2366–m2367.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, H.-B., Zhang, Z.-Z. & Mak, T. C. W. (2001). Inorg. Chem. 40, 5928–5933.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUmezawa, Y., Tsuboyama, S., Honda, K., Uzawa, J. & Nishio, M. (1998). Bull. Chem. Soc. Jpn, 71, 1202–1213.  Web of Science CrossRef Google Scholar
First citationWang, X. B., Feng, J. Z., Huang, J., Zhang, J. Y., Pan, M. & Su, C. Y. (2010). CrystEngComm, 12, 725–729.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds