metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(1,2,5,6-η)-Cyclo­octa-1,5-diene]bis­­(4-methyl­phen­yl)platinum(II)

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: wanchqing@yahoo.com.cn

(Received 20 November 2010; accepted 28 November 2010; online 4 December 2010)

In the mononuclear title complex, [Pt(C7H7)2(C8H12)], the PtII ion exhibits a square-planar coordination geometry defined by two methyl­phenyl ligands and the mid-points of the two π-coordinated double bonds of cyclo­octa-1,5-diene. The two methyl­phenyl groups have a cis relationship with a C—Pt—C bond angle of 88.54 (18)° and a dihedral angle between the mean planes of the benzene rings of 83.87 (1)°. Each complex mol­ecule links to four symmetry-related ones through inter­molecular C—H⋯π inter­actions, forming a layer almost parallel to the bc plane.

Related literature

For general background to PtII complexes with cyclo­octa-1,5-diene, see: Goel et al. (1982)[Goel, A. B., Goel, S. & van der Veer, D. (1982). Inorg. Chim. Acta, 65, L205-L206.]; Syed et al. (1984[Syed, A., Stevens, E. D. & Cruz, S. G. (1984). Inorg. Chem. 23, 3673-3674.]). For the structures of analogous PtII complexes, see: Deacon et al. (1993[Deacon, G. B., Hilderbrand, E. A. & Tiekink, E. R. T. (1993). Z. Kristallogr. 205, 340-342.]); Debaerdemaeker et al. (1987[Debaerdemaeker, T., Stapp, B. & Brune, H. A. (1987). Acta Cryst. C43, 473-476.], 1991[Debaerdemaeker, T., Hohenadel, R. & Brune, H.-A. (1991). J. Organomet. Chem. 410, 127-275.]); Roviello et al. (2006[Roviello, G., Ruffo, F. & Tuzi, A. (2006). Acta Cryst. E62, m1416-m1418.]). For C—H⋯π inter­actions, see: Umezawa et al. (1998[Umezawa, Y., Tsuboyama, S., Honda, K., Uzawa, J. & Nishio, M. (1998). Bull. Chem. Soc. Jpn, 71, 1202-1213.]). For the preparation, see: Chaudhury & Puddephatt (1975[Chaudhury, N. & Puddephatt, R. J. (1975). J. Organomet. Chem. 84, 105-115.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(C7H7)2(C8H12)]

  • Mr = 485.52

  • Monoclinic, C 2/c

  • a = 25.029 (13) Å

  • b = 8.172 (4) Å

  • c = 19.674 (10) Å

  • β = 118.417 (8)°

  • V = 3539 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 7.93 mm−1

  • T = 293 K

  • 0.36 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.584, Tmax = 1.000

  • 8906 measured reflections

  • 3113 independent reflections

  • 2884 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.061

  • S = 1.11

  • 3113 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 2.74 e Å−3

  • Δρmin = −0.99 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C9–C14 and C2–C7 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1BCg1i 0.96 2.93 3.615 (4) 129
C20—H20BCg1ii 0.96 2.85 3.749 (5) 155
C21—H21ACg2ii 0.97 2.83 3.411 (4) 119
C8—H8CCg2iii 0.96 2.85 3.509 (2) 126
Symmetry codes: (i) [x, -y+2, z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [x, -y+2, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The PtII complexes with cycloocta-1,5-diene (COD) are versatile precursors in inorganic synthesis (Goel et al., 1982; Syed et al., 1984). Herein, we report the structure of the bis-aryl complex [(COD)Pt(C7H7)2]. In the crystal structure of the title complex, the center PtII adopts a square-planer coordination geometry with two methylphenyl groups depositing in a cis relationship, and the cycloocta-1,5-diene bonding to the ion with a 1,2,5,6-η4-coordination mode (Fig. 1). The Pt1—C5 and Pt1—C12 bond lengths equal 2.028 (4) Å, while the distances from the PtII to the doubly-bonded C atoms lie within the range of 2.256 (4)–2.279 (4) Å, all of which are comparable to that of similar complexes. The two methylphenyl groups site in a cis relationship with a C5—Pt1—C12 bond angle of 88.54 (18)° and a dihedral angle between the two benzene rings of 83.87 (1)°. Each of such mononuclear complex moiety links four symmetry-related ones through two types of intermolecular C—H···π interactions [C—H(methylene)···π and C—H(methyl)···π] to form a layer almost parallel to the bc plane, as shown in Fig. 2. The C···centroid distances vary from 3.411 (4) to 3.749 (5) Å, and C—H···centroid bond angles lie within the range of 119–155° (Umezawa et al. 1998).

Related literature top

For general background to PtII complexes with cycloocta-1,5-diene, see: Goel et al. (1982); Syed et al. (1984). For the structures of analogous PtII complexes, see: Deacon et al. (1993); Debaerdemaeker et al. (1987, 1991); Roviello et al. (2006). For C—H···π interactions, see: Umezawa et al. (1998). For the preparation, see: Chaudhury & Puddephatt (1975).

Experimental top

The title complex was obtained following a reaction procedure from literature (Chaudhury et al., 1975). Reaction of aryl Grignard reagents (C6H4-4-CH3)MgBr (0.195 g, 1 mmol) with (COD)PtCl2 (0.086 g, 0.8 mmol) in ether formed the title compound as a white powder, crystals of which were obtained after four days by recrystallization from CH2Cl2/n-hexane, yield: 0.233 g (60%).

Refinement top

The hydrogen atoms were placed in idealized positions and allowed to ride on the relevant carbon atoms, with C—H = 0.93 and 0.97 Å for aryl and methylene H atoms, respectively, and with Uiso(H) = 1.2Ueq(C).

Structure description top

The PtII complexes with cycloocta-1,5-diene (COD) are versatile precursors in inorganic synthesis (Goel et al., 1982; Syed et al., 1984). Herein, we report the structure of the bis-aryl complex [(COD)Pt(C7H7)2]. In the crystal structure of the title complex, the center PtII adopts a square-planer coordination geometry with two methylphenyl groups depositing in a cis relationship, and the cycloocta-1,5-diene bonding to the ion with a 1,2,5,6-η4-coordination mode (Fig. 1). The Pt1—C5 and Pt1—C12 bond lengths equal 2.028 (4) Å, while the distances from the PtII to the doubly-bonded C atoms lie within the range of 2.256 (4)–2.279 (4) Å, all of which are comparable to that of similar complexes. The two methylphenyl groups site in a cis relationship with a C5—Pt1—C12 bond angle of 88.54 (18)° and a dihedral angle between the two benzene rings of 83.87 (1)°. Each of such mononuclear complex moiety links four symmetry-related ones through two types of intermolecular C—H···π interactions [C—H(methylene)···π and C—H(methyl)···π] to form a layer almost parallel to the bc plane, as shown in Fig. 2. The C···centroid distances vary from 3.411 (4) to 3.749 (5) Å, and C—H···centroid bond angles lie within the range of 119–155° (Umezawa et al. 1998).

For general background to PtII complexes with cycloocta-1,5-diene, see: Goel et al. (1982); Syed et al. (1984). For the structures of analogous PtII complexes, see: Deacon et al. (1993); Debaerdemaeker et al. (1987, 1991); Roviello et al. (2006). For C—H···π interactions, see: Umezawa et al. (1998). For the preparation, see: Chaudhury & Puddephatt (1975).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme of the title complex. Displacement ellipsoids are drawn at the 30% probability level and H atoms are omitted for clarity.
[Figure 2] Fig. 2. The C—H(methyl)···π and C—H(methylene)···π interactions between the mononuclear units, forming a layer in the bc plane. The Cg1 and Cg2 are the centroids of the C9—C10—C11—C12—C13—C14 and C2—C3—C4—C5—C6—C7 rings, respectively. Symmetry codes: (i) x, -y + 2, z - 1/2; (ii) x, y + 1, z; (iii) x, -y + 2, z + 1/2.
[(1,2,5,6-η)-Cycloocta-1,5-diene]bis(4-methylphenyl)platinum(II) top
Crystal data top
[Pt(C7H7)2(C8H12)]Z = 8
Mr = 485.52F(000) = 1888
Monoclinic, C2/cDx = 1.823 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 25.029 (13) ŵ = 7.93 mm1
b = 8.172 (4) ÅT = 293 K
c = 19.674 (10) ÅBlock, colourless
β = 118.417 (8)°0.36 × 0.30 × 0.20 mm
V = 3539 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3113 independent reflections
Radiation source: fine-focus sealed tube2884 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2917
Tmin = 0.584, Tmax = 1.000k = 99
8906 measured reflectionsl = 2023
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0308P)2 + 23.1984P] P = (Fo2 + 2Fc2)/3
3113 reflections(Δ/σ)max = 0.004
208 parametersΔρmax = 2.74 e Å3
0 restraintsΔρmin = 0.99 e Å3
Crystal data top
[Pt(C7H7)2(C8H12)]V = 3539 (3) Å3
Mr = 485.52Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.029 (13) ŵ = 7.93 mm1
b = 8.172 (4) ÅT = 293 K
c = 19.674 (10) Å0.36 × 0.30 × 0.20 mm
β = 118.417 (8)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3113 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2884 reflections with I > 2σ(I)
Tmin = 0.584, Tmax = 1.000Rint = 0.023
8906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0308P)2 + 23.1984P] P = (Fo2 + 2Fc2)/3
3113 reflectionsΔρmax = 2.74 e Å3
208 parametersΔρmin = 0.99 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.625760 (7)0.723387 (19)0.445111 (9)0.00847 (8)
C50.6352 (2)0.8997 (5)0.5226 (2)0.0123 (9)
C120.6322 (2)0.9000 (5)0.3769 (2)0.0119 (9)
C150.5845 (2)0.5524 (5)0.4975 (2)0.0118 (9)
H15A0.57490.60410.53530.014*
C190.6452 (2)0.5268 (5)0.3793 (2)0.0110 (9)
H19A0.66130.56820.34580.013*
C180.5828 (2)0.5402 (5)0.3479 (2)0.0137 (9)
H18A0.56280.58940.29620.016*
C90.6352 (2)1.1307 (5)0.2696 (2)0.0126 (9)
C110.6864 (2)0.9413 (5)0.3760 (2)0.0106 (9)
H11A0.72250.89240.41160.013*
C80.6356 (2)1.2543 (6)0.2132 (3)0.0172 (10)
H8A0.67631.26680.22100.026*
H8B0.62121.35750.22130.026*
H8C0.60961.21740.16140.026*
C210.6671 (2)0.3611 (5)0.5002 (2)0.0139 (9)
H21A0.63570.27800.48000.017*
H21B0.70200.31500.54460.017*
C200.6854 (2)0.4039 (5)0.4380 (3)0.0148 (9)
H20A0.72660.44590.46330.018*
H20B0.68540.30420.41120.018*
C60.5846 (2)0.9915 (5)0.5136 (3)0.0136 (9)
H6A0.54720.97380.47030.016*
C70.5889 (2)1.1085 (5)0.5680 (3)0.0162 (10)
H7A0.55451.16650.56010.019*
C10.6475 (3)1.2679 (6)0.6911 (3)0.0246 (12)
H1A0.68831.27400.73280.037*
H1B0.62051.23890.71120.037*
H1C0.63581.37230.66590.037*
C130.5800 (2)0.9798 (6)0.3221 (3)0.0153 (9)
H13A0.54310.95750.32070.018*
C170.5429 (2)0.4230 (6)0.3636 (2)0.0144 (9)
H17A0.56220.31630.37570.017*
H17B0.50440.41200.31680.017*
C140.5813 (2)1.0902 (5)0.2700 (3)0.0154 (9)
H14A0.54521.13890.23420.019*
C220.6441 (2)0.5074 (5)0.5265 (2)0.0133 (9)
H22A0.66940.53490.58120.016*
C40.6897 (2)0.9310 (5)0.5893 (2)0.0136 (9)
H4A0.72410.87140.59840.016*
C100.6876 (2)1.0531 (5)0.3235 (2)0.0134 (9)
H10A0.72441.07630.32460.016*
C20.6439 (2)1.1394 (6)0.6337 (3)0.0181 (10)
C160.5305 (2)0.4754 (6)0.4297 (3)0.0152 (9)
H16A0.49720.55280.40980.018*
H16B0.51790.38010.44780.018*
C30.6939 (2)1.0492 (6)0.6427 (2)0.0158 (9)
H3A0.73141.06830.68570.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01211 (11)0.00610 (11)0.00793 (11)0.00017 (6)0.00537 (8)0.00012 (6)
C50.019 (2)0.009 (2)0.012 (2)0.0001 (18)0.0095 (19)0.0006 (17)
C120.015 (2)0.009 (2)0.009 (2)0.0004 (17)0.0042 (18)0.0013 (17)
C150.021 (2)0.007 (2)0.011 (2)0.0015 (18)0.0101 (19)0.0012 (16)
C190.021 (2)0.004 (2)0.011 (2)0.0019 (17)0.0103 (19)0.0031 (16)
C180.022 (3)0.009 (2)0.009 (2)0.0033 (18)0.0059 (19)0.0051 (16)
C90.023 (2)0.007 (2)0.0093 (19)0.0021 (18)0.0085 (19)0.0019 (16)
C110.013 (2)0.006 (2)0.010 (2)0.0017 (17)0.0036 (18)0.0008 (16)
C80.028 (3)0.011 (2)0.016 (2)0.0040 (19)0.014 (2)0.0011 (18)
C210.018 (2)0.010 (2)0.013 (2)0.0005 (18)0.0080 (19)0.0011 (17)
C200.021 (2)0.009 (2)0.016 (2)0.0010 (18)0.010 (2)0.0024 (17)
C60.018 (2)0.007 (2)0.016 (2)0.0005 (17)0.0080 (19)0.0019 (17)
C70.024 (3)0.009 (2)0.022 (2)0.0046 (19)0.016 (2)0.0041 (18)
C10.041 (3)0.011 (2)0.023 (3)0.002 (2)0.017 (3)0.0013 (19)
C130.016 (2)0.016 (2)0.015 (2)0.0010 (18)0.0082 (19)0.0001 (18)
C170.014 (2)0.014 (2)0.013 (2)0.0039 (18)0.0046 (18)0.0045 (17)
C140.018 (2)0.013 (2)0.012 (2)0.0049 (18)0.0049 (19)0.0042 (18)
C220.020 (2)0.011 (2)0.010 (2)0.0017 (18)0.0079 (19)0.0001 (17)
C40.017 (2)0.011 (2)0.014 (2)0.0019 (18)0.0085 (19)0.0035 (17)
C100.016 (2)0.012 (2)0.014 (2)0.0029 (18)0.0085 (19)0.0013 (17)
C20.035 (3)0.011 (2)0.014 (2)0.000 (2)0.017 (2)0.0016 (18)
C160.014 (2)0.014 (2)0.018 (2)0.0009 (18)0.0069 (19)0.0024 (18)
C30.021 (2)0.014 (2)0.009 (2)0.0057 (19)0.0044 (19)0.0007 (18)
Geometric parameters (Å, º) top
Pt1—C52.028 (4)C21—C201.538 (6)
Pt1—C122.028 (4)C21—H21A0.9700
Pt1—C152.256 (4)C21—H21B0.9700
Pt1—C192.257 (4)C20—H20A0.9700
Pt1—C182.258 (4)C20—H20B0.9700
Pt1—C222.279 (4)C6—C71.399 (6)
C5—C41.394 (6)C6—H6A0.9300
C5—C61.409 (6)C7—C21.392 (7)
C12—C131.399 (6)C7—H7A0.9300
C12—C111.405 (6)C1—C21.514 (7)
C15—C221.369 (7)C1—H1A0.9600
C15—C161.511 (6)C1—H1B0.9600
C15—H15A0.9800C1—H1C0.9600
C19—C181.383 (6)C13—C141.376 (6)
C19—C201.500 (6)C13—H13A0.9300
C19—H19A0.9800C17—C161.535 (6)
C18—C171.517 (6)C17—H17A0.9700
C18—H18A0.9800C17—H17B0.9700
C9—C101.387 (6)C14—H14A0.9300
C9—C141.393 (7)C22—H22A0.9800
C9—C81.504 (6)C4—C31.393 (6)
C11—C101.390 (6)C4—H4A0.9300
C11—H11A0.9300C10—H10A0.9300
C8—H8A0.9600C2—C31.389 (7)
C8—H8B0.9600C16—H16A0.9700
C8—H8C0.9600C16—H16B0.9700
C21—C221.521 (6)C3—H3A0.9300
C5—Pt1—C1288.54 (18)H21A—C21—H21B107.7
C5—Pt1—C1590.66 (17)C19—C20—C21114.9 (4)
C12—Pt1—C15160.11 (17)C19—C20—H20A108.5
C5—Pt1—C19163.18 (18)C21—C20—H20A108.5
C12—Pt1—C1991.14 (17)C19—C20—H20B108.5
C15—Pt1—C1995.26 (16)C21—C20—H20B108.5
C5—Pt1—C18161.08 (18)H20A—C20—H20B107.5
C12—Pt1—C1893.84 (17)C7—C6—C5122.0 (4)
C15—Pt1—C1880.76 (16)C7—C6—H6A119.0
C19—Pt1—C1835.68 (16)C5—C6—H6A119.0
C5—Pt1—C2296.28 (17)C2—C7—C6121.1 (4)
C12—Pt1—C22164.40 (17)C2—C7—H7A119.4
C15—Pt1—C2235.13 (16)C6—C7—H7A119.4
C19—Pt1—C2279.97 (16)C2—C1—H1A109.5
C18—Pt1—C2286.41 (16)C2—C1—H1B109.5
C4—C5—C6116.0 (4)H1A—C1—H1B109.5
C4—C5—Pt1123.3 (3)C2—C1—H1C109.5
C6—C5—Pt1120.6 (3)H1A—C1—H1C109.5
C13—C12—C11115.5 (4)H1B—C1—H1C109.5
C13—C12—Pt1120.2 (3)C14—C13—C12122.4 (4)
C11—C12—Pt1124.1 (3)C14—C13—H13A118.8
C22—C15—C16126.5 (4)C12—C13—H13A118.8
C22—C15—Pt173.4 (3)C18—C17—C16114.5 (4)
C16—C15—Pt1105.5 (3)C18—C17—H17A108.6
C22—C15—H15A114.2C16—C17—H17A108.6
C16—C15—H15A114.2C18—C17—H17B108.6
Pt1—C15—H15A114.2C16—C17—H17B108.6
C18—C19—C20126.7 (4)H17A—C17—H17B107.6
C18—C19—Pt172.2 (2)C13—C14—C9121.7 (4)
C20—C19—Pt1106.5 (3)C13—C14—H14A119.2
C18—C19—H19A114.2C9—C14—H14A119.2
C20—C19—H19A114.2C15—C22—C21125.7 (4)
Pt1—C19—H19A114.2C15—C22—Pt171.5 (3)
C19—C18—C17124.9 (4)C21—C22—Pt1110.6 (3)
C19—C18—Pt172.1 (2)C15—C22—H22A113.7
C17—C18—Pt1109.8 (3)C21—C22—H22A113.7
C19—C18—H18A114.1Pt1—C22—H22A113.7
C17—C18—H18A114.1C3—C4—C5121.8 (4)
Pt1—C18—H18A114.1C3—C4—H4A119.1
C10—C9—C14117.0 (4)C5—C4—H4A119.1
C10—C9—C8122.3 (4)C9—C10—C11121.4 (4)
C14—C9—C8120.7 (4)C9—C10—H10A119.3
C10—C11—C12122.0 (4)C11—C10—H10A119.3
C10—C11—H11A119.0C3—C2—C7117.1 (4)
C12—C11—H11A119.0C3—C2—C1122.9 (5)
C9—C8—H8A109.5C7—C2—C1120.0 (5)
C9—C8—H8B109.5C15—C16—C17114.0 (4)
H8A—C8—H8B109.5C15—C16—H16A108.7
C9—C8—H8C109.5C17—C16—H16A108.7
H8A—C8—H8C109.5C15—C16—H16B108.7
H8B—C8—H8C109.5C17—C16—H16B108.7
C22—C21—C20113.4 (4)H16A—C16—H16B107.6
C22—C21—H21A108.9C2—C3—C4122.1 (4)
C20—C21—H21A108.9C2—C3—H3A119.0
C22—C21—H21B108.9C4—C3—H3A119.0
C20—C21—H21B108.9
C12—Pt1—C5—C4100.7 (4)C12—Pt1—C18—C17151.9 (3)
C15—Pt1—C5—C499.1 (4)C15—Pt1—C18—C178.8 (3)
C19—Pt1—C5—C411.6 (8)C19—Pt1—C18—C17121.5 (4)
C18—Pt1—C5—C4161.7 (4)C22—Pt1—C18—C1743.7 (3)
C22—Pt1—C5—C464.4 (4)C13—C12—C11—C100.6 (6)
C12—Pt1—C5—C683.4 (4)Pt1—C12—C11—C10174.2 (3)
C15—Pt1—C5—C676.7 (4)C18—C19—C20—C2137.3 (6)
C19—Pt1—C5—C6172.5 (4)Pt1—C19—C20—C2142.5 (4)
C18—Pt1—C5—C614.2 (7)C22—C21—C20—C1938.0 (5)
C22—Pt1—C5—C6111.5 (4)C4—C5—C6—C70.7 (6)
C5—Pt1—C12—C1389.5 (4)Pt1—C5—C6—C7176.9 (3)
C15—Pt1—C12—C131.6 (7)C5—C6—C7—C20.1 (7)
C19—Pt1—C12—C13107.3 (4)C11—C12—C13—C140.7 (6)
C18—Pt1—C12—C1371.7 (4)Pt1—C12—C13—C14174.3 (3)
C22—Pt1—C12—C13162.1 (5)C19—C18—C17—C1693.6 (5)
C5—Pt1—C12—C1195.9 (4)Pt1—C18—C17—C1612.0 (5)
C15—Pt1—C12—C11176.2 (4)C12—C13—C14—C90.9 (7)
C19—Pt1—C12—C1167.3 (4)C10—C9—C14—C130.8 (6)
C18—Pt1—C12—C11102.9 (4)C8—C9—C14—C13178.7 (4)
C22—Pt1—C12—C1112.5 (8)C16—C15—C22—C215.3 (7)
C5—Pt1—C15—C22100.0 (3)Pt1—C15—C22—C21102.5 (4)
C12—Pt1—C15—C22172.5 (4)C16—C15—C22—Pt197.2 (4)
C19—Pt1—C15—C2264.2 (3)C20—C21—C22—C1594.0 (5)
C18—Pt1—C15—C2296.9 (3)C20—C21—C22—Pt112.4 (5)
C5—Pt1—C15—C16135.8 (3)C5—Pt1—C22—C1582.2 (3)
C12—Pt1—C15—C1648.3 (6)C12—Pt1—C22—C15170.5 (5)
C19—Pt1—C15—C1660.0 (3)C19—Pt1—C22—C15114.4 (3)
C18—Pt1—C15—C1627.3 (3)C18—Pt1—C22—C1579.0 (3)
C22—Pt1—C15—C16124.2 (4)C5—Pt1—C22—C21155.7 (3)
C5—Pt1—C19—C18176.3 (5)C12—Pt1—C22—C2148.4 (7)
C12—Pt1—C19—C1895.0 (3)C15—Pt1—C22—C21122.1 (4)
C15—Pt1—C19—C1866.1 (3)C19—Pt1—C22—C217.7 (3)
C22—Pt1—C19—C1897.9 (3)C18—Pt1—C22—C2143.1 (3)
C5—Pt1—C19—C2052.3 (7)C6—C5—C4—C31.6 (6)
C12—Pt1—C19—C20141.0 (3)Pt1—C5—C4—C3177.6 (3)
C15—Pt1—C19—C2057.9 (3)C14—C9—C10—C110.7 (6)
C18—Pt1—C19—C20124.0 (4)C8—C9—C10—C11178.9 (4)
C22—Pt1—C19—C2026.1 (3)C12—C11—C10—C90.6 (7)
C20—C19—C18—C174.5 (7)C6—C7—C2—C30.1 (6)
Pt1—C19—C18—C17102.1 (4)C6—C7—C2—C1179.4 (4)
C20—C19—C18—Pt197.6 (4)C22—C15—C16—C1737.5 (6)
C5—Pt1—C18—C19176.7 (4)Pt1—C15—C16—C1743.0 (4)
C12—Pt1—C18—C1986.6 (3)C18—C17—C16—C1538.4 (5)
C15—Pt1—C18—C19112.7 (3)C7—C2—C3—C40.8 (7)
C22—Pt1—C18—C1977.8 (3)C1—C2—C3—C4179.7 (4)
C5—Pt1—C18—C1755.2 (6)C5—C4—C3—C21.7 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C9–C14 and C2–C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cg1i0.962.933.615 (4)129
C20—H20B···Cg1ii0.962.853.749 (5)155
C21—H21A···Cg2ii0.972.833.411 (4)119
C8—H8C···Cg2iii0.962.853.509 (2)126
Symmetry codes: (i) x, y+2, z+1/2; (ii) x, y1, z; (iii) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formula[Pt(C7H7)2(C8H12)]
Mr485.52
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)25.029 (13), 8.172 (4), 19.674 (10)
β (°) 118.417 (8)
V3)3539 (3)
Z8
Radiation typeMo Kα
µ (mm1)7.93
Crystal size (mm)0.36 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.584, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8906, 3113, 2884
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.061, 1.11
No. of reflections3113
No. of parameters208
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0308P)2 + 23.1984P] P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.74, 0.99

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C9–C14 and C2–C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cg1i0.962.933.615 (4)129
C20—H20B···Cg1ii0.962.853.749 (5)155
C21—H21A···Cg2ii0.972.833.411 (4)119
C8—H8C···Cg2iii0.962.853.509 (2)126
Symmetry codes: (i) x, y+2, z+1/2; (ii) x, y1, z; (iii) x, y+2, z1/2.
 

Acknowledgements

The authors are grateful for financial support from the Technology Program, Beijing Municipal Education Commission (Ref. No. 09530410099).

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhury, N. & Puddephatt, R. J. (1975). J. Organomet. Chem. 84, 105–115.  CrossRef CAS Web of Science Google Scholar
First citationDeacon, G. B., Hilderbrand, E. A. & Tiekink, E. R. T. (1993). Z. Kristallogr. 205, 340–342.  CrossRef CAS Web of Science Google Scholar
First citationDebaerdemaeker, T., Hohenadel, R. & Brune, H.-A. (1991). J. Organomet. Chem. 410, 127–275.  CSD CrossRef Web of Science Google Scholar
First citationDebaerdemaeker, T., Stapp, B. & Brune, H. A. (1987). Acta Cryst. C43, 473–476.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoel, A. B., Goel, S. & van der Veer, D. (1982). Inorg. Chim. Acta, 65, L205–L206.  CSD CrossRef CAS Web of Science Google Scholar
First citationRoviello, G., Ruffo, F. & Tuzi, A. (2006). Acta Cryst. E62, m1416–m1418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSyed, A., Stevens, E. D. & Cruz, S. G. (1984). Inorg. Chem. 23, 3673–3674.  CSD CrossRef CAS Web of Science Google Scholar
First citationUmezawa, Y., Tsuboyama, S., Honda, K., Uzawa, J. & Nishio, M. (1998). Bull. Chem. Soc. Jpn, 71, 1202–1213.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds