organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-1H-1,2,4-triazol-1-ium nitrate

aDepartment of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic, and bDepartment of Spectroscopy, J. Heyrovský Institute of Physical Chemistry, ASCR, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
*Correspondence e-mail: irena.mat@atlas.cz

(Received 26 November 2010; accepted 29 November 2010; online 4 December 2010)

The non-centrosymmetric crystal structure of the novel semi-organic title compound, C2H5N4+·NO3, is based on alternating layers of 4-amino-1H-1,2,4-triazolinium cations (formed by parallel chains of cations mediated by weak C—H⋯N hydrogen bonds) and nitrate anions inter­connected via linear and bifurcated N—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds. N—H⋯N hydrogen bonds link the anions and cations.

Related literature

For the uses of triazole complexes in medicine, see: Li et al. (2004[Li, W., Wu, Q., Yu, Y., Luo, M., Hu, L., Gu, Y., Niu, F. & Hu, J. (2004). Spectrochim. Acta Part A, 60, 2343-2354.]); Komeda et al. (2003[Komeda, S., Bombard, S., Perrier, S., Reedijk, J. & Kozelka, J. (2003). J. Inorg. Biochem. 96, 357-366.]); Mernari et al. (1998[Mernari, B., Elattari, H., Traisnel, M., Bentiss, F. & Lagrenée, M. (1998). Corros. Sci. 40, 391-399.]); Bentiss et al. (1999[Bentiss, F., Lagrenée, M., Traisnel, M. & Hornez, J. C. (1999). Corros. Sci. 41, 789-803.]). For the triazole moiety as a part of the ligand system in metal complexes, see: Sinditskii et al. (1987[Sinditskii, V. P., Sokol, V. I., Fogelzang, A. E., Dutov, M. D., Serushkin, V. V., Porai-Koshits, M. A. & Svetlov, B. S. (1987). Zh. Neorg. Khim. 32, 1950-1955.]); Haasnoot (2000[Haasnoot, J. G. (2000). Coord. Chem. Rev. 200, 131-185.]); Klingele & Brooker (2003[Klingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119-132.]); Beckmann & Brooker (2003[Beckmann, U. & Brooker, S. (2003). Coord. Chem. Rev. 245, 17-29.]); Muller et al. (2003[Muller, R. N., Elst, L. V. & Laurent, S. (2003). J. Am. Chem. Soc. 125, 8405-8407.]). For the non-linear optical properties of 4-amino-1,2,4-triazole or 3-amino-1,2,4-triazoles, see: Matulková et al. (2007[Matulková, I., Němec, I., Císařová, I., Němec, P. & Mička, Z. (2007). J. Mol. Struct. 834-836, 328-335.], 2008[Matulková, I., Němec, I., Teubner, K., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 873, 46-60.]). For the preparation of 4-amino-1,2,4-triazole, see: Herbert & Garrison (1953[Herbert, R. M. & Garrison, J. A. (1953). J. Org. Chem. 18, 872-877.]); Matulková et al. (2008[Matulková, I., Němec, I., Teubner, K., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 873, 46-60.]); Sanz et al. (2002[Sanz, D., Pérez-Torralba, M., Alarćon, S. H., Claramunt, R. M., Foces-Foces, C. & Elguero, J. (2002). J. Org. Chem. 67, 1462-1471.]).

[Scheme 1]

Experimental

Crystal data
  • C2H5N4+·NO3

  • Mr = 147.11

  • Monoclinic, C c

  • a = 9.6200 (9) Å

  • b = 5.2790 (3) Å

  • c = 11.895 (1) Å

  • β = 96.667 (3)°

  • V = 599.99 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.5 × 0.4 × 0.35 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • 1867 measured reflections

  • 685 independent reflections

  • 650 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.073

  • S = 1.11

  • 685 reflections

  • 92 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.89 1.83 2.710 (2) 173
N2—H2⋯N7i 0.89 2.53 3.315 (2) 148
N2—H2⋯O2i 0.89 2.54 3.086 (2) 120
N6—H6A⋯O3 0.96 2.22 3.077 (3) 148
N6—H6B⋯O3ii 0.95 2.30 3.008 (3) 131
N6—H6B⋯O1ii 0.95 2.45 3.112 (3) 126
N6—H6B⋯O2iii 0.95 2.59 3.167 (3) 119
C3—H3⋯N1iii 0.93 2.45 3.299 (3) 151
C5—H5⋯O2 0.93 2.55 3.398 (3) 153
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwin­owski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The 1,2,4-triazole moiety as a part of ligand system in metal complexes has gained considerable attention in recent years (Sinditskii et al., 1987; Haasnoot, 2000; Klingele & Brooker, 2003; Beckmann & Brooker, 2003; Muller et al., 2003). The application of triazole ligand lies in the medical research – complex with PtII (Komeda et al., 2003) exhibits antitumor activity. Triazole derivatives are also used in the synthesis of antibiotics, fungicides, herbicides, plant growth hormone regulators (Li et al., 2004), and potentially prospective corrosion inhibitors (Mernari et al., 1998; Bentiss et al., 1999).

Materials based on triazole compounds with dicarboxylic acids (4-amino-1,2,4-triazol-1-ium hydrogen oxalate, adducts of 4-amino-1,2,4-triazole with succinic acid and adipic acid and 3-amino-1,2,4-triazolinium hydrogen L-tartrate) were also prepared and characterized as promising compounds in the field of non-linear optics (Matulková et al., 2008; Matulková et al., 2007).

The non-centrosymmetric crystal structure of the title compound is based on alternating layers of 4-amino-1,2,4-triazolinium cations (formed by parallel chains of cations mediated by weak C—H···N hydrogen bonds) and nitrate anions inter-connected via linear and bifurcated N—H···O hydrogen bonds and weak C—H···O hydrogen bond. The donor···acceptor distances in these hydrogen bonds attain values from 2.710 (2) to 3.167 (3) Å (N—H···O bonds) and 3.398 (3) Å (C—H···O bond). The Fig. 1 contains atom-labelling of title compound and packing scheme of the crystal structure is presented in Fig. 2.

The bond length comparison of 4-amino-1,2,4-triazolinium cations in the title compound and 4-amino-1,2,4-triazol-1-ium hydrogen oxalate (Matulková et al., 2008) exhibits reasonable shortening of N1—N2 distance in the cation of the title compound compared to N2—N3 distance in the organic salt (1.359 (2) Å for 4-amino-1,2,4-triazol-1-ium nitrate; 1.366 (2) Å for 4-amino-1,2,4-triazol-1-ium hydrogen oxalate).

The nitrate anions are planar with O—N—O angles slightly different from theoretical values of 120° in the crystal structure of the title compound. These differences can be explained by unequal participation of oxygen atoms in N—H···O hydrogen bonds. The smaller angle values 119.7 (2) and 118.5 (2)° (i.e. angles O1—N7—O2 and O3—N7—O1) are connected with the existence of bifurcated hydrogen bonds influencing these parts of the anion. The remaining bond angle O2—N7—O3 shows a value of 121.8 (2)°. Similar differences can be also observed in the case of N—O bond distances - i.e. two short distances 1.232 (3) and 1.240 (2) Å (N7—O2 and N7—O3, respectively) and a longer one 1.263 (2) Å (N7—O1).

Related literature top

For the uses of triazole complexes in medicine, see: Li et al. (2004); Komeda et al. (2003); Mernari et al. (1998); Bentiss et al. (1999). For the triazole moiety as a part of the ligand system in metal complexes, see: Sinditskii et al. (1987); Haasnoot (2000); Klingele & Brooker (2003); Beckmann & Brooker (2003); Muller et al. (2003). For the non-linear optical properties of 4-amino-1,2,4-triazole or 3-amino-1,2,4-triazoles, see: Matulková et al. (2007, 2008). For the preparation of 4-amino-1,2,4-triazole, see: Herbert & Garrison (1953); Matulková et al. (2008); Sanz et al. (2002).

Experimental top

4-Amino-1,2,4-triazole was prepared and purified by a slightly modified procedure described previously in the literature (Sanz et al., 2002; Herbert et al., 1953; Matulková et al., 2008). The crystals of the title compound, were obtained from a solution of 0.1 g of 4-amino-1,2,4-triazole, 0.8 ml of 2 mol/dm3 nitric acid (68% p.a., Lachema) and 5 ml of water. The solution was left to crystallize at room temperature for several weeks. The colourless crystals obtained were filtered off, washed with methanol and dried in vacuum desiccator over KOH.

Refinement top

H atoms attached to C atoms were calculated in geometrically idealized positions, with C(sp2)—H = 0.93 Å. The positions of H atoms attached to O and N atoms were localized on difference Fourier maps. All hydrogen atoms were constrained to ride on their parent atoms during refinement, with Uiso(H) = 1.2 Ueq (pivot atom).

Structure description top

The 1,2,4-triazole moiety as a part of ligand system in metal complexes has gained considerable attention in recent years (Sinditskii et al., 1987; Haasnoot, 2000; Klingele & Brooker, 2003; Beckmann & Brooker, 2003; Muller et al., 2003). The application of triazole ligand lies in the medical research – complex with PtII (Komeda et al., 2003) exhibits antitumor activity. Triazole derivatives are also used in the synthesis of antibiotics, fungicides, herbicides, plant growth hormone regulators (Li et al., 2004), and potentially prospective corrosion inhibitors (Mernari et al., 1998; Bentiss et al., 1999).

Materials based on triazole compounds with dicarboxylic acids (4-amino-1,2,4-triazol-1-ium hydrogen oxalate, adducts of 4-amino-1,2,4-triazole with succinic acid and adipic acid and 3-amino-1,2,4-triazolinium hydrogen L-tartrate) were also prepared and characterized as promising compounds in the field of non-linear optics (Matulková et al., 2008; Matulková et al., 2007).

The non-centrosymmetric crystal structure of the title compound is based on alternating layers of 4-amino-1,2,4-triazolinium cations (formed by parallel chains of cations mediated by weak C—H···N hydrogen bonds) and nitrate anions inter-connected via linear and bifurcated N—H···O hydrogen bonds and weak C—H···O hydrogen bond. The donor···acceptor distances in these hydrogen bonds attain values from 2.710 (2) to 3.167 (3) Å (N—H···O bonds) and 3.398 (3) Å (C—H···O bond). The Fig. 1 contains atom-labelling of title compound and packing scheme of the crystal structure is presented in Fig. 2.

The bond length comparison of 4-amino-1,2,4-triazolinium cations in the title compound and 4-amino-1,2,4-triazol-1-ium hydrogen oxalate (Matulková et al., 2008) exhibits reasonable shortening of N1—N2 distance in the cation of the title compound compared to N2—N3 distance in the organic salt (1.359 (2) Å for 4-amino-1,2,4-triazol-1-ium nitrate; 1.366 (2) Å for 4-amino-1,2,4-triazol-1-ium hydrogen oxalate).

The nitrate anions are planar with O—N—O angles slightly different from theoretical values of 120° in the crystal structure of the title compound. These differences can be explained by unequal participation of oxygen atoms in N—H···O hydrogen bonds. The smaller angle values 119.7 (2) and 118.5 (2)° (i.e. angles O1—N7—O2 and O3—N7—O1) are connected with the existence of bifurcated hydrogen bonds influencing these parts of the anion. The remaining bond angle O2—N7—O3 shows a value of 121.8 (2)°. Similar differences can be also observed in the case of N—O bond distances - i.e. two short distances 1.232 (3) and 1.240 (2) Å (N7—O2 and N7—O3, respectively) and a longer one 1.263 (2) Å (N7—O1).

For the uses of triazole complexes in medicine, see: Li et al. (2004); Komeda et al. (2003); Mernari et al. (1998); Bentiss et al. (1999). For the triazole moiety as a part of the ligand system in metal complexes, see: Sinditskii et al. (1987); Haasnoot (2000); Klingele & Brooker (2003); Beckmann & Brooker (2003); Muller et al. (2003). For the non-linear optical properties of 4-amino-1,2,4-triazole or 3-amino-1,2,4-triazoles, see: Matulková et al. (2007, 2008). For the preparation of 4-amino-1,2,4-triazole, see: Herbert & Garrison (1953); Matulková et al. (2008); Sanz et al. (2002).

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The atom-labelling of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing scheme of the title compound (projection to ac plane). Hydrogen bonds are indicated by dashed lines (C—H···O bonds are omitted for clarity).
4-Amino-1H-1,2,4-triazol-1-ium nitrate top
Crystal data top
C2H5N4+·NO3F(000) = 304
Mr = 147.11Dx = 1.629 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 572 reflections
a = 9.6200 (9) Åθ = 1.0–27.5°
b = 5.2790 (3) ŵ = 0.15 mm1
c = 11.895 (1) ÅT = 293 K
β = 96.667 (3)°Prism, colourless
V = 599.99 (8) Å30.5 × 0.4 × 0.35 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
650 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 27.5°, θmin = 3.5°
Detector resolution: 9.091 pixels mm-1h = 1112
φ and ω scans to fill the Ewald spherek = 56
1867 measured reflectionsl = 1515
685 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.111P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
685 reflectionsΔρmax = 0.12 e Å3
92 parametersΔρmin = 0.14 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.104 (8)
Crystal data top
C2H5N4+·NO3V = 599.99 (8) Å3
Mr = 147.11Z = 4
Monoclinic, CcMo Kα radiation
a = 9.6200 (9) ŵ = 0.15 mm1
b = 5.2790 (3) ÅT = 293 K
c = 11.895 (1) Å0.5 × 0.4 × 0.35 mm
β = 96.667 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
650 reflections with I > 2σ(I)
1867 measured reflectionsRint = 0.026
685 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0272 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.11Δρmax = 0.12 e Å3
685 reflectionsΔρmin = 0.14 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20255 (19)0.8902 (4)0.36897 (16)0.0454 (5)
N20.08599 (18)0.8575 (3)0.42181 (14)0.0378 (4)
H20.06300.96780.47300.045*
C30.0132 (2)0.6606 (4)0.38252 (16)0.0370 (4)
H30.06980.60220.40620.044*
N40.08113 (16)0.5606 (3)0.30229 (14)0.0337 (4)
C50.1957 (2)0.7065 (5)0.29519 (19)0.0436 (5)
H50.26080.67930.24440.052*
N60.0325 (2)0.3489 (3)0.23683 (17)0.0424 (4)
H6A0.10580.24630.21310.051*
H6B0.02660.40270.17160.051*
N70.37711 (17)0.3656 (4)0.08773 (13)0.0383 (4)
O10.49649 (17)0.2961 (4)0.06543 (15)0.0563 (5)
O20.3276 (2)0.5676 (3)0.04961 (17)0.0555 (5)
O30.31256 (18)0.2262 (4)0.14762 (15)0.0566 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0350 (9)0.0525 (10)0.0509 (10)0.0089 (8)0.0142 (8)0.0060 (8)
N20.0347 (8)0.0442 (9)0.0359 (8)0.0036 (7)0.0096 (6)0.0009 (7)
C30.0324 (10)0.0446 (11)0.0350 (9)0.0038 (8)0.0088 (7)0.0027 (8)
N40.0301 (8)0.0366 (9)0.0346 (7)0.0019 (6)0.0052 (6)0.0008 (6)
C50.0345 (10)0.0488 (12)0.0497 (12)0.0039 (9)0.0147 (9)0.0048 (9)
N60.0425 (10)0.0374 (9)0.0472 (9)0.0025 (7)0.0049 (7)0.0050 (7)
N70.0354 (10)0.0448 (10)0.0354 (8)0.0046 (7)0.0067 (7)0.0015 (7)
O10.0444 (10)0.0686 (11)0.0597 (10)0.0175 (9)0.0221 (8)0.0214 (8)
O20.0570 (10)0.0488 (10)0.0627 (10)0.0157 (8)0.0152 (8)0.0068 (8)
O30.0458 (9)0.0649 (11)0.0623 (11)0.0013 (9)0.0202 (8)0.0160 (9)
Geometric parameters (Å, º) top
N1—C51.304 (3)N4—N61.411 (2)
N1—N21.359 (2)C5—H50.9300
N2—C31.309 (3)N6—H6A0.9572
N2—H20.8888N6—H6B0.9506
C3—N41.327 (3)N7—O21.232 (3)
C3—H30.9300N7—O31.240 (2)
N4—C51.355 (3)N7—O11.263 (2)
C5—N1—N2103.71 (17)N1—C5—N4111.00 (18)
C3—N2—N1111.81 (18)N1—C5—H5124.5
C3—N2—H2126.9N4—C5—H5124.5
N1—N2—H2121.2N4—N6—H6A113.8
N2—C3—N4106.57 (17)N4—N6—H6B110.0
N2—C3—H3126.7H6A—N6—H6B108.6
N4—C3—H3126.7O2—N7—O3121.80 (19)
C3—N4—C5106.89 (17)O2—N7—O1119.72 (19)
C3—N4—N6123.56 (17)O3—N7—O1118.48 (19)
C5—N4—N6129.48 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.891.832.710 (2)173
N2—H2···N7i0.892.533.315 (2)148
N2—H2···O2i0.892.543.086 (2)120
N6—H6A···O30.962.223.077 (3)148
N6—H6B···O3ii0.952.303.008 (3)131
N6—H6B···O1ii0.952.453.112 (3)126
N6—H6B···O2iii0.952.593.167 (3)119
C3—H3···N1iii0.932.453.299 (3)151
C5—H5···O20.932.553.398 (3)153
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x1/2, y+1/2, z; (iii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC2H5N4+·NO3
Mr147.11
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)9.6200 (9), 5.2790 (3), 11.895 (1)
β (°) 96.667 (3)
V3)599.99 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.5 × 0.4 × 0.35
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1867, 685, 650
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.11
No. of reflections685
No. of parameters92
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.14

Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.891.832.710 (2)173.
N2—H2···N7i0.892.533.315 (2)148.
N2—H2···O2i0.892.543.086 (2)120.
N6—H6A···O30.962.223.077 (3)148.
N6—H6B···O3ii0.952.303.008 (3)131.
N6—H6B···O1ii0.952.453.112 (3)126.
N6—H6B···O2iii0.952.593.167 (3)119.
C3—H3···N1iii0.932.453.299 (3)151.
C5—H5···O20.932.553.398 (3)153.
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x1/2, y+1/2, z; (iii) x1/2, y1/2, z.
 

Acknowledgements

This work was supported financially by the Czech Science Foundation (grant No. 203/09/0878) and is part of the Long-term Research Plan of the Ministry of Education of the Czech Republic (No. MSM 0021620857).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBeckmann, U. & Brooker, S. (2003). Coord. Chem. Rev. 245, 17–29.  Web of Science CrossRef CAS Google Scholar
First citationBentiss, F., Lagrenée, M., Traisnel, M. & Hornez, J. C. (1999). Corros. Sci. 41, 789–803.  Web of Science CrossRef CAS Google Scholar
First citationHaasnoot, J. G. (2000). Coord. Chem. Rev. 200, 131–185.  Web of Science CrossRef Google Scholar
First citationHerbert, R. M. & Garrison, J. A. (1953). J. Org. Chem. 18, 872–877.  Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKlingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119–132.  Web of Science CrossRef CAS Google Scholar
First citationKomeda, S., Bombard, S., Perrier, S., Reedijk, J. & Kozelka, J. (2003). J. Inorg. Biochem. 96, 357–366.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, W., Wu, Q., Yu, Y., Luo, M., Hu, L., Gu, Y., Niu, F. & Hu, J. (2004). Spectrochim. Acta Part A, 60, 2343–2354.  CrossRef Google Scholar
First citationMatulková, I., Němec, I., Císařová, I., Němec, P. & Mička, Z. (2007). J. Mol. Struct. 834–836, 328–335.  Google Scholar
First citationMatulková, I., Němec, I., Teubner, K., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 873, 46–60.  Google Scholar
First citationMernari, B., Elattari, H., Traisnel, M., Bentiss, F. & Lagrenée, M. (1998). Corros. Sci. 40, 391–399.  Web of Science CrossRef CAS Google Scholar
First citationMuller, R. N., Elst, L. V. & Laurent, S. (2003). J. Am. Chem. Soc. 125, 8405–8407.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSanz, D., Pérez-Torralba, M., Alarćon, S. H., Claramunt, R. M., Foces-Foces, C. & Elguero, J. (2002). J. Org. Chem. 67, 1462–1471.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinditskii, V. P., Sokol, V. I., Fogelzang, A. E., Dutov, M. D., Serushkin, V. V., Porai-Koshits, M. A. & Svetlov, B. S. (1987). Zh. Neorg. Khim. 32, 1950–1955.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds