organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N′-[4-(di­methyl­amino)­benzyl­­idene]-N-[4-(3-methyl-3-phenyl­cyclo­but­yl)-1,3-thia­zol-2-yl]acetohydrazide

aDepartment of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey, bDepartment of Chemistry, Arts and Sciences Faculty, Fırat University, 23119 Elazığ, Turkey, and cDepartment of Chemistry, Arts and Science Faculty, Bitlis Eren University, 13000 Bitlis, Turkey
*Correspondence e-mail: ersin.inkaya@oposta.omu.edu.tr

(Received 12 November 2010; accepted 29 November 2010; online 15 December 2010)

The mol­ecular conformation of the title compound, C25H27ClN4OS, is stabilized by an intra­molecular benzyl­idine C—H⋯Nthia­zole hydrogen bond. The thiazole ring makes dihedral angles of 12.0 (3) and 20.4 (2)°, respectively, with the phenyl and benzene rings, while the phenyl and benzene rings make a dihedral angle of 22.6 (2)°. The crystal packing involves weak inter­molecular thia­zole C—H⋯Ocarbon­yl and methyl C—H⋯π hydrogen-bonding associations.

Related literature

For applications of related compounds, see: Brown et al. (1974[Brown, K., Cater, D. P., Cavalla, J. F., Green, D., Newberry, R. A. & Wilson, A. B. (1974). J. Med. Chem. 14, 1177-1181.]); Dehmlow & Schmidt (1990[Dehmlow, E. V. & Schmidt, S. S. (1990). Liebigs Ann. Chem., pp. 411-414.]); Foerster et al. (1979)[Foerster, H., Hofer, W., Mues, V., Eue, L. & Schmidt, R. R. (1979). FRG Patent 2822155.]; Roger et al. (1977[Roger, E., Pierre, C. J., Pualette, V., Gerard, G., Chepat, J. P. & Robert, G. (1977). Eur. J. Med. Chem. Chem. Ther. 12, 501-509.]); Sawhney et al. (1978)[Sawhney, S. N., Arora, S. K. Singh, J. V., Bansal, O. P. & Singh, S. P. (1978). J. Indian Chem. Soc. Sect. B, 16, 605-609.]; Slip et al. (1974)[Slip, P. I., Closier, M. & Neville, M. (1974). J. Med. Chem. 17, 207-209.]; Suzuki et al. (1979)[Suzuki, N., Tanaka, Y. & Dohmori, R. (1979). Chem. Pharm. Bull. 27, 1-11.]. For background to Schiff bases, see: Costamagna et al. (1992[Costamagna, J., Vargas, J., Latorre, R., Alvarado, A. & Mena, G. (1992). Coord. Chem. Rev. 119, 67-88.]); Fita et al. (2005[Fita, P., Luzina, E., Dziembowska, T., Kopec, D., Piatkowski, P., Radzewicz, Cz. & Grabowska, A. (2005). Chem. Phys. Lett. 416, 305-310.]); Sridharan et al. (2004[Sridharan, V., Muthusubramanian, S., Sivasubramanian, S. & Polborn, K. (2004). J. Mol. Struct. 707, 161-167.]). For related structures, see: Dinçer et al. (2004[Dinçer, M., Özdemir, N., Çukurovalı, A., Yılmaz, İ. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1523-o1524.]); Demir et al. (2006[Demir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, I. (2006). Acta Cryst. E62, o298-o299.]); Özdemir et al. (2004[Özdemir, N., Dinçer, M., Yılmaz, İ. & Çukurovalı, A. (2004). Acta Cryst. E60, o145-o147.]); Soylu et al. (2005[Soylu, M. S., Çalışkan, N., Çukurovali, A., Yılmaz, I. & Büyükgüngör, O. (2005). Acta Cryst. C61, o725-o727.]); Xu et al. (1994[Xu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994). Acta Cryst. C50, 1169-1171.]). For bond-length data, see: Allen (1984[Allen, F. H. (1984). Acta Cryst. B40, 64-72.]).

[Scheme 1]

Experimental

Crystal data
  • C25H27ClN4OS

  • Mr = 467.02

  • Monoclinic, P 21 /c

  • a = 9.0194 (5) Å

  • b = 26.7946 (11) Å

  • c = 13.1773 (7) Å

  • β = 132.054 (3)°

  • V = 2364.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.62 × 0.36 × 0.02 mm

Data collection
  • Stoe IPDS 2 CCD diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.533, Tmax = 0.896

  • 22742 measured reflections

  • 4446 independent reflections

  • 2250 reflections with I > 2σ(I)

  • Rint = 0.143

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.121

  • S = 1.01

  • 4446 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯N1 0.93 2.21 2.838 (5) 124
C13—H13⋯O1i 0.93 2.50 3.374 (5) 157
C16—H16ACg1ii 0.97 2.57 3.493 159
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

3-Substituted cyclobutane carboxylic acids exhibit anti-inflammatory and anti-depressant activity (Roger et al.,1977), as well as having liquid crystal properties (Dehmlow & Schmidt, 1990). Also, various thiazole derivatives have been shown to possess herbicidal (Foerster, et al., 1979), anti-inflammatory (Sawhney et al., 1978; Brown et al., 1974), anti-microbial (Suzuki et al.,1979), and anti-parasitic properties (Slip et al., 1974). Schiff bases are important in the development of coordination chemistry and Schiff base ligands are of interest mainly because of the existence of typical hydrogen bonds and tautomerism between the phenol–imine and keto–amine forms (Costamagna et al., 1992; Sridharan et al., 2004; Fita et al., 2005). The synthesis and structure of the title compound, N-(4-dimethylaminobenzylidene)-N- [4-(3-methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-chloroacetic acid hydrazide, C25H27N4OClS (I) is reported here.

In the structure of (I) (Fig. 1) the phenyl and thiazole rings are cis-related with respect to the cyclobutane ring. The cyclobutane ring is puckered, with a dihedral angle of 22.99 (47)° between the two three-membered halves of the ring, which is more puckered than other similar examples from the literature, e.g. 11.55 (3)°, (Özdemir et al., 2004) and 19.8 (3)° (Dinçer et al., 2004). The dihedral angle between plane A (C1—C6), the thiazole plane B (N1/C14/S1/C13/C12) and the phenyl plane C (C18—C21) are 11.95 (25)° (A/B), 22.61 (23)° (A/C) and 20.36 (23)° (B/C), respectively. In the thiazole ring, the S1—C14 and S1—C13 bond lengths are 1.743 (4) Å and 1.707 (4) Å which are shorter than the accepted value for an S—Csp2 single bond (1.76 Å; Allen, 1984) and is the result the conjugation of the electrons of atom S1 with atoms C14 and C13. The C—Cl and CO bond distances are 1.779 (3) Å and 1.217 (4) Å, respectively, and these values are significantly shorter than those in the literature [1.807 (12) and 1.187 (16) Å, respectively (Demir et al., 2006]. The C17N3 bond length [1.276 (4) Å] compares with a literature value of 1.285 (7) Å (Xu et al., 1994). In the thiazole ring the C12—N1 and C14N1 bond lengths [1.389 (5) and 1.292 (4) Å, respectively] compare with literature values of 1.394 (4) and 1.339 (4)Å, respectively (Soylu et al., 2005).

The conformation of the azide substituent ring systems of the title compound is stabilized by an intramolecular benzylidine C17—H···N1thiazole hydrogen bond (Fig. 1, Table 1) and crystal packing involves weak intermolecular thiazole C13—H···O1carbonyl and methyl C16—H···π (phenyl ring C1–C6) hydrogen-bonding associations (Fig. 2).

Related literature top

For applications of related compounds, see: Brown et al. (1974); Dehmlow & Schmidt (1990); Foerster et al. (1979); Roger et al. (1977); Sawhney et al. (1978); Slip et al. (1974); Suzuki et al. (1979). For background to Schiff bases, see: Costamagna et al. (1992); Fita et al. (2005); Sridharan et al. (2004). For related structures, see: Dinçer et al. (2004); Demir et al. (2006); Özdemir et al. (2004); Soylu et al. (2005); Xu et al. (1994). For bond-length data, see: Allen (1984).

Experimental top

A solution of 1 mmol of chloroacetyl chloride in 10 ml of 1,4-dioxane was added to a mixture of 0.3905 g (1 mmol) of dimethyl-(4-{[4-(3-methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-hydrazonomethyl} -phenylamine and 1 mmol of triethylamine in 20 ml of 1,4-dioxane, at room temperature with continuous stirring. The course of the reaction was monitored by IR spectroscopy. The target product was precipitated with the slow addition of water, filtered, washed with copious cold ethanol and dried in air. The shiny crystals suitable for X-ray analysis was obtained by slow evaporation from an alcoholic solution. Yield: 83%, m.p. 420 K (EtOH). IR (KBr, ν cm-1): 2974–2813 (aliphatic), 1703 (C=O), 1612 (C=N thiazole), 728 (–CH2—Cl),634 (C—S). 1H NMR (CDCl3, TMS, δ, p.p.m.): 1.57 (s, 3H, –CH3, on cyclobutane), 2.50–2.65 (m, 4H, –CH2– on cyclobutane), 3.05 (s, 6H, –CH3 on aniline),3.77 (quint, j = 8.78 Hz, 1H, >CH– on cyclobutane),4.80 (s, 2H, –CH2—Cl),6.66 (d, j = 8.78 Hz, 2H, aromatic), 6.82 (s, 1H, =CH—S on thiazole), 7.14–7.21 (m, 3H, aromatics), 7.28 (t, j = 6.95 Hz, 2H, aromatic), 7.44 (d, j = 8.78 Hz, 2H, aromatic), 8.78 (s, 1H, –NCH– azomethine). 13C NMR (CDCl3, TMS, δ, p.p.m.): 167.07, 156.56, 155.42, 152.71, 152.38, 129.88, 128.46, 125.50, 125.00, 120.90, 111.89, 111.30, 44.03, 41.21, 40.35, 38.95, 31.01, 30.10.

Refinement top

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.96, 0.97, 0.98 and 0.93 Å for CH3, CH2, CH and CH (aromatic), respectively. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq(aromatic, methylene or methine C) or 1.5Ueq (methyl C).

Structure description top

3-Substituted cyclobutane carboxylic acids exhibit anti-inflammatory and anti-depressant activity (Roger et al.,1977), as well as having liquid crystal properties (Dehmlow & Schmidt, 1990). Also, various thiazole derivatives have been shown to possess herbicidal (Foerster, et al., 1979), anti-inflammatory (Sawhney et al., 1978; Brown et al., 1974), anti-microbial (Suzuki et al.,1979), and anti-parasitic properties (Slip et al., 1974). Schiff bases are important in the development of coordination chemistry and Schiff base ligands are of interest mainly because of the existence of typical hydrogen bonds and tautomerism between the phenol–imine and keto–amine forms (Costamagna et al., 1992; Sridharan et al., 2004; Fita et al., 2005). The synthesis and structure of the title compound, N-(4-dimethylaminobenzylidene)-N- [4-(3-methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-chloroacetic acid hydrazide, C25H27N4OClS (I) is reported here.

In the structure of (I) (Fig. 1) the phenyl and thiazole rings are cis-related with respect to the cyclobutane ring. The cyclobutane ring is puckered, with a dihedral angle of 22.99 (47)° between the two three-membered halves of the ring, which is more puckered than other similar examples from the literature, e.g. 11.55 (3)°, (Özdemir et al., 2004) and 19.8 (3)° (Dinçer et al., 2004). The dihedral angle between plane A (C1—C6), the thiazole plane B (N1/C14/S1/C13/C12) and the phenyl plane C (C18—C21) are 11.95 (25)° (A/B), 22.61 (23)° (A/C) and 20.36 (23)° (B/C), respectively. In the thiazole ring, the S1—C14 and S1—C13 bond lengths are 1.743 (4) Å and 1.707 (4) Å which are shorter than the accepted value for an S—Csp2 single bond (1.76 Å; Allen, 1984) and is the result the conjugation of the electrons of atom S1 with atoms C14 and C13. The C—Cl and CO bond distances are 1.779 (3) Å and 1.217 (4) Å, respectively, and these values are significantly shorter than those in the literature [1.807 (12) and 1.187 (16) Å, respectively (Demir et al., 2006]. The C17N3 bond length [1.276 (4) Å] compares with a literature value of 1.285 (7) Å (Xu et al., 1994). In the thiazole ring the C12—N1 and C14N1 bond lengths [1.389 (5) and 1.292 (4) Å, respectively] compare with literature values of 1.394 (4) and 1.339 (4)Å, respectively (Soylu et al., 2005).

The conformation of the azide substituent ring systems of the title compound is stabilized by an intramolecular benzylidine C17—H···N1thiazole hydrogen bond (Fig. 1, Table 1) and crystal packing involves weak intermolecular thiazole C13—H···O1carbonyl and methyl C16—H···π (phenyl ring C1–C6) hydrogen-bonding associations (Fig. 2).

For applications of related compounds, see: Brown et al. (1974); Dehmlow & Schmidt (1990); Foerster et al. (1979); Roger et al. (1977); Sawhney et al. (1978); Slip et al. (1974); Suzuki et al. (1979). For background to Schiff bases, see: Costamagna et al. (1992); Fita et al. (2005); Sridharan et al. (2004). For related structures, see: Dinçer et al. (2004); Demir et al. (2006); Özdemir et al. (2004); Soylu et al. (2005); Xu et al. (1994). For bond-length data, see: Allen (1984).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) drawing of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The hydrogen bond is shown as a dashed line. For clarity, only H atoms involved in hydrogen bonding have been included.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing the C—H···O and C—H···π interactions. For clarity, only H atoms involved in hydrogen bonding have been included. For symmetry codes, see Table 1.
2-Chloro-N'-[4-(dimethylamino)benzylidene]-N-[4-(3-methyl-3- phenylcyclobutyl)-1,3-thiazol-2-yl]acetohydrazide top
Crystal data top
C25H27ClN4OSF(000) = 984
Mr = 467.02Dx = 1.312 Mg m3
Monoclinic, P21/cMelting point: 420 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.0194 (5) ÅCell parameters from 14801 reflections
b = 26.7946 (11) Åθ = 1.5–26.2°
c = 13.1773 (7) ŵ = 0.28 mm1
β = 132.054 (3)°T = 296 K
V = 2364.6 (2) Å3Plate, brown
Z = 40.62 × 0.36 × 0.02 mm
Data collection top
Stoe IPDS 2 CCD
diffractometer
4446 independent reflections
Radiation source: fine-focus sealed tube2250 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.143
Detector resolution: 6.67 pixels mm-1θmax = 25.6°, θmin = 1.5°
rotation method scansh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 3232
Tmin = 0.533, Tmax = 0.896l = 1616
22742 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0287P)2]
where P = (Fo2 + 2Fc2)/3
4446 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C25H27ClN4OSV = 2364.6 (2) Å3
Mr = 467.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0194 (5) ŵ = 0.28 mm1
b = 26.7946 (11) ÅT = 296 K
c = 13.1773 (7) Å0.62 × 0.36 × 0.02 mm
β = 132.054 (3)°
Data collection top
Stoe IPDS 2 CCD
diffractometer
4446 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2250 reflections with I > 2σ(I)
Tmin = 0.533, Tmax = 0.896Rint = 0.143
22742 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
4446 reflectionsΔρmin = 0.17 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45265 (18)0.13475 (4)0.49349 (10)0.0796 (4)
N10.2748 (4)0.14808 (12)0.0565 (3)0.0585 (9)
N20.3574 (4)0.12803 (12)0.1519 (3)0.0563 (8)
N30.3105 (4)0.07697 (12)0.1292 (3)0.0552 (8)
N40.1455 (6)0.15632 (14)0.0154 (4)0.0862 (12)
O10.4501 (5)0.18872 (11)0.3042 (3)0.0788 (9)
S10.43474 (18)0.22208 (4)0.11117 (10)0.0743 (4)
C10.1810 (5)0.05376 (17)0.5909 (3)0.0609 (11)
H10.17770.06740.65420.073*
C20.2743 (6)0.00874 (17)0.6195 (4)0.0700 (12)
H20.33080.00790.70040.084*
C30.2841 (6)0.01176 (17)0.5289 (5)0.0764 (13)
H30.34980.04190.54880.092*
C40.1959 (6)0.01272 (18)0.4082 (4)0.0755 (13)
H40.20120.00110.34600.091*
C50.1001 (6)0.05746 (17)0.3794 (4)0.0661 (11)
H50.03960.07330.29700.079*
C60.0916 (5)0.07958 (15)0.4710 (3)0.0529 (10)
C70.0148 (5)0.12898 (15)0.4359 (3)0.0572 (10)
C80.0100 (6)0.15109 (18)0.5534 (4)0.0809 (14)
H8A0.06090.18220.52490.121*
H8B0.14910.15670.63050.121*
H8C0.04270.12830.57860.121*
C90.2381 (5)0.13060 (16)0.3001 (3)0.0628 (11)
H9A0.27540.10360.23770.075*
H9B0.33090.13300.31380.075*
C100.0258 (5)0.16916 (15)0.3724 (4)0.0661 (11)
H10A0.08080.15570.33520.079*
H10B0.10510.19700.43300.079*
C110.2018 (5)0.18072 (15)0.2618 (3)0.0617 (11)
H110.23690.20890.28960.074*
C120.2851 (5)0.18755 (15)0.1199 (3)0.0596 (11)
C130.3684 (6)0.22920 (15)0.0435 (4)0.0731 (12)
H130.38750.25840.07160.088*
C140.3471 (5)0.16094 (14)0.0637 (3)0.0543 (10)
C150.4014 (5)0.14549 (16)0.2682 (3)0.0563 (10)
C160.3891 (6)0.10708 (15)0.3459 (3)0.0599 (11)
H16A0.47990.07980.37310.072*
H16B0.25470.09370.28770.072*
C170.3002 (5)0.05152 (15)0.0428 (4)0.0593 (11)
H170.31850.06710.01120.071*
C180.2602 (5)0.00161 (14)0.0285 (3)0.0507 (9)
C190.2467 (6)0.02964 (16)0.0652 (3)0.0650 (12)
H190.26260.01390.12030.078*
C200.2104 (6)0.08041 (16)0.0799 (4)0.0677 (12)
H200.20080.09770.14530.081*
C210.2381 (5)0.02730 (16)0.1094 (3)0.0607 (11)
H210.24650.00970.17400.073*
C220.2044 (6)0.07735 (16)0.0970 (4)0.0646 (11)
H220.19210.09290.15410.077*
C230.1877 (5)0.10629 (16)0.0009 (4)0.0597 (11)
C240.1179 (8)0.18412 (18)0.1206 (5)0.1007 (17)
H24A0.06320.21630.13010.151*
H24B0.24430.18810.09610.151*
H24C0.02790.16640.20560.151*
C250.1709 (7)0.18470 (19)0.0877 (5)0.1005 (17)
H25A0.30760.18280.17200.151*
H25B0.13620.21890.05930.151*
H25C0.08590.17140.10080.151*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1198 (9)0.0642 (8)0.0901 (7)0.0022 (7)0.0849 (7)0.0016 (6)
N10.0693 (19)0.050 (2)0.0533 (17)0.0062 (16)0.0399 (16)0.0047 (15)
N20.070 (2)0.041 (2)0.0609 (18)0.0027 (16)0.0450 (17)0.0051 (15)
N30.0614 (19)0.0405 (19)0.0599 (18)0.0059 (15)0.0391 (16)0.0039 (15)
N40.133 (3)0.040 (2)0.096 (3)0.015 (2)0.081 (3)0.0071 (19)
O10.124 (2)0.048 (2)0.0852 (18)0.0129 (18)0.0785 (18)0.0124 (15)
S10.1041 (8)0.0462 (7)0.0685 (6)0.0156 (6)0.0561 (6)0.0103 (5)
C10.057 (2)0.065 (3)0.054 (2)0.004 (2)0.0342 (19)0.000 (2)
C20.061 (3)0.058 (3)0.069 (3)0.001 (2)0.034 (2)0.011 (2)
C30.067 (3)0.048 (3)0.096 (3)0.001 (2)0.047 (3)0.004 (2)
C40.083 (3)0.071 (3)0.079 (3)0.002 (3)0.057 (3)0.016 (2)
C50.076 (3)0.064 (3)0.062 (2)0.001 (2)0.048 (2)0.004 (2)
C60.052 (2)0.059 (3)0.053 (2)0.007 (2)0.0370 (19)0.0055 (18)
C70.060 (2)0.058 (3)0.0501 (19)0.003 (2)0.0356 (19)0.0014 (18)
C80.087 (3)0.083 (4)0.065 (2)0.016 (3)0.048 (2)0.008 (2)
C90.063 (2)0.067 (3)0.056 (2)0.003 (2)0.039 (2)0.0031 (19)
C100.071 (3)0.053 (3)0.065 (2)0.001 (2)0.042 (2)0.003 (2)
C110.069 (3)0.052 (3)0.057 (2)0.009 (2)0.039 (2)0.0017 (18)
C120.064 (2)0.050 (3)0.055 (2)0.008 (2)0.035 (2)0.0020 (18)
C130.098 (3)0.043 (3)0.069 (2)0.017 (2)0.052 (2)0.0034 (19)
C140.058 (2)0.042 (2)0.054 (2)0.0026 (18)0.0336 (19)0.0028 (17)
C150.064 (2)0.052 (3)0.060 (2)0.002 (2)0.044 (2)0.0001 (19)
C160.071 (3)0.053 (3)0.066 (2)0.005 (2)0.050 (2)0.0013 (18)
C170.070 (3)0.045 (3)0.062 (2)0.000 (2)0.045 (2)0.0029 (19)
C180.055 (2)0.041 (2)0.0541 (19)0.0010 (18)0.0355 (18)0.0001 (17)
C190.089 (3)0.051 (3)0.058 (2)0.001 (2)0.051 (2)0.0007 (19)
C200.099 (3)0.048 (3)0.065 (2)0.001 (2)0.059 (2)0.0039 (19)
C210.072 (3)0.053 (3)0.063 (2)0.007 (2)0.048 (2)0.0086 (19)
C220.078 (3)0.054 (3)0.069 (2)0.010 (2)0.052 (2)0.001 (2)
C230.062 (2)0.048 (3)0.062 (2)0.002 (2)0.038 (2)0.0016 (19)
C240.133 (4)0.051 (3)0.114 (4)0.012 (3)0.081 (3)0.015 (3)
C250.127 (4)0.065 (4)0.111 (3)0.012 (3)0.081 (3)0.012 (3)
Geometric parameters (Å, º) top
Cl1—C161.779 (3)C9—C111.545 (5)
N1—C141.292 (4)C9—H9A0.9700
N1—C121.389 (5)C9—H9B0.9700
N2—C151.382 (4)C10—C111.558 (5)
N2—N31.404 (4)C10—H10A0.9700
N2—C141.412 (5)C10—H10B0.9700
N3—C171.276 (4)C11—C121.487 (5)
N4—C231.371 (5)C11—H110.9800
N4—C251.435 (5)C12—C131.345 (5)
N4—C241.441 (6)C13—H130.9300
O1—C151.217 (4)C15—C161.508 (5)
S1—C131.707 (4)C16—H16A0.9700
S1—C141.743 (4)C16—H16B0.9700
C1—C21.371 (6)C17—C181.450 (5)
C1—C61.385 (5)C17—H170.9300
C1—H10.9300C18—C191.379 (5)
C2—C31.370 (6)C18—C211.392 (5)
C2—H20.9300C19—C201.382 (5)
C3—C41.378 (6)C19—H190.9300
C3—H30.9300C20—C231.396 (5)
C4—C51.374 (6)C20—H200.9300
C4—H40.9300C21—C221.360 (5)
C5—C61.392 (5)C21—H210.9300
C5—H50.9300C22—C231.405 (5)
C6—C71.514 (5)C22—H220.9300
C7—C81.528 (5)C24—H24A0.9600
C7—C101.550 (5)C24—H24B0.9600
C7—C91.560 (5)C24—H24C0.9600
C8—H8A0.9600C25—H25A0.9600
C8—H8B0.9600C25—H25B0.9600
C8—H8C0.9600C25—H25C0.9600
C14—N1—C12110.6 (3)C12—C11—H11110.9
C15—N2—N3112.8 (3)C9—C11—H11110.9
C15—N2—C14120.9 (3)C10—C11—H11110.9
N3—N2—C14126.1 (3)C13—C12—N1114.2 (3)
C17—N3—N2122.9 (3)C13—C12—C11127.0 (4)
C23—N4—C25121.3 (4)N1—C12—C11118.8 (3)
C23—N4—C24120.5 (4)C12—C13—S1112.0 (3)
C25—N4—C24116.9 (4)C12—C13—H13124.0
C13—S1—C1487.95 (19)S1—C13—H13124.0
C2—C1—C6122.3 (4)N1—C14—N2122.9 (3)
C2—C1—H1118.9N1—C14—S1115.2 (3)
C6—C1—H1118.9N2—C14—S1121.8 (3)
C3—C2—C1119.9 (4)O1—C15—N2121.0 (4)
C3—C2—H2120.0O1—C15—C16123.8 (3)
C1—C2—H2120.0N2—C15—C16115.2 (3)
C2—C3—C4119.4 (4)C15—C16—Cl1110.0 (3)
C2—C3—H3120.3C15—C16—H16A109.7
C4—C3—H3120.3Cl1—C16—H16A109.7
C5—C4—C3120.3 (4)C15—C16—H16B109.7
C5—C4—H4119.9Cl1—C16—H16B109.7
C3—C4—H4119.9H16A—C16—H16B108.2
C4—C5—C6121.5 (4)N3—C17—C18120.2 (4)
C4—C5—H5119.3N3—C17—H17119.9
C6—C5—H5119.3C18—C17—H17119.9
C1—C6—C5116.6 (4)C19—C18—C21116.4 (4)
C1—C6—C7123.4 (3)C19—C18—C17121.1 (4)
C5—C6—C7120.0 (3)C21—C18—C17122.5 (4)
C6—C7—C8113.4 (3)C18—C19—C20122.1 (4)
C6—C7—C10116.2 (3)C18—C19—H19118.9
C8—C7—C10110.5 (4)C20—C19—H19118.9
C6—C7—C9116.2 (3)C19—C20—C23121.6 (4)
C8—C7—C9110.6 (3)C19—C20—H20119.2
C10—C7—C987.2 (3)C23—C20—H20119.2
C7—C8—H8A109.5C22—C21—C18122.0 (4)
C7—C8—H8B109.5C22—C21—H21119.0
H8A—C8—H8B109.5C18—C21—H21119.0
C7—C8—H8C109.5C21—C22—C23122.2 (4)
H8A—C8—H8C109.5C21—C22—H22118.9
H8B—C8—H8C109.5C23—C22—H22118.9
C11—C9—C790.3 (3)N4—C23—C20122.3 (4)
C11—C9—H9A113.6N4—C23—C22122.1 (4)
C7—C9—H9A113.6C20—C23—C22115.6 (4)
C11—C9—H9B113.6N4—C24—H24A109.5
C7—C9—H9B113.6N4—C24—H24B109.5
H9A—C9—H9B110.9H24A—C24—H24B109.5
C7—C10—C1190.2 (3)N4—C24—H24C109.5
C7—C10—H10A113.6H24A—C24—H24C109.5
C11—C10—H10A113.6H24B—C24—H24C109.5
C7—C10—H10B113.6N4—C25—H25A109.5
C11—C10—H10B113.6N4—C25—H25B109.5
H10A—C10—H10B110.9H25A—C25—H25B109.5
C12—C11—C9118.6 (3)N4—C25—H25C109.5
C12—C11—C10116.1 (3)H25A—C25—H25C109.5
C9—C11—C1087.5 (3)H25B—C25—H25C109.5
C15—N2—N3—C17167.2 (3)C11—C12—C13—S1177.2 (3)
C14—N2—N3—C1718.0 (5)C14—S1—C13—C120.9 (3)
C6—C1—C2—C31.1 (6)C12—N1—C14—N2179.4 (3)
C1—C2—C3—C41.4 (7)C12—N1—C14—S10.1 (4)
C2—C3—C4—C50.5 (7)C15—N2—C14—N1168.1 (4)
C3—C4—C5—C60.9 (7)N3—N2—C14—N16.4 (6)
C2—C1—C6—C50.2 (6)C15—N2—C14—S112.6 (5)
C2—C1—C6—C7179.1 (4)N3—N2—C14—S1172.9 (3)
C4—C5—C6—C11.2 (6)C13—S1—C14—N10.5 (3)
C4—C5—C6—C7179.8 (4)C13—S1—C14—N2178.8 (3)
C1—C6—C7—C87.8 (5)N3—N2—C15—O1178.1 (4)
C5—C6—C7—C8173.3 (4)C14—N2—C15—O16.8 (6)
C1—C6—C7—C10137.5 (4)N3—N2—C15—C160.4 (4)
C5—C6—C7—C1043.6 (5)C14—N2—C15—C16174.7 (3)
C1—C6—C7—C9122.0 (4)O1—C15—C16—Cl10.7 (5)
C5—C6—C7—C956.8 (5)N2—C15—C16—Cl1179.2 (3)
C6—C7—C9—C11134.4 (3)N2—N3—C17—C18177.1 (3)
C8—C7—C9—C1194.4 (4)N3—C17—C18—C19179.4 (3)
C10—C7—C9—C1116.5 (3)N3—C17—C18—C212.1 (6)
C6—C7—C10—C11134.3 (3)C21—C18—C19—C200.9 (6)
C8—C7—C10—C1194.7 (3)C17—C18—C19—C20179.5 (4)
C9—C7—C10—C1116.3 (3)C18—C19—C20—C230.8 (6)
C7—C9—C11—C12134.9 (3)C19—C18—C21—C220.1 (6)
C7—C9—C11—C1016.4 (3)C17—C18—C21—C22178.7 (4)
C7—C10—C11—C12137.2 (3)C18—C21—C22—C230.7 (6)
C7—C10—C11—C916.5 (3)C25—N4—C23—C20164.4 (4)
C14—N1—C12—C130.8 (5)C24—N4—C23—C201.5 (7)
C14—N1—C12—C11177.7 (3)C25—N4—C23—C2217.7 (7)
C9—C11—C12—C13140.8 (4)C24—N4—C23—C22176.3 (4)
C10—C11—C12—C13117.0 (5)C19—C20—C23—N4177.9 (4)
C9—C11—C12—N140.9 (5)C19—C20—C23—C220.0 (6)
C10—C11—C12—N161.3 (5)C21—C22—C23—N4177.2 (4)
N1—C12—C13—S11.2 (5)C21—C22—C23—C200.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···N10.932.212.838 (5)124
C13—H13···O1i0.932.503.374 (5)157
C16—H16A···Cg1ii0.972.573.493159
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H27ClN4OS
Mr467.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.0194 (5), 26.7946 (11), 13.1773 (7)
β (°) 132.054 (3)
V3)2364.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.62 × 0.36 × 0.02
Data collection
DiffractometerStoe IPDS 2 CCD
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.533, 0.896
No. of measured, independent and
observed [I > 2σ(I)] reflections
22742, 4446, 2250
Rint0.143
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.121, 1.01
No. of reflections4446
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···N10.932.212.838 (5)123.8
C13—H13···O1i0.932.503.374 (5)157.2
C16—H16A···Cg1ii0.972.573.493159
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1.
 

Acknowledgements

This study was supported financially by the Research Center of Ondokuz Mayıs University (Project No. F-461).

References

First citationAllen, F. H. (1984). Acta Cryst. B40, 64–72.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, K., Cater, D. P., Cavalla, J. F., Green, D., Newberry, R. A. & Wilson, A. B. (1974). J. Med. Chem. 14, 1177–1181.  CrossRef Web of Science Google Scholar
First citationCostamagna, J., Vargas, J., Latorre, R., Alvarado, A. & Mena, G. (1992). Coord. Chem. Rev. 119, 67–88.  CrossRef CAS Web of Science Google Scholar
First citationDehmlow, E. V. & Schmidt, S. S. (1990). Liebigs Ann. Chem., pp. 411–414.  Google Scholar
First citationDemir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, I. (2006). Acta Cryst. E62, o298–o299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDinçer, M., Özdemir, N., Çukurovalı, A., Yılmaz, İ. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1523–o1524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFita, P., Luzina, E., Dziembowska, T., Kopec, D., Piatkowski, P., Radzewicz, Cz. & Grabowska, A. (2005). Chem. Phys. Lett. 416, 305–310.  Web of Science CrossRef CAS Google Scholar
First citationFoerster, H., Hofer, W., Mues, V., Eue, L. & Schmidt, R. R. (1979). FRG Patent 2822155.  Google Scholar
First citationÖzdemir, N., Dinçer, M., Yılmaz, İ. & Çukurovalı, A. (2004). Acta Cryst. E60, o145–o147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoger, E., Pierre, C. J., Pualette, V., Gerard, G., Chepat, J. P. & Robert, G. (1977). Eur. J. Med. Chem. Chem. Ther. 12, 501–509.  Google Scholar
First citationSawhney, S. N., Arora, S. K. Singh, J. V., Bansal, O. P. & Singh, S. P. (1978). J. Indian Chem. Soc. Sect. B, 16, 605–609.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlip, P. I., Closier, M. & Neville, M. (1974). J. Med. Chem. 17, 207–209.  PubMed Web of Science Google Scholar
First citationSoylu, M. S., Çalışkan, N., Çukurovali, A., Yılmaz, I. & Büyükgüngör, O. (2005). Acta Cryst. C61, o725–o727.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridharan, V., Muthusubramanian, S., Sivasubramanian, S. & Polborn, K. (2004). J. Mol. Struct. 707, 161–167.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuzuki, N., Tanaka, Y. & Dohmori, R. (1979). Chem. Pharm. Bull. 27, 1–11.  CrossRef CAS PubMed Web of Science Google Scholar
First citationXu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994). Acta Cryst. C50, 1169–1171.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds