organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl 3-(3,4-dihy­dr­oxy­phen­yl)acrylate

aCollege of Chemistry and Chemical Engineering, Guangxi University, Guangxi 530004, People's Republic of China
*Correspondence e-mail: cuiwulin@yahoo.com.cn

(Received 21 October 2010; accepted 28 December 2010; online 12 January 2011)

The benzene ring in the title compound, C10H10O4, makes an angle of 4.4 (1)° with the C—C—C—O linker. The hy­droxy groups are involved in both intra- and inter­molecular O—H⋯O hydrogen bonds. The crystal packing is stabilized by O—H⋯O hydrogen-bonding inter­actions. The mol­ecules of the caffeic acid ester form a dimeric structure in a head-to-head manner along the a axis through O—H⋯O hydrogen bonds. The dimers inter­act with one another through O—H⋯O hydrogen bonds, forming supermolecular chains. These chains are further extended through C—H⋯O hydrogen bonds as well as van der Waals inter­actions into the final three-dimensional architecture.

Related literature

For properties of caffeic acids and their esters, see: Altug et al. (2008[Altug, M. E., Serarslan, Y. & Bal, R. (2008). Brain Res. 1201, 135-142.]); Ates et al. (2006[Ates, B., Dogru, M. I. & Gul, M. (2006). Fundam. Clin. Pharmacol. 20, 283-289.]); Atik et al. (2006[Atik, E., Goeruer, S. & Kiper, A. N. (2006). Pharmacol. Res. 54, 293-297.]); Chun et al. (2008[Chun, N. X., Wei, X. H., Wei, Z. & Guo, H. W. (2008). J. Chem. Crystallogr. 38, 583-586.]); Huang et al. (2010[Huang, L., Lin, C. W., Li, A. Y., Wei, B. Y., Teng, J. W. & Li, L. (2010). Nat. Prod. Commun. 5, 1-4.]); Hwang et al. (2001[Hwang, D. J., Kim, S. N. & Choi, J. H. (2001). Bioorg. Med. Chem. 9, 1429-1437.]); Padinchare et al. (2001[Padinchare, R., Irina, V., Paul, C., Dirk, V. B., Koen, A. & Achiel, H. (2001). Bioorg. Med. Chem. Lett. 11, 215-217.]). For a polymorphic form of the title compound, see: Chen et al. (1979[Chen, J. S., Watson, W. H., Chiang, M. T. & Silva, M. (1979). Cryst. Struct. Commun. 8, 143.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10O4

  • Mr = 194.18

  • Triclinic, [P \overline 1]

  • a = 5.129 (5) Å

  • b = 9.969 (8) Å

  • c = 10.586 (9) Å

  • α = 117.627 (7)°

  • β = 97.924 (11)°

  • γ = 94.322 (11)°

  • V = 468.9 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.33 × 0.24 × 0.18 mm

Data collection
  • Multiwire proportional diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.981

  • 2494 measured reflections

  • 1619 independent reflections

  • 1337 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.120

  • S = 1.05

  • 1619 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3 0.82 2.28 2.723 (2) 114
O4—H4A⋯O3i 0.82 2.15 2.835 (2) 141
O3—H3A⋯O2ii 0.82 1.95 2.764 (2) 175
C10—H10A⋯O2ii 0.93 2.56 3.260 (4) 132
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Some naturally occurring caffeic acids and their esters attract much attention in biology and medicine (Hwang et al., 2001; Altug et al., 2008). These compounds show antiviral, antibacterial, vasoactive, antiatherogenic, antiproliferative, antioxidant and antiinflammatory properties (Atik et al., 2006; Padinchare et al., 2001; Ates et al., 2006). Our previous research found that the phenolic acids compounds including caffeic acid, chlorogenic acid, ferulic acid, vanillic acid, syringic acid and protocatechuic acid from Blumea riparia DC have a significant role at antiplatelet activity (Huang et al.., 2010). This prompted us to synthesize a series of caffeic acid esters and amides to investigate their properties. In this paper, we report a polymorph of C10H10O4 (Chen et al.., 1979).

In the title compound (Fig. 1), all values of the geometric parameters are normal. The benzene ring is planar within experimental error and it makes an angle of 4.4 (1)° to the linker (C2–C3–C4–O2). Hydroxy groups contribute to intermolecular O—H···O hydrogen bonds. In the case of caffeic esters, the presence of an ethylenic spacer allows the formation of a conjugated system, strongly stabilized through π-electron delocalization (Chun et al., 2008).

The bond C3=C4 is a trans-double bond. The crystal packing is stabilized by intramolecular (Table 1, entries 1 and 2) and intermolecular hydrogen-bonding interactions (Table 1, remaining entries). The molecules of the caffeic acid ester form a dimeric structure through O—H···O hydrogen bonds along the a axis in a head-to-head manner (Table 1, third entry) . The dimer interacts with another dimmer through O—H···O hydrogen bonds (Table 1, fourth entry) to form one-dimensional supermolecule chains. These one-dimensional supermolecule chains are further extended through C—H···O hydrogen bonds (Table 1, fifth entry) as well as van der Waals interactions into the final 3-D architecture (Fig.2).

Related literature top

For properties of caffeic acids and their esters, see: Altug et al. (2008); Ates et al. (2006); Atik et al. (2006); Chun et al. (2008); Huang et al. (2010); Hwang et al. (2001); Padinchare et al. (2001). For a polymorphic form of the title compound, see: Chen et al. (1979)

Experimental top

Commercial caffeic acid (1.79 g, 10 mmol) was dissolved in tetrahydrofuran solution(16 ml), followed by methanol (16 ml) and the addition of concentrated hydrochloric acid (8 ml). The mixture was stirred at 60 °C for 60 minutes, followed by the addition of water and extracted with ethyl acetate. The organic layer was washed with sodium bicarbonate and water, dried over magnesium sulfate, and concentrated to give a solid residue. The residue was recrystallized from petroleum ether to give the title compound as a colourless crystal (1.64 g, yield: 84%)

Refinement top

All the H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso = 1.2Ueq.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (E)-methyl 3-(3,4-dihydroxyphenyl)acrylate with displacement ellipsoids at a 45% probability level. Dashed lines represent intramolecular hydrogen bonds.
[Figure 2] Fig. 2. Packing of the molecules drawn along the b axis. Dashed lines represent hydrogen bonds.
(E)-Methyl 3-(3,4-dihydroxyphenyl)acrylate top
Crystal data top
C10H10O4Z = 2
Mr = 194.18F(000) = 204
Triclinic, P1Dx = 1.375 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.129 (5) ÅCell parameters from 1619 reflections
b = 9.969 (8) Åθ = 2.2–25.0°
c = 10.586 (9) ŵ = 0.11 mm1
α = 117.627 (7)°T = 296 K
β = 97.924 (11)°Block, colourless
γ = 94.322 (11)°0.33 × 0.24 × 0.18 mm
V = 468.9 (7) Å3
Data collection top
Multiwire proportional
diffractometer
1619 independent reflections
Radiation source: fine-focus sealed tube1337 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 65
Tmin = 0.966, Tmax = 0.981k = 1111
2494 measured reflectionsl = 1211
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0615P)2 + 0.0896P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1619 reflectionsΔρmax = 0.18 e Å3
128 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (7)
Crystal data top
C10H10O4γ = 94.322 (11)°
Mr = 194.18V = 468.9 (7) Å3
Triclinic, P1Z = 2
a = 5.129 (5) ÅMo Kα radiation
b = 9.969 (8) ŵ = 0.11 mm1
c = 10.586 (9) ÅT = 296 K
α = 117.627 (7)°0.33 × 0.24 × 0.18 mm
β = 97.924 (11)°
Data collection top
Multiwire proportional
diffractometer
1619 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1337 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.981Rint = 0.013
2494 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
1619 reflectionsΔρmin = 0.13 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3038 (3)0.37534 (14)0.18804 (13)0.0565 (4)
O20.5270 (3)0.19675 (16)0.17913 (15)0.0718 (5)
O30.1400 (2)0.02223 (14)0.35179 (13)0.0548 (4)
H3A0.23890.07730.30360.082*
O40.2041 (3)0.17229 (17)0.47736 (15)0.0696 (5)
H4A0.15370.10330.49140.104*
C10.4334 (5)0.3652 (2)0.3048 (2)0.0689 (6)
H1A0.37520.43670.33540.103*
H1B0.38780.26310.38530.103*
H1C0.62320.38910.27110.103*
C20.3676 (3)0.28238 (18)0.13522 (17)0.0436 (4)
C30.2244 (3)0.29584 (18)0.02085 (17)0.0445 (4)
H3B0.10530.36540.00750.053*
C40.2628 (3)0.20962 (19)0.04297 (18)0.0460 (4)
H4B0.38490.14280.01000.055*
C50.1401 (3)0.20498 (18)0.15770 (17)0.0424 (4)
C60.0350 (3)0.30272 (19)0.22626 (19)0.0513 (5)
H6A0.07740.37670.20010.062*
C70.1459 (4)0.2904 (2)0.3326 (2)0.0568 (5)
H7A0.26180.35680.37780.068*
C80.0874 (3)0.1811 (2)0.37298 (18)0.0476 (4)
C90.0889 (3)0.08337 (18)0.30649 (16)0.0423 (4)
C100.2006 (3)0.09637 (18)0.20077 (17)0.0442 (4)
H10A0.31920.03120.15710.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0832 (9)0.0569 (7)0.0553 (7)0.0308 (6)0.0364 (6)0.0392 (6)
O20.0865 (10)0.0896 (10)0.0850 (10)0.0535 (8)0.0538 (8)0.0637 (8)
O30.0709 (8)0.0646 (8)0.0599 (7)0.0330 (6)0.0364 (6)0.0458 (6)
O40.0859 (10)0.0920 (10)0.0775 (9)0.0488 (8)0.0561 (8)0.0633 (8)
C10.1062 (17)0.0689 (12)0.0585 (11)0.0311 (11)0.0432 (11)0.0430 (10)
C20.0502 (10)0.0428 (8)0.0462 (9)0.0123 (7)0.0160 (7)0.0257 (7)
C30.0501 (10)0.0474 (9)0.0464 (9)0.0156 (7)0.0185 (7)0.0275 (7)
C40.0511 (10)0.0498 (9)0.0487 (9)0.0161 (7)0.0205 (8)0.0291 (8)
C50.0451 (9)0.0463 (9)0.0438 (8)0.0104 (7)0.0143 (7)0.0263 (7)
C60.0596 (11)0.0559 (10)0.0588 (10)0.0233 (8)0.0246 (8)0.0388 (9)
C70.0644 (12)0.0650 (11)0.0655 (11)0.0341 (9)0.0361 (9)0.0418 (10)
C80.0520 (10)0.0588 (10)0.0467 (9)0.0178 (8)0.0233 (7)0.0324 (8)
C90.0470 (9)0.0475 (9)0.0424 (8)0.0121 (7)0.0142 (7)0.0278 (7)
C100.0490 (10)0.0486 (9)0.0456 (9)0.0173 (7)0.0209 (7)0.0268 (7)
Geometric parameters (Å, º) top
O1—C21.325 (2)C3—H3B0.9300
O1—C11.449 (2)C4—C51.460 (2)
O2—C21.206 (2)C4—H4B0.9300
O3—C91.372 (2)C5—C61.392 (2)
O3—H3A0.8200C5—C101.395 (2)
O4—C81.361 (2)C6—C71.378 (2)
O4—H4A0.8200C6—H6A0.9300
C1—H1A0.9600C7—C81.381 (2)
C1—H1B0.9600C7—H7A0.9300
C1—H1C0.9600C8—C91.391 (2)
C2—C31.460 (2)C9—C101.378 (2)
C3—C41.327 (2)C10—H10A0.9300
C2—O1—C1115.65 (14)C6—C5—C10118.11 (15)
C9—O3—H3A109.5C6—C5—C4123.59 (15)
C8—O4—H4A109.5C10—C5—C4118.30 (14)
O1—C1—H1A109.5C7—C6—C5120.39 (15)
O1—C1—H1B109.5C7—C6—H6A119.8
H1A—C1—H1B109.5C5—C6—H6A119.8
O1—C1—H1C109.5C6—C7—C8121.02 (16)
H1A—C1—H1C109.5C6—C7—H7A119.5
H1B—C1—H1C109.5C8—C7—H7A119.5
O2—C2—O1122.42 (15)O4—C8—C7118.86 (15)
O2—C2—C3124.94 (14)O4—C8—C9121.79 (15)
O1—C2—C3112.64 (14)C7—C8—C9119.35 (15)
C4—C3—C2120.52 (15)O3—C9—C10123.84 (14)
C4—C3—H3B119.7O3—C9—C8116.62 (14)
C2—C3—H3B119.7C10—C9—C8119.54 (14)
C3—C4—C5129.05 (16)C9—C10—C5121.59 (14)
C3—C4—H4B115.5C9—C10—H10A119.2
C5—C4—H4B115.5C5—C10—H10A119.2
C1—O1—C2—O21.4 (3)C6—C7—C8—O4179.27 (17)
C1—O1—C2—C3178.44 (15)C6—C7—C8—C90.9 (3)
O2—C2—C3—C40.5 (3)O4—C8—C9—O30.2 (2)
O1—C2—C3—C4179.32 (15)C7—C8—C9—O3179.66 (16)
C2—C3—C4—C5179.72 (15)O4—C8—C9—C10179.64 (16)
C3—C4—C5—C63.9 (3)C7—C8—C9—C100.5 (3)
C3—C4—C5—C10175.86 (16)O3—C9—C10—C5179.43 (14)
C10—C5—C6—C70.6 (3)C8—C9—C10—C50.4 (3)
C4—C5—C6—C7179.19 (17)C6—C5—C10—C90.9 (2)
C5—C6—C7—C80.3 (3)C4—C5—C10—C9178.84 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O30.822.282.723 (2)114
C4—H4B···O20.932.482.829 (4)102
O4—H4A···O3i0.822.152.835 (2)141
O3—H3A···O2ii0.821.952.764 (2)175
C10—H10A···O2ii0.932.563.260 (4)132
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H10O4
Mr194.18
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.129 (5), 9.969 (8), 10.586 (9)
α, β, γ (°)117.627 (7), 97.924 (11), 94.322 (11)
V3)468.9 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.33 × 0.24 × 0.18
Data collection
DiffractometerMultiwire proportional
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.966, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
2494, 1619, 1337
Rint0.013
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.120, 1.05
No. of reflections1619
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.13

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O30.822.282.723 (2)114.3
C4—H4B···O20.932.482.829 (4)102
O4—H4A···O3i0.822.152.835 (2)140.6
O3—H3A···O2ii0.821.952.764 (2)174.5
C10—H10A···O2ii0.932.563.260 (4)132
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by a grant from the National Natural Science Foundation of China (20962002, 20662001) and the National Undergraduates Innovating Experimentation Project (091059314).

References

First citationAltug, M. E., Serarslan, Y. & Bal, R. (2008). Brain Res. 1201, 135–142.  Web of Science PubMed CAS Google Scholar
First citationAtes, B., Dogru, M. I. & Gul, M. (2006). Fundam. Clin. Pharmacol. 20, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAtik, E., Goeruer, S. & Kiper, A. N. (2006). Pharmacol. Res. 54, 293–297.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, J. S., Watson, W. H., Chiang, M. T. & Silva, M. (1979). Cryst. Struct. Commun. 8, 143.  Google Scholar
First citationChun, N. X., Wei, X. H., Wei, Z. & Guo, H. W. (2008). J. Chem. Crystallogr. 38, 583–586.  Google Scholar
First citationHuang, L., Lin, C. W., Li, A. Y., Wei, B. Y., Teng, J. W. & Li, L. (2010). Nat. Prod. Commun. 5, 1–4.  Web of Science CAS PubMed Google Scholar
First citationHwang, D. J., Kim, S. N. & Choi, J. H. (2001). Bioorg. Med. Chem. 9, 1429–1437.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPadinchare, R., Irina, V., Paul, C., Dirk, V. B., Koen, A. & Achiel, H. (2001). Bioorg. Med. Chem. Lett. 11, 215–217.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds