organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,7-Di­methyl-2,7-diazo­niapyrene bis­­(hexa­fluoro­phosphate)

aCollege of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, People's Republic of China
*Correspondence e-mail: liang@mail.zjgsu.edu.cn

(Received 1 December 2010; accepted 13 January 2011; online 29 January 2011)

In the title compound, C16H14N22+·2PF6, the 2,7-dimethyl-2,7-diaza­pyrenium (DM-diaz) cation lies on a crystallographic twofold rotation axes. The diaz groups are nearly coplanar, with a maximum deviation of 0.008 (3) Å. In the crystal, mol­ecules are linked into a two-dimensional lamellar framework parallel to (104) through weak C—H⋯F inter­actions.

Related literature

For general background to 2,7-disubstituted diaza­pyrenium dications, see: Ashton et al. (1999[Ashton, P. F., Boyd, S. E., Brindle, A., Langford, S. J., Menzer, S., Preece, J. A., Raymo, F. M., Spencer, N., Stoddart, J. F., White, A. J. P. & Williams, D. J. (1999). New J. Chem. 23, 587-602.]); Yen et al. (2009[Yen, M.-L., Chen, N.-C., Lai, C.-C., Liu, Y.-H., Peng, S.-M. & Chiu, S.-H. (2009). Org. Lett. 11, 4604-4607.]); Steuerman et al. (2004[Steuerman, D. W., Tseng, H.-R., Peters, A. J., Flood, A. H., Jeppesen, J. O., Nielsen, K. A., Stoddart, J. F. & Health, J. R. (2004). Angew. Chem. Int. Ed. 43, 6486-6491.]); Lilienthal et al. (1996[Lilienthal, N. D., Enlow, M. A., Othman, L., Smith, E. A. F. & Smith, D. K. (1996). J. Electroanal. Chem. 414, 107-114.]); Sindelar et al. (2005[Sindelar, V., Cejas, M. A., Raymo, F. M., Chen, W., Parker, S. E. & Kaifer, A. E. (2005). Chem. Eur. J. 11, 7054-7059.]); Lin et al. (2006[Lin, C.-F., Liu, Y.-H., Lai, C.-C., Peng, S.-M. & Chiu, S.-H. (2006). Chem. Eur. J. 12, 4594-4599.]). For related structures, see: Blake et al. (1997[Blake, A. J., Champness, N. R., Khlobystov, A. N., Lemenovskii, D. A., Li, W. -S. & Schöder, M. (1997). Chem. Commun. pp. 1339-1340.]); Dinolfo et al. (2004[Dinolfo, P. D., Williams, M. E., Stern, C. L. & Hupp, J. T. (2004). J. Am. Chem. Soc. 126, 12989-13001.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N22+·2PF6

  • Mr = 524.23

  • Monoclinic, P 21 /n

  • a = 6.7654 (14) Å

  • b = 10.653 (2) Å

  • c = 13.422 (3) Å

  • β = 91.03 (3)°

  • V = 967.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.31 × 0.31 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.899, Tmax = 0.937

  • 7699 measured reflections

  • 1756 independent reflections

  • 1439 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.182

  • S = 1.06

  • 1756 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯F2i 0.93 2.48 3.367 (4) 160
C7—H7⋯F4ii 0.93 2.51 3.418 (5) 167
Symmetry codes: (i) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2,7-Disubstituted diazapyrenium dications, which combine the features of pyrene, methylviologen, and nucletic acid intercalators, are charming pi-electron deficient building blocks in supramolecular chemistry (Ashton et al., 1999; Yen et al., 2009). They have been widely used as the electron-acceptors for electron-donating units such as hydroquinones and aromatic carboxylates (Steuerman et al., 2004; Lilienthal et al., 1996). Furthermore, due to their luminescence properties, they have also been as fluorescence probes for ion detection (Sindelar et al., 2005) and neurotransmition (Lin et al., 2006). Herein, we report the crystal structure of one of these disubstituted diazapyrenium dications, the N,N'-dimethyl-2,7-diazapyrenium, C16H14N2.2PF6, (DM-diaz).

The cation lies on a crystallographic twofold rotation axes; diaz groups are nearly coplanar with a maximum deviation of 0.008 (3) Å. Unlike many structures that contain diaz (Blake et al., 1997; Dinolfo et al., 2004), Dm-diaz exhibits no face-to-face pi-pi interactions between diaz molecules in the structure. C—H···F interactions are observed between the methyl groups of the DM-diaz molecules and hexafluorophoshate counterions (Table 1), forming a two-dimensional lamellar framework parallel to (101) (Figure 2).

Related literature top

For general background to 2,7-disubstituted diazapyrenium dications, see: Ashton et al. (1999); Yen et al. (2009); Steuerman et al. (2004); Lilienthal et al. (1996); Sindelar et al. (2005); Lin et al. (2006). For related structures, see: Blake et al. (1997); Dinolfo et al. (2004).

Experimental top

A solution of 2,7-diazapyrene (0.210 g, 1.03 mmol) and iodomethane (0.568 g, 4.02 mmol) in acetonitrile (15 ml) was stirred and refluxed for 3 h. After it was cooled to room temperature, a red solid was isolated on a filter and washed with ethyl ether (30 ml). The solid was dissolved with water (75 ml) and a saturated aqueous solution of NH4PF6 (2.44 g, 15.0 mmol) was added until no further precipitate was observed. The red solid was isolated on a filter, washed with water and dried under vacuum to afford the product (0.423 g, 78.4%). Red crystals were obtained by vapor diffusion of isopropyl ether into an acetonitrile solution over a period of 5 d. 1H NMR (500 MHz, CD3CN, 295 K) δ (p.p.m.) 9.88 (4H,s), 8.85 (4H, s), 5.14 (4H, t, J = 5.2 Hz), 3.45 (4H, m), 3.45 (2H, t, J = 5.5 Hz).

Refinement top

H atoms bonded to C atoms were palced in geometrically calculated positionand were refined using a riding model, with C—Haromatic = 0.93 Å, C—Hmethyl = 0.96 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. The dispalcement ellipsoids are drawn at 30% probability level. Symmetry code: (A) 2-x, 1-y, 1-z
[Figure 2] Fig. 2. The two-dimensional layer of the compound, parallel to (101).
2,7-Dimethyl-2,7-diazoniapyrene bis(hexafluorophosphate) top
Crystal data top
C16H14N22+·2PF6F(000) = 524
Mr = 524.23Dx = 1.800 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6424 reflections
a = 6.7654 (14) Åθ = 3.0–27.5°
b = 10.653 (2) ŵ = 0.35 mm1
c = 13.422 (3) ÅT = 293 K
β = 91.03 (3)°Block, yellow
V = 967.2 (3) Å30.31 × 0.31 × 0.19 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1756 independent reflections
Radiation source: fine-focus sealed tube1439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 0 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω scansh = 87
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1212
Tmin = 0.899, Tmax = 0.937l = 1616
7699 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.106P)2 + 0.7563P]
where P = (Fo2 + 2Fc2)/3
1756 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C16H14N22+·2PF6V = 967.2 (3) Å3
Mr = 524.23Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.7654 (14) ŵ = 0.35 mm1
b = 10.653 (2) ÅT = 293 K
c = 13.422 (3) Å0.31 × 0.31 × 0.19 mm
β = 91.03 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1756 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1439 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.937Rint = 0.021
7699 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.06Δρmax = 0.48 e Å3
1756 reflectionsΔρmin = 0.34 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.73691 (12)0.87716 (8)0.67479 (6)0.0486 (4)
F10.7852 (5)0.9813 (3)0.7544 (3)0.1277 (13)
F20.7768 (4)0.7779 (3)0.7596 (2)0.1015 (10)
F30.5103 (3)0.8793 (2)0.7022 (2)0.0842 (8)
F40.7012 (5)0.9817 (4)0.5943 (3)0.1329 (14)
F50.9644 (3)0.8750 (3)0.6478 (2)0.0953 (10)
F60.6946 (4)0.7712 (3)0.5961 (2)0.1071 (11)
N11.1916 (4)0.2419 (2)0.61997 (19)0.0458 (6)
C11.0682 (4)0.6661 (3)0.4751 (2)0.0399 (7)
C21.2564 (4)0.6724 (3)0.5268 (2)0.0459 (7)
H21.32720.74720.52750.055*
C31.3308 (4)0.5710 (3)0.5740 (2)0.0463 (7)
H31.45270.57650.60680.056*
C41.2250 (4)0.4551 (3)0.5743 (2)0.0390 (7)
C51.0387 (4)0.4467 (2)0.52485 (19)0.0360 (6)
C61.2952 (4)0.3482 (3)0.6213 (2)0.0459 (7)
H61.41700.35050.65450.055*
C71.0142 (4)0.2319 (3)0.5739 (2)0.0448 (7)
H70.94650.15600.57500.054*
C81.2764 (7)0.1282 (3)0.6680 (3)0.0680 (11)
H8A1.17280.08100.69840.102*
H8C1.37210.15260.71800.102*
H8B1.33920.07740.61870.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0456 (6)0.0520 (6)0.0482 (6)0.0031 (3)0.0017 (4)0.0009 (4)
F10.142 (3)0.105 (2)0.136 (3)0.007 (2)0.003 (2)0.068 (2)
F20.097 (2)0.105 (2)0.103 (2)0.0185 (16)0.0030 (16)0.0420 (17)
F30.0548 (14)0.105 (2)0.0938 (18)0.0116 (12)0.0153 (12)0.0123 (14)
F40.109 (2)0.150 (3)0.140 (3)0.012 (2)0.008 (2)0.093 (2)
F50.0494 (13)0.125 (2)0.112 (2)0.0215 (13)0.0103 (13)0.0286 (17)
F60.0775 (16)0.143 (3)0.101 (2)0.0446 (17)0.0222 (15)0.0672 (19)
N10.0497 (14)0.0464 (14)0.0414 (13)0.0030 (11)0.0029 (11)0.0041 (11)
C10.0359 (14)0.0422 (15)0.0418 (15)0.0054 (12)0.0052 (12)0.0036 (12)
C20.0366 (15)0.0449 (17)0.0561 (19)0.0096 (12)0.0002 (14)0.0050 (14)
C30.0322 (14)0.0558 (18)0.0509 (17)0.0075 (13)0.0040 (13)0.0064 (14)
C40.0323 (14)0.0464 (16)0.0381 (14)0.0014 (11)0.0005 (11)0.0040 (12)
C50.0325 (14)0.0415 (15)0.0341 (14)0.0027 (11)0.0043 (11)0.0053 (11)
C60.0409 (16)0.0567 (18)0.0399 (16)0.0017 (13)0.0031 (13)0.0028 (13)
C70.0461 (17)0.0434 (16)0.0451 (16)0.0035 (13)0.0076 (14)0.0001 (13)
C80.078 (3)0.057 (2)0.068 (2)0.0077 (18)0.015 (2)0.0186 (18)
Geometric parameters (Å, º) top
P1—F41.567 (3)C2—C31.346 (4)
P1—F61.568 (2)C2—H20.9300
P1—F11.570 (3)C3—C41.427 (4)
P1—F21.574 (3)C3—H30.9300
P1—F31.583 (2)C4—C61.382 (4)
P1—F51.587 (2)C4—C51.417 (4)
N1—C61.332 (4)C5—C5i1.413 (5)
N1—C71.344 (4)C6—H60.9300
N1—C81.483 (4)C7—H70.9300
C1—C7i1.382 (4)C8—H8A0.9600
C1—C5i1.402 (4)C8—H8C0.9600
C1—C21.440 (4)C8—H8B0.9600
F4—P1—F691.3 (2)C1—C2—H2119.7
F4—P1—F189.7 (2)C2—C3—C4120.8 (3)
F6—P1—F1178.30 (18)C2—C3—H3119.6
F4—P1—F2176.9 (2)C4—C3—H3119.6
F6—P1—F291.8 (2)C6—C4—C5117.2 (3)
F1—P1—F287.2 (2)C6—C4—C3123.1 (3)
F4—P1—F390.70 (16)C5—C4—C3119.7 (3)
F6—P1—F390.07 (15)C1i—C5—C5i120.2 (3)
F1—P1—F391.28 (17)C1i—C5—C4120.6 (3)
F2—P1—F389.74 (15)C5i—C5—C4119.3 (3)
F4—P1—F589.51 (18)N1—C6—C4121.2 (3)
F6—P1—F590.11 (14)N1—C6—H6119.4
F1—P1—F588.54 (17)C4—C6—H6119.4
F2—P1—F590.04 (17)N1—C7—C1i120.4 (3)
F3—P1—F5179.73 (16)N1—C7—H7119.8
C6—N1—C7122.6 (3)C1i—C7—H7119.8
C6—N1—C8119.3 (3)N1—C8—H8A109.5
C7—N1—C8118.1 (3)N1—C8—H8C109.5
C7i—C1—C5i118.0 (3)H8A—C8—H8C109.5
C7i—C1—C2122.6 (3)N1—C8—H8B109.5
C5i—C1—C2119.4 (3)H8A—C8—H8B109.5
C3—C2—C1120.6 (3)H8C—C8—H8B109.5
C3—C2—H2119.7
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···F2ii0.932.483.367 (4)160
C7—H7···F4iii0.932.513.418 (5)167
Symmetry codes: (ii) x+5/2, y1/2, z+3/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H14N22+·2PF6
Mr524.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.7654 (14), 10.653 (2), 13.422 (3)
β (°) 91.03 (3)
V3)967.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.31 × 0.31 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.899, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
7699, 1756, 1439
Rint0.021
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.182, 1.06
No. of reflections1756
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.34

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···F2i0.932.483.367 (4)160
C7—H7···F4ii0.932.513.418 (5)167
Symmetry codes: (i) x+5/2, y1/2, z+3/2; (ii) x, y1, z.
 

Acknowledgements

This work was supported by the fund of Zhejiang Gongshang University (No. 10–3).

References

First citationAshton, P. F., Boyd, S. E., Brindle, A., Langford, S. J., Menzer, S., Preece, J. A., Raymo, F. M., Spencer, N., Stoddart, J. F., White, A. J. P. & Williams, D. J. (1999). New J. Chem. 23, 587–602.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlake, A. J., Champness, N. R., Khlobystov, A. N., Lemenovskii, D. A., Li, W. -S. & Schöder, M. (1997). Chem. Commun. pp. 1339–1340.  CSD CrossRef Web of Science Google Scholar
First citationDinolfo, P. D., Williams, M. E., Stern, C. L. & Hupp, J. T. (2004). J. Am. Chem. Soc. 126, 12989–13001.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLilienthal, N. D., Enlow, M. A., Othman, L., Smith, E. A. F. & Smith, D. K. (1996). J. Electroanal. Chem. 414, 107–114.  CrossRef Google Scholar
First citationLin, C.-F., Liu, Y.-H., Lai, C.-C., Peng, S.-M. & Chiu, S.-H. (2006). Chem. Eur. J. 12, 4594–4599.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSindelar, V., Cejas, M. A., Raymo, F. M., Chen, W., Parker, S. E. & Kaifer, A. E. (2005). Chem. Eur. J. 11, 7054–7059.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSteuerman, D. W., Tseng, H.-R., Peters, A. J., Flood, A. H., Jeppesen, J. O., Nielsen, K. A., Stoddart, J. F. & Health, J. R. (2004). Angew. Chem. Int. Ed. 43, 6486–6491.  Web of Science CrossRef CAS Google Scholar
First citationYen, M.-L., Chen, N.-C., Lai, C.-C., Liu, Y.-H., Peng, S.-M. & Chiu, S.-H. (2009). Org. Lett. 11, 4604–4607.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds