metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­bromidobis[μ-1-(pyridin-4-ylmeth­yl)-1H-1,2,4-triazole-κ2N:N′]cadmium]

aDepartment of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350004, People's Republic of China
*Correspondence e-mail: lizhulai@126.com

(Received 25 November 2010; accepted 5 January 2011; online 15 January 2011)

The title coordination polymer, [CdBr2(C8H8N4)2]n, arose from a layer-separated diffusion synthesis at room temperature. The title compound is isotypic with the I and Cl analogues. The Cd atom, located on an inversion center, is coordinated by two bromide ions and four N atoms (two from triazole rings and two from pyridyl rings) in a distorted trans-CdBr2N4 octa­hedral arrangement. The bridging 1-(4-pyridyl­meth­yl)-1H-1,2,4-triazole ligands are twisted [dihedral angle between the triazole and pyridine rings = 72.56 (13)°], affording a two-dimensional 44 sheet structure in the crystal.

Related literature

For structures of Cd(II) polymers with related ligands, see: Liu et al. (2005[Liu, Z., Liu, P., Chen, Y., Wang, J. & Huang, M. H. (2005). Inorg. Chem. Commun. 8, 212-215.]); Huang et al. (2006[Huang, M., Liu, P., Chen, Y., Wang, J. & Liu, Z. (2006). J. Mol. Struct. 788, 211-217.]). For the structures of isotypic analogues with I and Cl, see: Wang et al. (2008[Wang, J., Huang, M., Liu, P. & Cheng, W. (2008). J. Mol. Struct. 875, 22-26.], 2010[Wang, J., Li, Z.-L., Xu, X.-Z., Yan, W.-J. & Chi, H.-L. (2010). Acta Cryst. E66, m1257.]). For the structure of the isotypic complex with Cu(II) and Cl, see: Li et al. (2009[Li, Z.-L., Wang, J., Xu, X.-Z. & Ye, X. (2009). Acta Cryst. E65, m340.]).

[Scheme 1]

Experimental

Crystal data
  • [CdBr2(C8H8N4)2]

  • Mr = 592.59

  • Monoclinic, P 21 /c

  • a = 7.7802 (9) Å

  • b = 16.7299 (16) Å

  • c = 8.4684 (10) Å

  • β = 114.409 (5)°

  • V = 1003.74 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.09 mm−1

  • T = 293 K

  • 0.65 × 0.60 × 0.55 mm

Data collection
  • Rigaku Mercury70 CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.498, Tmax = 1.000

  • 7206 measured reflections

  • 2270 independent reflections

  • 2098 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.069

  • S = 0.91

  • 2270 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, our group has focused on the design and synthesis of some flexible unsymmetric ligands (Liu et al., 2005; Huang et al., 2006), one of which being the heterocyclic ligand pyta, N-(4-pyridylmethyl)-1,2,4-triazole. In order to explore the architectural styles and other features of this kind of ligands, we selected cadmium dibromide as a representative subject for stereoregular coordination. Among our attempts, a new polymer [CdBr2(pyta)2]n was obtained as crystals suitable for single-crystal X-ray analysis.

The crystal structure of the title compound is isomorphous to other complexes we have reported with I or Cl in place of Br (Wang et al., 2008, 2010) or with Cu(II) and Cl (Li et al., 2009). The crystallographic analysis reveals that the title compound crystallizes in the monoclinic space group P21/c. The asymmetric unit contains one cadmium atom, one bromide donor and one pyta bridging molecule, as shown in Fig. 1. The Cd(II) ion is placed on an inversion center, with an octahedral [CdBr2N4] environment, where the axial positions are occupied by two bromide ions and the equatorial positions occupied by two trans triazole N atoms and two trans pyridyl N atoms, each of which respectively belonging to four symmetry-related pyta ligands (Fig. 1). The bond angles about the Cd octahedron range from 85.88 (8) to 94.12 (8)° and deviate slightly from those of a perfect octahedron. Due to the existence of the —CH2— spacer between the triazole and the pyridyl ring, sufficient flexibility makes possible for pyta to be twisted in order to meet the requirement of coordination geometry of the metal center. The dihedral angle between the triazole and pyridyl rings in the ligand is 72.56 (13)°.

As conveniently shown in Fig. 2, the title compound forms an infinite two-dimensional rhombohedral sheet containing 36-membered sandglass rings. The sp3 hybridization of C3 forces the pyta ligand to be non-linear, generating the nonlinear grid sides and thereby the sandglass grids. Every complementary four [Cd4(pyta)4] grids are connected together by sharing the cadmium apices to give the 44 two-dimensional structure with a side length of 11.01 Å, and a diagonal measurement of about 14.31 × 16.73 Å2.

Related literature top

For structures of Cd(II) polymers with related ligands, see: Liu et al. (2005); Huang et al. (2006). For the structures of isotypic analogues with I and Cl, see: Wang et al. (2008, 2010). For the structure of the isotypic complex with Cu(II) and Cl, see: Li et al. (2009).

Experimental top

A solution of pyta (0.021 g, 0.10 mmol) in MeOH (5 ml) was carefully layered on a solution of CdBr2 (0.027 g, 0.10 mmol) in H2O (5 ml). Diffusion between the two phases over a period of two weeks produced colorless block crystals.

Refinement top

All H atoms were placed in calculated positions and refined using a riding model with C—H bond lengths fixed to 0.93 (aromatic) or 0.97 Å (methylene), and isotropic displacement parameters calculated as 1.2 times the equivalent displacement parameter of the carrier C atom.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2004); cell refinement: CrystalClear (Rigaku/MSC, 2004); data reduction: CrystalClear (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity. Symmetry codes: (A) -x, -y + 1, -z; (B) -x + 1, y + 1/2, -z + 1/2; (C) x - 1, -y + 3/2, z - 1/2.
[Figure 2] Fig. 2. The two-dimensional structure of the title compound, constructed of rhombus-shaped grids.
Poly[dibromidobis[µ-1-(pyridin-4-ylmethyl)-1H-1,2,4-triazole- κ2N:N']cadmium] top
Crystal data top
[CdBr2(C8H8N4)2]F(000) = 572
Mr = 592.59Dx = 1.961 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2944 reflections
a = 7.7802 (9) Åθ = 2.6–27.5°
b = 16.7299 (16) ŵ = 5.09 mm1
c = 8.4684 (10) ÅT = 293 K
β = 114.409 (5)°Block, yellow
V = 1003.74 (19) Å30.65 × 0.60 × 0.55 mm
Z = 2
Data collection top
Rigaku Mercury70 CCD
diffractometer
2270 independent reflections
Radiation source: fine-focus sealed tube2098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2119
Tmin = 0.498, Tmax = 1.000l = 1010
7206 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.048P)2 + 0.7729P]
where P = (Fo2 + 2Fc2)/3
2270 reflections(Δ/σ)max = 0.083
124 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.51 e Å3
0 constraints
Crystal data top
[CdBr2(C8H8N4)2]V = 1003.74 (19) Å3
Mr = 592.59Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.7802 (9) ŵ = 5.09 mm1
b = 16.7299 (16) ÅT = 293 K
c = 8.4684 (10) Å0.65 × 0.60 × 0.55 mm
β = 114.409 (5)°
Data collection top
Rigaku Mercury70 CCD
diffractometer
2270 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2098 reflections with I > 2σ(I)
Tmin = 0.498, Tmax = 1.000Rint = 0.022
7206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 0.91Δρmax = 0.74 e Å3
2270 reflectionsΔρmin = 0.51 e Å3
124 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.50000.50000.02280 (9)
Br10.19066 (4)0.538566 (18)0.30452 (4)0.03501 (10)
C10.2617 (4)0.57653 (19)0.8969 (4)0.0371 (6)
H1A0.15820.57310.92480.044*
C20.4305 (4)0.56459 (17)0.7599 (4)0.0303 (5)
H2A0.47570.55260.67680.036*
C30.7295 (4)0.61998 (17)0.9870 (4)0.0380 (7)
H3A0.79190.58890.92930.046*
H3B0.78360.60451.10820.046*
C40.7711 (4)0.70758 (15)0.9750 (4)0.0297 (6)
C50.6428 (4)0.76858 (18)0.9397 (5)0.0404 (7)
H5A0.51760.75760.91730.048*
C60.7013 (4)0.84676 (17)0.9379 (4)0.0388 (7)
H6A0.61290.88750.91460.047*
C71.0005 (4)0.8062 (2)1.0007 (5)0.0458 (8)
H7A1.12430.81861.02040.055*
C80.9543 (5)0.72732 (18)1.0071 (5)0.0439 (8)
H8A1.04580.68771.03290.053*
N10.5308 (3)0.59953 (13)0.9121 (3)0.0299 (5)
N20.4232 (4)0.60782 (17)1.0010 (3)0.0421 (6)
N30.2588 (3)0.54957 (14)0.7446 (3)0.0293 (5)
N40.8769 (3)0.86608 (13)0.9675 (3)0.0327 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02036 (14)0.01935 (14)0.02797 (15)0.00065 (9)0.00926 (11)0.00225 (9)
Br10.03130 (17)0.04281 (18)0.03652 (17)0.00314 (12)0.01962 (13)0.00383 (11)
C10.0407 (16)0.0381 (15)0.0380 (15)0.0095 (13)0.0219 (13)0.0070 (12)
C20.0263 (13)0.0304 (13)0.0339 (14)0.0032 (11)0.0120 (11)0.0059 (11)
C30.0299 (14)0.0247 (13)0.0469 (17)0.0070 (11)0.0033 (13)0.0006 (12)
C40.0316 (14)0.0218 (12)0.0318 (13)0.0059 (10)0.0092 (11)0.0013 (10)
C50.0278 (14)0.0297 (14)0.0595 (19)0.0051 (11)0.0138 (14)0.0007 (13)
C60.0298 (14)0.0243 (13)0.0595 (19)0.0013 (11)0.0157 (14)0.0046 (12)
C70.0329 (16)0.0255 (15)0.083 (3)0.0035 (12)0.0282 (17)0.0032 (14)
C80.0340 (15)0.0234 (14)0.075 (2)0.0006 (12)0.0227 (16)0.0022 (13)
N10.0309 (12)0.0221 (10)0.0320 (11)0.0059 (9)0.0083 (10)0.0018 (8)
N20.0496 (16)0.0464 (15)0.0362 (13)0.0175 (13)0.0235 (12)0.0127 (11)
N30.0257 (11)0.0310 (12)0.0297 (11)0.0026 (9)0.0100 (9)0.0046 (9)
N40.0328 (12)0.0221 (11)0.0449 (14)0.0022 (9)0.0177 (11)0.0007 (9)
Geometric parameters (Å, º) top
Cd1—N32.363 (2)C3—H3A0.9700
Cd1—N3i2.363 (2)C3—H3B0.9700
Cd1—N4ii2.407 (2)C4—C51.372 (4)
Cd1—N4iii2.407 (2)C4—C81.376 (4)
Cd1—Br12.7178 (4)C5—C61.387 (4)
Cd1—Br1i2.7178 (3)C5—H5A0.9300
C1—N21.310 (4)C6—N41.323 (4)
C1—N31.358 (4)C6—H6A0.9300
C1—H1A0.9300C7—N41.335 (4)
C2—N31.312 (4)C7—C81.375 (4)
C2—N11.334 (4)C7—H7A0.9300
C2—H2A0.9300C8—H8A0.9300
C3—N11.449 (4)N1—N21.345 (4)
C3—C41.513 (4)N4—Cd1iv2.407 (2)
N3—Cd1—N3i180.0H3A—C3—H3B107.6
N3—Cd1—N4ii85.88 (8)C5—C4—C8117.8 (3)
N3i—Cd1—N4ii94.12 (8)C5—C4—C3125.3 (3)
N3—Cd1—N4iii94.12 (8)C8—C4—C3116.9 (3)
N3i—Cd1—N4iii85.88 (8)C4—C5—C6119.4 (3)
N4ii—Cd1—N4iii180.0C4—C5—H5A120.3
N3—Cd1—Br188.21 (6)C6—C5—H5A120.3
N3i—Cd1—Br191.79 (6)N4—C6—C5123.1 (3)
N4ii—Cd1—Br190.06 (6)N4—C6—H6A118.4
N4iii—Cd1—Br189.94 (6)C5—C6—H6A118.4
N3—Cd1—Br1i91.79 (6)N4—C7—C8123.4 (3)
N3i—Cd1—Br1i88.21 (6)N4—C7—H7A118.3
N4ii—Cd1—Br1i89.94 (6)C8—C7—H7A118.3
N4iii—Cd1—Br1i90.06 (6)C7—C8—C4119.3 (3)
Br1—Cd1—Br1i180.0C7—C8—H8A120.4
N2—C1—N3114.0 (3)C4—C8—H8A120.4
N2—C1—H1A123.0C2—N1—N2109.6 (2)
N3—C1—H1A123.0C2—N1—C3128.3 (3)
N3—C2—N1110.2 (3)N2—N1—C3121.9 (2)
N3—C2—H2A124.9C1—N2—N1103.2 (2)
N1—C2—H2A124.9C2—N3—C1103.0 (2)
N1—C3—C4114.7 (2)C2—N3—Cd1128.17 (19)
N1—C3—H3A108.6C1—N3—Cd1128.52 (19)
C4—C3—H3A108.6C6—N4—C7117.0 (2)
N1—C3—H3B108.6C6—N4—Cd1iv125.46 (19)
C4—C3—H3B108.6C7—N4—Cd1iv117.12 (19)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y+3/2, z1/2; (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[CdBr2(C8H8N4)2]
Mr592.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.7802 (9), 16.7299 (16), 8.4684 (10)
β (°) 114.409 (5)
V3)1003.74 (19)
Z2
Radiation typeMo Kα
µ (mm1)5.09
Crystal size (mm)0.65 × 0.60 × 0.55
Data collection
DiffractometerRigaku Mercury70 CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.498, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7206, 2270, 2098
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.069, 0.91
No. of reflections2270
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.51

Computer programs: CrystalClear (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors would like to thank the Fujian Provincial Science and Technology Innovation Foundation for financial support under grant No. 2007 F3038.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHuang, M., Liu, P., Chen, Y., Wang, J. & Liu, Z. (2006). J. Mol. Struct. 788, 211–217.  Web of Science CrossRef CAS Google Scholar
First citationLi, Z.-L., Wang, J., Xu, X.-Z. & Ye, X. (2009). Acta Cryst. E65, m340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Z., Liu, P., Chen, Y., Wang, J. & Huang, M. H. (2005). Inorg. Chem. Commun. 8, 212–215.  Web of Science CSD CrossRef Google Scholar
First citationRigaku/MSC (2004). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Huang, M., Liu, P. & Cheng, W. (2008). J. Mol. Struct. 875, 22–26.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, J., Li, Z.-L., Xu, X.-Z., Yan, W.-J. & Chi, H.-L. (2010). Acta Cryst. E66, m1257.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds