organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-3-hy­dr­oxy-3-(4-hy­dr­oxy-2-oxo-2H-chromen-3-yl)indolin-2-one

aDepartment of Chemistry, Xuzhou Medical College, Xuzhou 221004, People's Republic of China
*Correspondence e-mail: songleizhu@126.com

(Received 4 December 2010; accepted 4 January 2011; online 8 January 2011)

In the mol­ecule of the title compound, C17H10BrNO5, the indoline system and the attached coumarin ring are each essentially planar with maximum deviations of 0.074 (2) and 0.062 (2) Å, respectively. The dihedral angle between them is 85.09 (3)°. In the crystal, all heteroatoms (except for the coumarin oxo O atoms) are involved in intra- and inter­molecular hydrogen bonds. An intra­molecular O—H⋯O hydrogen bond occurs. In the crystal, mol­ecules are linked through O—H⋯O, N—H⋯O and C—H⋯O contacts, forming a complex three-dimensional structure.

Related literature

For general background to indoles and their biological activity, see: Da-Silva et al. (2001[Da-Silva, J. F. M., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273-324.]); Joshi & Chand (1982[Joshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1-12.]). Coumarin and its derivatives are important in the perfume, cosmetic and pharmaceutical industries, see: Soine (1964[Soine, T. O. (1964). J. Pharm. Sci. 53, 231-264.]). For the synthesis of indole and coumarin derivatives in water, see: Zhu (2008[Zhu, S.-L. (2008). Acta Cryst. E64, o1162.]).

[Scheme 1]

Experimental

Crystal data
  • C17H10BrNO5

  • Mr = 388.17

  • Monoclinic, P 21 /c

  • a = 11.358 (3) Å

  • b = 13.428 (3) Å

  • c = 10.360 (2) Å

  • β = 113.307 (3)°

  • V = 1451.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.86 mm−1

  • T = 153 K

  • 0.78 × 0.36 × 0.35 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.173, Tmax = 0.366

  • 13755 measured reflections

  • 2655 independent reflections

  • 2544 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.059

  • S = 1.08

  • 2655 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.98 2.7672 (17) 155
O5—H5⋯O1 0.84 1.81 2.5486 (19) 145
N1—H1A⋯O4ii 0.88 2.16 2.940 (2) 148
C7—H7⋯O2iii 0.95 2.49 3.429 (2) 172
C8—H8⋯O1iii 0.95 2.61 3.217 (2) 122
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The indole nucleus is a well known heterocycle (Da-Silva et al., 2001). Compounds carrying the indole moiety exhibit antibacterial and fungicidal activities (Joshi & Chand, 1982). Coumarin and its derivatives are natural compounds and are also important chemicals in the perfume, cosmetic and pharmaceutical industries (Soine, 1964). As our interest in the synthesis of heterocyclic compounds, guided by the observation that the presence of two or more different heterocyclic moieties in a single molecule often remarkably enhances the biocidal profile, we investigated a simple and green protocol for the synthesis of indole and coumarin derivatives in water (Zhu, 2008). We report herein the crystal structure of the title compound.

In the molecule (Fig. 1), the indole ring (C1···C4/N1/C5···C8) and the attached coumarin ring (C9···C17/O3), are both planar. The dihedral angle between them is 85.09 (3)°. In the crystal structure, intermolecular and intramolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background to indoles and their biological activity, see: Da-Silva et al. (2001); Joshi & Chand (1982). Coumarin and its derivatives are important in the perfume, cosmetic and pharmaceutical industries, see: Soine (1964). For the synthesis of indole and coumarin derivatives in water, see: Zhu (2008).

Experimental top

The title compound was prepared by the reaction of 4-bromoisatin (4-bromoindole-2,3-dione, 2 mmol) and 4-hydroxy-2H-chromen-2-one (2 mmol) in water (10 ml). The reaction was catalyzed by TEBAC (triethylbenzylammonium chloride, 1 mmol). After stirring at 333 K for 3 h, the reaction mixture was cooled and washed with small amount of ethanol. The crude product was filtered and single crystals of the title compound were obtained from an ethanol solution by slow evaporation at room temperature (yield: 80%; m.p. 469–471 K). Spectroscopic analysis: IR (KBr, ν, cm-1): 3401, 3368, 3251, 3177, 2955, 1710, 1673, 1613, 1520, 1478, 1314, 1231, 1165, 1057, 922, 756, 612, 568. 1H-NMR (400 MHz, DMSO-d6): 9.88 (br s, 1H, NH), 7.84 (t, J = 7.2 Hz, 1H, ArH), 7.58-6.64 (m, 2H, ArH), 6.75-6.82 (m, 2H, ArH), 6.52- 6.59(m, 2H, ArH), 2.41(s, 1H, OH).

Refinement top

H atoms were positioned geometrically, with N—H = 0.88 Å (for NH), O—H = 0.84 Å (for OH) and C—H = 0.95 Å for aromatic H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C, N, O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
4-Bromo-3-hydroxy-3-(4-hydroxy-2-oxo-2H-chromen-3-yl)indolin-2-one top
Crystal data top
C17H10BrNO5F(000) = 776
Mr = 388.17Dx = 1.777 Mg m3
Monoclinic, P21/cMelting point = 469–471 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71070 Å
a = 11.358 (3) ÅCell parameters from 5845 reflections
b = 13.428 (3) Åθ = 3.0–25.3°
c = 10.360 (2) ŵ = 2.86 mm1
β = 113.307 (3)°T = 153 K
V = 1451.1 (5) Å3Block, colourless
Z = 40.78 × 0.36 × 0.35 mm
Data collection top
Rigaku Mercury
diffractometer
2655 independent reflections
Radiation source: fine-focus sealed tube2544 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω scansh = 1311
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1616
Tmin = 0.173, Tmax = 0.366l = 1212
13755 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0278P)2 + 1.0659P]
where P = (Fo2 + 2Fc2)/3
2655 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.42 e Å3
0 constraints
Crystal data top
C17H10BrNO5V = 1451.1 (5) Å3
Mr = 388.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.358 (3) ŵ = 2.86 mm1
b = 13.428 (3) ÅT = 153 K
c = 10.360 (2) Å0.78 × 0.36 × 0.35 mm
β = 113.307 (3)°
Data collection top
Rigaku Mercury
diffractometer
2655 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2544 reflections with I > 2σ(I)
Tmin = 0.173, Tmax = 0.366Rint = 0.023
13755 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.08Δρmax = 0.34 e Å3
2655 reflectionsΔρmin = 0.42 e Å3
220 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.618858 (19)0.424530 (16)0.05888 (2)0.02468 (8)
O10.81967 (12)0.24579 (9)0.19817 (13)0.0150 (3)
H10.86020.25440.14660.023*
O20.93364 (12)0.28564 (10)0.50987 (13)0.0165 (3)
O30.55747 (12)0.43528 (9)0.37776 (13)0.0147 (3)
O40.75296 (12)0.48622 (9)0.41805 (13)0.0170 (3)
O50.58573 (13)0.20063 (10)0.13673 (14)0.0195 (3)
H50.65720.19780.13060.029*
N11.01146 (14)0.40717 (11)0.40768 (16)0.0144 (3)
H1A1.08750.41580.47570.017*
C10.81079 (17)0.33888 (13)0.26299 (18)0.0122 (4)
C20.92400 (17)0.33989 (13)0.41181 (19)0.0130 (4)
C30.96558 (18)0.46179 (14)0.28075 (19)0.0149 (4)
C40.84479 (18)0.42644 (13)0.19296 (19)0.0131 (4)
C50.78170 (18)0.47149 (14)0.06449 (19)0.0169 (4)
C60.8382 (2)0.55024 (15)0.0235 (2)0.0223 (4)
H60.79430.58170.06480.027*
C70.9589 (2)0.58249 (15)0.1123 (2)0.0239 (5)
H70.99750.63590.08320.029*
C81.02526 (19)0.53885 (15)0.2429 (2)0.0196 (4)
H81.10810.56130.30340.023*
C90.68273 (17)0.34335 (13)0.27623 (18)0.0124 (4)
C100.66978 (17)0.42446 (13)0.35962 (19)0.0124 (4)
C110.45996 (17)0.36647 (14)0.32443 (18)0.0135 (4)
C120.46973 (17)0.28643 (14)0.24491 (18)0.0139 (4)
C130.58467 (17)0.27702 (14)0.21777 (18)0.0136 (4)
C140.37095 (18)0.21509 (15)0.20037 (19)0.0176 (4)
H140.37580.15970.14570.021*
C150.26732 (18)0.22596 (16)0.2364 (2)0.0203 (4)
H150.20140.17720.20840.024*
C160.25902 (18)0.30829 (16)0.3140 (2)0.0214 (4)
H160.18640.31560.33700.026*
C170.35425 (18)0.37954 (15)0.35806 (19)0.0178 (4)
H170.34760.43600.41000.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02298 (13)0.02838 (13)0.01533 (12)0.00237 (8)0.00025 (9)0.00135 (8)
O10.0179 (7)0.0140 (7)0.0178 (7)0.0007 (5)0.0120 (5)0.0031 (5)
O20.0181 (7)0.0185 (7)0.0146 (6)0.0034 (5)0.0084 (5)0.0029 (5)
O30.0115 (6)0.0166 (7)0.0166 (7)0.0005 (5)0.0061 (5)0.0045 (5)
O40.0156 (7)0.0151 (7)0.0192 (7)0.0024 (5)0.0058 (5)0.0056 (5)
O50.0166 (7)0.0213 (7)0.0231 (7)0.0047 (6)0.0106 (6)0.0118 (6)
N10.0099 (7)0.0185 (8)0.0131 (8)0.0012 (6)0.0028 (6)0.0004 (6)
C10.0130 (9)0.0116 (9)0.0125 (9)0.0004 (7)0.0057 (7)0.0017 (7)
C20.0125 (9)0.0130 (9)0.0157 (9)0.0032 (7)0.0078 (7)0.0013 (7)
C30.0159 (9)0.0154 (9)0.0153 (9)0.0010 (7)0.0082 (7)0.0021 (8)
C40.0153 (9)0.0122 (9)0.0143 (9)0.0005 (7)0.0085 (8)0.0019 (7)
C50.0192 (10)0.0174 (10)0.0139 (9)0.0005 (8)0.0064 (8)0.0024 (8)
C60.0326 (12)0.0192 (10)0.0158 (10)0.0000 (9)0.0101 (9)0.0038 (8)
C70.0338 (12)0.0179 (10)0.0256 (11)0.0060 (9)0.0177 (10)0.0002 (8)
C80.0204 (10)0.0182 (10)0.0226 (10)0.0061 (8)0.0113 (8)0.0035 (8)
C90.0121 (9)0.0136 (9)0.0112 (9)0.0009 (7)0.0045 (7)0.0002 (7)
C100.0114 (9)0.0141 (9)0.0110 (9)0.0008 (7)0.0038 (7)0.0018 (7)
C110.0111 (9)0.0177 (9)0.0089 (8)0.0008 (7)0.0010 (7)0.0011 (7)
C120.0128 (9)0.0173 (9)0.0102 (8)0.0001 (7)0.0031 (7)0.0021 (7)
C130.0164 (9)0.0137 (9)0.0103 (8)0.0012 (7)0.0048 (7)0.0003 (7)
C140.0176 (9)0.0185 (10)0.0155 (9)0.0021 (8)0.0051 (8)0.0023 (8)
C150.0129 (9)0.0272 (11)0.0191 (10)0.0068 (8)0.0045 (8)0.0005 (8)
C160.0138 (9)0.0339 (12)0.0181 (10)0.0004 (8)0.0080 (8)0.0008 (9)
C170.0153 (9)0.0238 (10)0.0143 (9)0.0033 (8)0.0056 (8)0.0016 (8)
Geometric parameters (Å, º) top
Br1—C51.8925 (19)C6—C71.384 (3)
O1—C11.441 (2)C6—H60.9500
O1—H10.8400C7—C81.392 (3)
O2—C21.219 (2)C7—H70.9500
O3—C101.369 (2)C8—H80.9500
O3—C111.379 (2)C9—C131.366 (3)
O4—C101.222 (2)C9—C101.434 (2)
O5—C131.329 (2)C11—C121.385 (3)
O5—H50.8400C11—C171.387 (3)
N1—C21.356 (2)C12—C141.407 (3)
N1—C31.413 (2)C12—C131.446 (3)
N1—H1A0.8800C14—C151.376 (3)
C1—C41.510 (2)C14—H140.9500
C1—C91.515 (2)C15—C161.392 (3)
C1—C21.569 (2)C15—H150.9500
C3—C81.376 (3)C16—C171.379 (3)
C3—C41.395 (3)C16—H160.9500
C4—C51.377 (3)C17—H170.9500
C5—C61.388 (3)
C1—O1—H1109.5C3—C8—C7117.08 (18)
C10—O3—C11121.22 (14)C3—C8—H8121.5
C13—O5—H5109.5C7—C8—H8121.5
C2—N1—C3111.72 (15)C13—C9—C10120.16 (16)
C2—N1—H1A124.1C13—C9—C1125.27 (16)
C3—N1—H1A124.1C10—C9—C1114.56 (15)
O1—C1—C4111.91 (14)O4—C10—O3116.09 (16)
O1—C1—C9108.86 (14)O4—C10—C9124.78 (17)
C4—C1—C9116.74 (15)O3—C10—C9119.13 (15)
O1—C1—C2106.50 (14)O3—C11—C12121.17 (16)
C4—C1—C2101.50 (14)O3—C11—C17116.90 (16)
C9—C1—C2110.71 (14)C12—C11—C17121.91 (17)
O2—C2—N1126.80 (17)C11—C12—C14118.83 (16)
O2—C2—C1125.59 (16)C11—C12—C13118.33 (16)
N1—C2—C1107.49 (15)C14—C12—C13122.75 (17)
C8—C3—C4122.56 (18)O5—C13—C9125.02 (16)
C8—C3—N1127.83 (17)O5—C13—C12115.15 (16)
C4—C3—N1109.61 (16)C9—C13—C12119.82 (16)
C5—C4—C3118.82 (17)C15—C14—C12119.70 (18)
C5—C4—C1132.24 (17)C15—C14—H14120.2
C3—C4—C1108.91 (16)C12—C14—H14120.2
C4—C5—C6120.25 (18)C14—C15—C16120.10 (18)
C4—C5—Br1120.15 (14)C14—C15—H15120.0
C6—C5—Br1119.59 (15)C16—C15—H15120.0
C7—C6—C5119.43 (19)C17—C16—C15121.25 (18)
C7—C6—H6120.3C17—C16—H16119.4
C5—C6—H6120.3C15—C16—H16119.4
C6—C7—C8121.85 (19)C16—C17—C11118.19 (18)
C6—C7—H7119.1C16—C17—H17120.9
C8—C7—H7119.1C11—C17—H17120.9
C3—N1—C2—O2176.25 (17)C2—C1—C9—C13125.59 (19)
C3—N1—C2—C17.53 (19)O1—C1—C9—C10170.24 (14)
O1—C1—C2—O267.8 (2)C4—C1—C9—C1061.9 (2)
C4—C1—C2—O2175.02 (17)C2—C1—C9—C1053.5 (2)
C9—C1—C2—O250.4 (2)C11—O3—C10—O4175.77 (15)
O1—C1—C2—N1108.53 (15)C11—O3—C10—C93.9 (2)
C4—C1—C2—N18.69 (17)C13—C9—C10—O4178.59 (17)
C9—C1—C2—N1133.29 (15)C1—C9—C10—O40.5 (3)
C2—N1—C3—C8176.71 (18)C13—C9—C10—O31.0 (3)
C2—N1—C3—C43.0 (2)C1—C9—C10—O3179.82 (15)
C8—C3—C4—C51.2 (3)C10—O3—C11—C123.1 (2)
N1—C3—C4—C5178.55 (16)C10—O3—C11—C17174.87 (16)
C8—C3—C4—C1177.16 (17)O3—C11—C12—C14176.13 (16)
N1—C3—C4—C13.1 (2)C17—C11—C12—C141.7 (3)
O1—C1—C4—C571.8 (2)O3—C11—C12—C130.6 (3)
C9—C1—C4—C554.5 (3)C17—C11—C12—C13178.41 (17)
C2—C1—C4—C5174.98 (19)C10—C9—C13—O5178.61 (17)
O1—C1—C4—C3106.26 (17)C1—C9—C13—O52.4 (3)
C9—C1—C4—C3127.40 (17)C10—C9—C13—C122.5 (3)
C2—C1—C4—C36.96 (18)C1—C9—C13—C12176.51 (16)
C3—C4—C5—C60.4 (3)C11—C12—C13—O5177.70 (16)
C1—C4—C5—C6177.55 (18)C14—C12—C13—O55.8 (3)
C3—C4—C5—Br1179.05 (13)C11—C12—C13—C93.3 (3)
C1—C4—C5—Br11.1 (3)C14—C12—C13—C9173.22 (17)
C4—C5—C6—C70.6 (3)C11—C12—C14—C150.1 (3)
Br1—C5—C6—C7178.13 (15)C13—C12—C14—C15176.45 (17)
C5—C6—C7—C80.7 (3)C12—C14—C15—C161.4 (3)
C4—C3—C8—C71.0 (3)C14—C15—C16—C171.0 (3)
N1—C3—C8—C7178.66 (18)C15—C16—C17—C110.8 (3)
C6—C7—C8—C30.1 (3)O3—C11—C17—C16175.81 (16)
O1—C1—C9—C138.8 (2)C12—C11—C17—C162.1 (3)
C4—C1—C9—C13119.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.982.7672 (17)155
O5—H5···O10.841.812.5486 (19)145
N1—H1A···O4ii0.882.162.940 (2)148
C7—H7···O2iii0.952.493.429 (2)172
C8—H8···O1iii0.952.613.217 (2)122
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y+1, z+1; (iii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H10BrNO5
Mr388.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)11.358 (3), 13.428 (3), 10.360 (2)
β (°) 113.307 (3)
V3)1451.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.86
Crystal size (mm)0.78 × 0.36 × 0.35
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.173, 0.366
No. of measured, independent and
observed [I > 2σ(I)] reflections
13755, 2655, 2544
Rint0.023
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.059, 1.08
No. of reflections2655
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.42

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.982.7672 (17)155
O5—H5···O10.841.812.5486 (19)145
N1—H1A···O4ii0.882.162.940 (2)148
C7—H7···O2iii0.952.493.429 (2)172
C8—H8···O1iii0.952.613.217 (2)122
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y+1, z+1; (iii) x+2, y+1/2, z+1/2.
 

Acknowledgements

This work was partially supported by the Natural Science Foundation of Higher Education Institutions of Jiangsu Province (grant No. 09KJB150012), the Special Presidential Foundation of Xuzhou Medical College (grant Nos. 09KJZ19 and 2010KJZ20) and the Open Foundation of the Key Laboratory of Cancer Biotherapy of Xuzhou Medical College (grant No. C0901).

References

First citationDa-Silva, J. F. M., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.  CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationJoshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1–12.  CAS PubMed Web of Science Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoine, T. O. (1964). J. Pharm. Sci. 53, 231–264.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, S.-L. (2008). Acta Cryst. E64, o1162.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds