organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-1,3-benzoxazol-4-yl di­phenyl­phosphinate

aDepartment of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
*Correspondence e-mail: dewaldk@sun.ac.za

(Received 8 December 2010; accepted 5 January 2011; online 12 January 2011)

The title compound, C20H16NO3P, was synthesized by the addition of diphenyl­phosphine chloride to a tetra­hydro­furan solution of Et3N and 2-methyl-1,3-benzoxazol-4-ol at 233 K. In the mol­ecule, the almost planar (r.m.s. deviation = 0.010 Å) benzoxazole moiety is attached to the slightly distorted tetra­hedral P atom [C—P—C—C torsion angle = 132.20 (18)°]. The crystal structure does not exhibit any significant inter­molecular inter­actions.

Related literature

For reference structural data, see: Bruno et al. (2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]). For related benzoxazole structures, see: Dreher et al. (1982[Dreher, E.-L., Bracht, J., El-Mobayed, M., Hütter, P., Winter, W. & Rieker, A. (1982). Chem. Ber. 115, 288-308.]); Mrozek et al. (1999[Mrozek, A., Trzezwinska, H., Karolak-Wojciechowska, J., Yalcin, I. & Sener, E. (1999). Pol. J. Chem. 73, 625-633.]); Qu et al. (2008[Qu, Y., Zhang, S., Teng, L., Xia, X. & Zhang, Y. (2008). Acta Cryst. E64, o1210.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16NO3P

  • Mr = 349.31

  • Orthorhombic, P b c a

  • a = 9.4239 (4) Å

  • b = 15.7574 (6) Å

  • c = 23.5398 (8) Å

  • V = 3495.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 294 K

  • 0.39 × 0.28 × 0.19 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.934, Tmax = 0.968

  • 17406 measured reflections

  • 4323 independent reflections

  • 2395 reflections with I > 2sI)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.119

  • S = 1.01

  • 4323 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected geometric parameters (Å, °)

P12—C13 1.785 (2)
P12—C19 1.786 (2)
P12—O11 1.6075 (14)
P12—O25 1.4665 (15)
C13—P12—C19 109.59 (9)
O11—P12—C13 99.36 (8)
O25—P12—C13 113.91 (9)
O11—P12—C19 104.76 (8)
O25—P12—C19 112.73 (9)
O25—P12—O11 115.37 (8)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]; Atwood & Barbour, 2003[Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In an attempt to synthesize phosphinite derivatives of benzoxazole ligands the title compound, 2-methyl-1,3-benzoxazol-4-yl diphenylphosphinate, was formed as the major product (Fig. 1).

All bond lengths are within normal values (Bruno et al., 2004) and compare well with related benzoxazole structures (Dreher et al., 1982; Mrozek et al., 1999; Qu et al., 2008). In the molecular structure, the planar benzoxazole moiety is attached to the slightly distorted tetrahedral P12 atom [O25—P12—O11 115.37 (8)°, O25—P12—C13 113.91 (9)°, O11—P12—C19 104.76 (8)°] through O11. No significant intermolecular interactions are observed in the orthorhombic crystal structure (Fig. 2).

Related literature top

For reference structural data, see: Bruno et al. (2004). For related benzoxazole structures, see: Dreher et al. (1982); Mrozek et al. (1999); Qu et al. (2008).

Experimental top

To a flask containing 2-methyl-1,3-benzoxazol-4-ol (50 mg, 0.34 mmol), was added dry tetrahydrofuran (6 ml) and the mixture was cooled to 233 K (-40 °C). To this solution was added triethylamine (0.071 ml, 0.51 mmol) and the reaction mixture was left stirring for 15 min. Diphenylphosphine chloride (0.070 ml, 0.37 mmol) in dry tetrahydrofuran (1 ml) was added dropwise to the reaction solution and on completion of addition was left to stir for a further 10 min. at -40 °C. The reaction mixture was warmed to room temperature and left to stir overnight. The mixture was filtered through Celite and the solvent removed under vacuum to leave a whitish oil. Column chromatography (SiO2, eluting with 1:3 ethyl acetate/petroleum ether followed by 1:1 ethyl acetate/petroleum ether) furnished the title compound as a white solid (71 mg, 60% yield). X-ray quality crystals were formed by slow diffusion of petroleum ether into a dichloromethane solution of the title compound.

Refinement top

Structure solution and refinement were performed using the SHELX97 suite of programs (Sheldrick, 2008). All H atoms were placed in calculated positions, using a riding model (C—H [aromatic] = 0.93, C—H [methyl] = 0.96 Å), with fixed isotropic displacement parameters.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids.
[Figure 2] Fig. 2. Molecular packing of the title compound (viewed along the a axis).
2-Methyl-1,3-benzoxazol-4-yl diphenylphosphinate top
Crystal data top
C20H16NO3PF(000) = 1456
Mr = 349.31Dx = 1.327 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2232 reflections
a = 9.4239 (4) Åθ = 2.6–21.4°
b = 15.7574 (6) ŵ = 0.18 mm1
c = 23.5398 (8) ÅT = 294 K
V = 3495.6 (2) Å3Shard, colourless
Z = 80.39 × 0.28 × 0.19 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
4323 independent reflections
Radiation source: fine-focus sealed tube2395 reflections with I > 2s˘I)
Graphite monochromatorRint = 0.048
ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 912
Tmin = 0.934, Tmax = 0.968k = 2020
17406 measured reflectionsl = 3127
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.590P]
where P = (Fo2 + 2Fc2)/3
4323 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.26 e Å3
0 constraints
Crystal data top
C20H16NO3PV = 3495.6 (2) Å3
Mr = 349.31Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.4239 (4) ŵ = 0.18 mm1
b = 15.7574 (6) ÅT = 294 K
c = 23.5398 (8) Å0.39 × 0.28 × 0.19 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
4323 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2395 reflections with I > 2s˘I)
Tmin = 0.934, Tmax = 0.968Rint = 0.048
17406 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
4323 reflectionsΔρmin = 0.26 e Å3
229 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0692 (3)0.38155 (17)0.26208 (12)0.0919 (9)
H1A1.06610.41120.29770.138*
H1B1.03970.41900.23210.138*
H1C1.16430.36250.25490.138*
C20.9726 (2)0.30737 (14)0.26439 (10)0.0637 (6)
O30.95849 (15)0.26057 (10)0.21540 (6)0.0675 (5)
C40.8664 (2)0.19615 (14)0.22996 (9)0.0542 (5)
C50.8185 (2)0.13016 (16)0.19692 (9)0.0648 (6)
H50.84640.12320.15930.078*
C60.7269 (2)0.07556 (15)0.22317 (10)0.0665 (6)
H60.69050.03010.20260.080*
C70.6858 (2)0.08550 (14)0.28007 (9)0.0599 (6)
H70.62270.04720.29640.072*
C80.7383 (2)0.15153 (13)0.31183 (8)0.0505 (5)
C90.8305 (2)0.20841 (12)0.28635 (8)0.0477 (5)
N100.89952 (18)0.28056 (11)0.30715 (7)0.0575 (5)
O110.70042 (15)0.16648 (8)0.36812 (5)0.0582 (4)
P120.66708 (6)0.09284 (4)0.41346 (2)0.0517 (2)
C130.6671 (2)0.15461 (13)0.47700 (8)0.0502 (5)
C140.5843 (2)0.12659 (15)0.52184 (9)0.0617 (6)
H140.53110.07720.51800.074*
C150.5800 (2)0.17110 (17)0.57194 (9)0.0698 (7)
H150.52330.15190.60160.084*
C160.6584 (2)0.24348 (16)0.57858 (10)0.0678 (7)
H160.65450.27350.61260.081*
C170.7424 (3)0.27171 (15)0.53511 (11)0.0726 (7)
H170.79680.32050.53980.087*
C180.7468 (3)0.22806 (13)0.48430 (9)0.0639 (6)
H180.80350.24790.45480.077*
C190.8204 (2)0.02618 (12)0.41212 (8)0.0505 (5)
C200.8072 (3)0.05892 (14)0.39910 (10)0.0702 (7)
H200.71810.08140.39130.084*
C210.9249 (3)0.11072 (16)0.39760 (12)0.0866 (8)
H210.91500.16780.38850.104*
C221.0558 (3)0.07849 (18)0.40944 (11)0.0839 (8)
H221.13480.11390.40880.101*
C231.0718 (3)0.00536 (19)0.42221 (11)0.0834 (8)
H231.16160.02720.42970.100*
C240.9548 (3)0.05755 (15)0.42402 (10)0.0709 (7)
H240.96590.11450.43330.085*
O250.53499 (15)0.04578 (9)0.40384 (6)0.0670 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0868 (19)0.0779 (18)0.111 (2)0.0161 (15)0.0206 (16)0.0018 (16)
C20.0600 (13)0.0646 (14)0.0665 (16)0.0027 (12)0.0041 (12)0.0027 (13)
O30.0706 (10)0.0740 (11)0.0577 (10)0.0022 (8)0.0158 (8)0.0062 (8)
C40.0541 (12)0.0603 (13)0.0482 (12)0.0089 (10)0.0040 (10)0.0085 (11)
C50.0728 (15)0.0778 (16)0.0439 (12)0.0118 (13)0.0024 (11)0.0043 (12)
C60.0727 (15)0.0687 (15)0.0582 (14)0.0022 (12)0.0032 (12)0.0118 (12)
C70.0651 (14)0.0592 (14)0.0555 (13)0.0002 (11)0.0025 (10)0.0012 (11)
C80.0595 (12)0.0517 (12)0.0403 (11)0.0081 (10)0.0028 (9)0.0025 (10)
C90.0501 (11)0.0517 (12)0.0413 (11)0.0090 (9)0.0010 (9)0.0041 (9)
N100.0582 (11)0.0588 (11)0.0555 (11)0.0024 (9)0.0006 (9)0.0028 (9)
O110.0817 (10)0.0508 (8)0.0422 (8)0.0052 (7)0.0118 (7)0.0046 (6)
P120.0586 (4)0.0516 (4)0.0449 (4)0.0010 (3)0.0046 (2)0.0041 (2)
C130.0532 (11)0.0504 (12)0.0470 (12)0.0049 (10)0.0059 (9)0.0031 (10)
C140.0590 (13)0.0721 (15)0.0538 (14)0.0065 (11)0.0063 (10)0.0019 (12)
C150.0622 (14)0.0961 (19)0.0512 (14)0.0002 (13)0.0122 (11)0.0042 (13)
C160.0688 (15)0.0790 (17)0.0555 (14)0.0165 (13)0.0034 (11)0.0161 (12)
C170.0850 (17)0.0587 (14)0.0740 (17)0.0007 (13)0.0058 (14)0.0115 (13)
C180.0788 (15)0.0540 (13)0.0589 (14)0.0003 (12)0.0163 (11)0.0014 (11)
C190.0635 (13)0.0450 (11)0.0432 (11)0.0031 (10)0.0061 (9)0.0025 (9)
C200.0791 (16)0.0538 (14)0.0777 (16)0.0058 (12)0.0103 (12)0.0039 (12)
C210.109 (2)0.0509 (15)0.100 (2)0.0125 (15)0.0238 (17)0.0060 (14)
C220.091 (2)0.080 (2)0.0803 (18)0.0298 (16)0.0098 (15)0.0116 (15)
C230.0668 (16)0.088 (2)0.095 (2)0.0125 (15)0.0068 (14)0.0001 (16)
C240.0698 (15)0.0566 (14)0.0864 (18)0.0029 (12)0.0041 (13)0.0074 (13)
O250.0622 (9)0.0766 (11)0.0620 (10)0.0109 (8)0.0011 (7)0.0023 (8)
Geometric parameters (Å, º) top
P12—C131.785 (2)C5—C61.366 (3)
P12—C191.786 (2)C5—H50.9300
P12—O111.6075 (14)C24—C231.377 (3)
P12—O251.4665 (15)C24—H240.9300
C19—C201.381 (3)C18—C171.380 (3)
C19—C241.388 (3)C18—H180.9300
O11—C81.392 (2)C15—C141.373 (3)
C13—C141.385 (3)C15—H150.9300
C13—C181.390 (3)C14—H140.9300
C9—C41.383 (3)C20—C211.378 (3)
C9—C81.385 (3)C20—H200.9300
C9—N101.398 (2)C6—H60.9300
O3—C21.375 (3)C2—C11.483 (3)
O3—C41.379 (2)C17—H170.9300
N10—C21.291 (3)C21—C221.363 (4)
C8—C71.373 (3)C21—H210.9300
C7—C61.403 (3)C22—C231.363 (4)
C7—H70.9300C22—H220.9300
C4—C51.375 (3)C23—H230.9300
C16—C151.368 (3)C1—H1A0.9600
C16—C171.368 (3)C1—H1B0.9600
C16—H160.9300C1—H1C0.9600
C13—P12—C19109.59 (9)C17—C18—C13120.4 (2)
O11—P12—C1399.36 (8)C17—C18—H18119.8
O25—P12—C13113.91 (9)C13—C18—H18119.8
O11—P12—C19104.76 (8)C16—C15—C14120.6 (2)
O25—P12—C19112.73 (9)C16—C15—H15119.7
O25—P12—O11115.37 (8)C14—C15—H15119.7
C20—C19—C24118.2 (2)C15—C14—C13120.5 (2)
C20—C19—P12120.14 (17)C15—C14—H14119.7
C24—C19—P12121.66 (16)C13—C14—H14119.7
C8—O11—P12124.04 (13)C21—C20—C19120.6 (2)
C14—C13—C18118.41 (19)C21—C20—H20119.7
C14—C13—P12117.69 (16)C19—C20—H20119.7
C18—C13—P12123.90 (15)C5—C6—C7122.4 (2)
C4—C9—C8118.61 (19)C5—C6—H6118.8
C4—C9—N10109.61 (18)C7—C6—H6118.8
C8—C9—N10131.78 (18)N10—C2—O3115.3 (2)
C2—O3—C4104.30 (16)N10—C2—C1127.9 (2)
C2—N10—C9103.96 (18)O3—C2—C1116.8 (2)
C7—C8—C9118.71 (18)C16—C17—C18120.2 (2)
C7—C8—O11123.65 (19)C16—C17—H17119.9
C9—C8—O11117.61 (18)C18—C17—H17119.9
C8—C7—C6120.3 (2)C22—C21—C20120.2 (2)
C8—C7—H7119.8C22—C21—H21119.9
C6—C7—H7119.8C20—C21—H21119.9
C5—C4—O3128.53 (19)C21—C22—C23120.4 (3)
C5—C4—C9124.6 (2)C21—C22—H22119.8
O3—C4—C9106.86 (19)C23—C22—H22119.8
C15—C16—C17119.9 (2)C22—C23—C24119.8 (3)
C15—C16—H16120.1C22—C23—H23120.1
C17—C16—H16120.1C24—C23—H23120.1
C6—C5—C4115.3 (2)C2—C1—H1A109.5
C6—C5—H5122.3C2—C1—H1B109.5
C4—C5—H5122.3H1A—C1—H1B109.5
C23—C24—C19120.8 (2)C2—C1—H1C109.5
C23—C24—H24119.6H1A—C1—H1C109.5
C19—C24—H24119.6H1B—C1—H1C109.5
O25—P12—C19—C204.2 (2)N10—C9—C4—C5179.05 (19)
O11—P12—C19—C20122.00 (18)C8—C9—C4—O3179.84 (16)
C13—P12—C19—C20132.20 (18)N10—C9—C4—O30.2 (2)
O25—P12—C19—C24175.71 (17)O3—C4—C5—C6179.98 (19)
O11—P12—C19—C2458.08 (19)C9—C4—C5—C61.4 (3)
C13—P12—C19—C2447.7 (2)C20—C19—C24—C230.7 (3)
O25—P12—O11—C870.10 (17)P12—C19—C24—C23179.33 (18)
C13—P12—O11—C8167.71 (15)C14—C13—C18—C170.2 (3)
C19—P12—O11—C854.45 (17)P12—C13—C18—C17179.16 (17)
O25—P12—C13—C1428.64 (19)C17—C16—C15—C140.3 (4)
O11—P12—C13—C14151.88 (16)C16—C15—C14—C130.5 (3)
C19—P12—C13—C1498.69 (17)C18—C13—C14—C150.8 (3)
O25—P12—C13—C18152.41 (17)P12—C13—C14—C15179.80 (17)
O11—P12—C13—C1829.17 (19)C24—C19—C20—C210.5 (3)
C19—P12—C13—C1880.26 (19)P12—C19—C20—C21179.57 (19)
C4—C9—N10—C20.6 (2)C4—C5—C6—C70.7 (3)
C8—C9—N10—C2179.4 (2)C8—C7—C6—C50.4 (3)
C4—C9—C8—C70.2 (3)C9—N10—C2—O30.9 (2)
N10—C9—C8—C7179.73 (19)C9—N10—C2—C1178.8 (2)
C4—C9—C8—O11178.21 (17)C4—O3—C2—N100.8 (2)
N10—C9—C8—O111.8 (3)C4—O3—C2—C1178.93 (19)
P12—O11—C8—C734.9 (3)C15—C16—C17—C180.9 (4)
P12—O11—C8—C9147.28 (15)C13—C18—C17—C160.6 (3)
C9—C8—C7—C60.9 (3)C19—C20—C21—C220.5 (4)
O11—C8—C7—C6178.74 (19)C20—C21—C22—C230.8 (4)
C2—O3—C4—C5178.5 (2)C21—C22—C23—C241.0 (4)
C2—O3—C4—C90.3 (2)C19—C24—C23—C221.0 (4)
C8—C9—C4—C51.0 (3)

Experimental details

Crystal data
Chemical formulaC20H16NO3P
Mr349.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)9.4239 (4), 15.7574 (6), 23.5398 (8)
V3)3495.6 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.39 × 0.28 × 0.19
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.934, 0.968
No. of measured, independent and
observed [I > 2s˘I)] reflections
17406, 4323, 2395
Rint0.048
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.119, 1.01
No. of reflections4323
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001; Atwood & Barbour, 2003), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
P12—C131.785 (2)P12—O111.6075 (14)
P12—C191.786 (2)P12—O251.4665 (15)
C13—P12—C19109.59 (9)O11—P12—C19104.76 (8)
O11—P12—C1399.36 (8)O25—P12—C19112.73 (9)
O25—P12—C13113.91 (9)O25—P12—O11115.37 (8)
 

Acknowledgements

The author thanks Dr JA Gertenbach at the Central Analytical Facility (CAF) of the University of Stellenbosch for the data collection. He would also like to thank SASOL and the University of Stellenbosch for financial assistance.

References

First citationAtwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDreher, E.-L., Bracht, J., El-Mobayed, M., Hütter, P., Winter, W. & Rieker, A. (1982). Chem. Ber. 115, 288–308.  CrossRef CAS Web of Science Google Scholar
First citationMrozek, A., Trzezwinska, H., Karolak-Wojciechowska, J., Yalcin, I. & Sener, E. (1999). Pol. J. Chem. 73, 625–633.  CAS Google Scholar
First citationQu, Y., Zhang, S., Teng, L., Xia, X. & Zhang, Y. (2008). Acta Cryst. E64, o1210.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds