organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-5-(chloro­meth­yl)pyridine

aSchool of Material Engineering, Jinling Institute of Technology, Nanjing 211169, People's Republic of China
*Correspondence e-mail: fzq@jit.edu.cn

(Received 23 December 2010; accepted 6 January 2011; online 12 January 2011)

The title compound, C6H5Cl2N, is almost planar, with an r.m.s. deviation of 0.0146 Å for all atoms except for the 5-choloromethyl Cl atom. The offset Cl atom lies above this plane with a Cl—C—C angle of 111.11 (17)°. In the crystal, mol­ecules are connected via inter­molecular C—H⋯N hydrogen bonds, forming dimers.

Related literature

For the synthetic procedure, see: Nishihara et al. (1993[Nishihara, Y., Itou, Y., Morino, A., Nishihara, K. & Kawamura, S. (1993). EP Patent No. 0557967.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The title compound is an inter­mediate in the synthesis of imidacloprid [systematic name (E)-1-(6-chloro-3-pyridyl­meth­yl)-N-nitro­imidazolidin-2-yl­idene­amine], see: Shroff et al. (2007[Shroff, D. K., Jain, A. K., Chaudhari, R. P., Jadeja, R. B. & Gohil, M. S. (2007). US Patent No. 20070197792.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5Cl2N

  • Mr = 162.01

  • Monoclinic, P 21 /c

  • a = 4.0770 (8) Å

  • b = 10.322 (2) Å

  • c = 16.891 (3) Å

  • β = 95.95 (3)°

  • V = 707.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.791, Tmax = 0.853

  • 2886 measured reflections

  • 1299 independent reflections

  • 1028 reflections with I > 2σ(I)

  • Rint = 0.049

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.129

  • S = 1.00

  • 1299 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯Ni 0.97 2.57 3.453 (3) 151
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tittle compound, 2-chloro-5-(chloromethyl)pyridine (I), is an important intermediate for the synthesis of imidacloprid (Shroff et al., 2007) and we report here its crystal structure.

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987). In the crystal structure, the molecules were connected together via weak C—H···N intermolecular hydrogen bonds forming dimers, which seems to be effective in the stabilization of the crystal structure.

Related literature top

For the synthetic procedure, see: Nishihara et al. (1993). For bond-length data, see: Allen et al. (1987). The title compound is an intermediate in the synthesis of imidacloprid [systematic name (E)-1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine], see: Shroff et al. (2007).

Experimental top

The title compound, (I) was prepared by a method reported in literature (Nishihara et al., 1993). The crystals were obtained by dissolving (I) (0.2 g, 1.2 mmol) in ethanol (25 ml) and evaporating the solvent slowly at room temperature for about 5 d.

Refinement top

H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined using a riding model with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl and oxygen H-atoms and x = 1.2 for all other H-atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). C—H···N hydrogen bonds are shown by dashed lines.
2-Chloro-5-(chloromethyl)pyridine top
Crystal data top
C6H5Cl2NF(000) = 328
Mr = 162.01Dx = 1.522 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 4.0770 (8) Åθ = 10–14°
b = 10.322 (2) ŵ = 0.82 mm1
c = 16.891 (3) ÅT = 293 K
β = 95.95 (3)°Block, colorless
V = 707.0 (2) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1028 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 25.4°, θmin = 2.3°
ω/2θ scansh = 04
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.791, Tmax = 0.853l = 2020
2886 measured reflections3 standard reflections every 200 reflections
1299 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.090P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1299 reflectionsΔρmax = 0.19 e Å3
83 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (5)
Crystal data top
C6H5Cl2NV = 707.0 (2) Å3
Mr = 162.01Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.0770 (8) ŵ = 0.82 mm1
b = 10.322 (2) ÅT = 293 K
c = 16.891 (3) Å0.30 × 0.20 × 0.20 mm
β = 95.95 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1028 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.049
Tmin = 0.791, Tmax = 0.8533 standard reflections every 200 reflections
2886 measured reflections intensity decay: 1%
1299 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
1299 reflectionsΔρmin = 0.18 e Å3
83 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.1376 (5)0.3311 (2)0.19100 (11)0.0614 (5)
Cl10.2101 (2)0.54073 (7)0.11039 (4)0.0867 (4)
C10.1642 (6)0.2038 (2)0.20387 (12)0.0573 (6)
H1A0.09000.17100.25010.069*
Cl20.11280 (19)0.12135 (6)0.09764 (4)0.0757 (3)
C20.2433 (6)0.3739 (2)0.12537 (14)0.0559 (6)
C30.3774 (7)0.2985 (2)0.06990 (14)0.0598 (6)
H3A0.44740.33440.02400.072*
C40.4038 (6)0.1686 (2)0.08483 (13)0.0558 (6)
H4A0.49540.11440.04910.067*
C50.2944 (5)0.1178 (2)0.15315 (12)0.0490 (5)
C60.3244 (6)0.0224 (2)0.17406 (15)0.0621 (6)
H6A0.23220.03750.22390.075*
H6B0.55560.04640.18120.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0734 (14)0.0648 (12)0.0481 (10)0.0050 (10)0.0169 (9)0.0118 (9)
Cl10.1250 (8)0.0567 (4)0.0825 (6)0.0007 (4)0.0292 (5)0.0030 (3)
C10.0626 (14)0.0737 (14)0.0374 (11)0.0081 (12)0.0137 (10)0.0006 (9)
Cl20.0946 (6)0.0576 (4)0.0772 (5)0.0046 (3)0.0203 (4)0.0059 (3)
C20.0645 (14)0.0562 (13)0.0477 (11)0.0062 (10)0.0089 (11)0.0047 (9)
C30.0761 (16)0.0632 (13)0.0426 (11)0.0057 (12)0.0187 (11)0.0020 (10)
C40.0640 (14)0.0614 (13)0.0444 (12)0.0020 (11)0.0166 (10)0.0048 (9)
C50.0445 (11)0.0614 (12)0.0410 (10)0.0022 (10)0.0044 (9)0.0011 (9)
C60.0638 (15)0.0686 (14)0.0545 (13)0.0052 (12)0.0088 (11)0.0120 (11)
Geometric parameters (Å, º) top
N—C21.307 (3)C3—C41.367 (3)
N—C11.334 (3)C3—H3A0.9300
Cl1—C21.743 (3)C4—C51.383 (3)
C1—C51.378 (3)C4—H4A0.9300
C1—H1A0.9300C5—C61.491 (3)
Cl2—C61.795 (3)C6—H6A0.9700
C2—C31.375 (3)C6—H6B0.9700
C2—N—C1116.3 (2)C3—C4—H4A120.0
N—C1—C5124.3 (2)C5—C4—H4A120.0
N—C1—H1A117.9C1—C5—C4116.9 (2)
C5—C1—H1A117.9C1—C5—C6120.3 (2)
N—C2—C3125.1 (2)C4—C5—C6122.7 (2)
N—C2—Cl1115.46 (18)C5—C6—Cl2111.11 (17)
C3—C2—Cl1119.40 (18)C5—C6—H6A109.4
C4—C3—C2117.3 (2)Cl2—C6—H6A109.4
C4—C3—H3A121.3C5—C6—H6B109.4
C2—C3—H3A121.3Cl2—C6—H6B109.4
C3—C4—C5120.0 (2)H6A—C6—H6B108.0
C2—N—C1—C50.2 (4)N—C1—C5—C40.1 (4)
C1—N—C2—C30.1 (4)N—C1—C5—C6177.9 (2)
C1—N—C2—Cl1179.33 (18)C3—C4—C5—C10.6 (3)
N—C2—C3—C40.4 (4)C3—C4—C5—C6178.3 (2)
Cl1—C2—C3—C4178.9 (2)C1—C5—C6—Cl2123.5 (2)
C2—C3—C4—C50.7 (4)C4—C5—C6—Cl258.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···Ni0.972.573.453 (3)151
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H5Cl2N
Mr162.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)4.0770 (8), 10.322 (2), 16.891 (3)
β (°) 95.95 (3)
V3)707.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.791, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
2886, 1299, 1028
Rint0.049
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.129, 1.00
No. of reflections1299
No. of parameters83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···Ni0.972.573.453 (3)151
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

This work was supported by Jinling Institute of Technology (No. JIT-N-201011). The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNishihara, Y., Itou, Y., Morino, A., Nishihara, K. & Kawamura, S. (1993). EP Patent No. 0557967.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShroff, D. K., Jain, A. K., Chaudhari, R. P., Jadeja, R. B. & Gohil, M. S. (2007). US Patent No. 20070197792.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds