organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(2-Chloro-4-nitro­anilino)methyl­­idene]-2,2-di­methyl-1,3-dioxane-4,6-dione

aDepartment of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China, and bState Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: luo_youfu@foxmail.com

(Received 23 December 2010; accepted 7 January 2011; online 15 January 2011)

In the title compound, C13H11ClN2O6, the dihedral angles between the benzene ring and the amino­methyl­ene unit and between the amino­methyl­ene group and the dioxane ring are 8.19 (14) and 1.39 (17)°, respectively. The dioxane ring has a half-boat conformation, in which the C atom between the dioxane O atoms is 0.662 (4)Å out of the plane through the remaining ring atoms. Intra­molecular N—H⋯O and N—H⋯Cl inter­actions occur.

Related literature

For the synthesis of related compounds, see: Cassis et al. (1985[Cassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125-133.]). For the biological activity of related compounds, see: Griera et al. (1997[Griera, R., Armengol, M., Reyes, A., Alvarez, M., Palomer, A., Cabre, F., Pascual, J., Garcia, M. L. & Mauleon, D. (1997). Eur. J. Med. Chem. 32, 547-570.]); Darque et al. (2009[Darque, A., Dumetre, A., Hutter, S., Casano, G., Robin, M., Pannecouque, C. & Azas, N. (2009). Bioorg. Med. Chem. Lett. 19, 5962-5964.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11ClN2O6

  • Mr = 326.69

  • Monoclinic, P 21 /c

  • a = 13.5850 (5) Å

  • b = 5.04379 (14) Å

  • c = 21.0272 (7) Å

  • β = 104.427 (4)°

  • V = 1395.35 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.] Tmin = 0.984, Tmax = 1.0

  • 6136 measured reflections

  • 2853 independent reflections

  • 2141 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.104

  • S = 1.04

  • 2853 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1 0.86 2.46 2.9328 (15) 115
N2—H2⋯O3 0.86 1.99 2.670 (2) 136

Data collection: CrysAlis PRO (Oxford Diffraction, 2010)[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]; cell refinement: CrysAlis PRO[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]; data reduction: CrysAlis PRO[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The 4(1H)quinolone are of great importance owing to their wide biological properties (Griera et al., 1997; Darque et al.,2009). 5-{[(2-Chloro-4-nitrophenyl)amino]methylene}-2,2-dimethyl-1,3-dioxane- 4,6-dione is one of the key intermediates in our synthetic investigations of new 4(1H)quinolone derivatives. We report here its crystal structure. The title compound is approximately planar, the dihedral angles between the benzene ring and the aminomethylene unit and between the aminomethylene group and the dioxane ring are 8.19 (14)° and 1.39 (17)°, respectively. The dioxane ring has a half-boat conformation, in which the C atom between the dioxane O atoms is 0.6615 (35) Å out of the plane (Figure 1.). In the molecule, there are intramolecular N—H···O and N—H···Cl interactions (Table 1.).

Related literature top

For the synthesis of related compounds, see: Cassis et al. (1985). For the biological activity of related compounds, see: Griera et al. (1997); Darque et al. (2009).

Experimental top

An ethanol solution (50 ml) of 2,2–dimethyl–1,3–dioxane–4,6–dione (1.44 g, 10 mmol) and triethoxymethane (1.78 g, 12 mmol) was heated to reflux for 2.5 h, then the 2-chloro-4-nitroaniline(1.72 g, 10 mmol) was added into the solution. The mixture was heated under reflux for another 8 h and then filtered. The precipitate was recrystallized from ethanol, giving the title compound. Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of ethanol.

Refinement top

The H-atom of N was located in a difference Fourier map and free refined: N—H = 0.86 Å. The other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic,C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. The intramolecular hydrogen bonds are shown as a dashed lines.
5-[(2-Chloro-4-nitroanilino)methylidene]-2,2-dimethyl-1,3-dioxane-4,6-dione top
Crystal data top
C13H11ClN2O6F(000) = 672
Mr = 326.69Dx = 1.555 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 2432 reflections
a = 13.5850 (5) Åθ = 3.0–29.2°
b = 5.04379 (14) ŵ = 0.31 mm1
c = 21.0272 (7) ÅT = 293 K
β = 104.427 (4)°Block, colorless
V = 1395.35 (8) Å30.40 × 0.40 × 0.30 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2853 independent reflections
Radiation source: fine-focus sealed tube2141 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 66
Tmin = 0.984, Tmax = 1.0l = 2526
6136 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.1291P]
where P = (Fo2 + 2Fc2)/3
2853 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C13H11ClN2O6V = 1395.35 (8) Å3
Mr = 326.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.5850 (5) ŵ = 0.31 mm1
b = 5.04379 (14) ÅT = 293 K
c = 21.0272 (7) Å0.40 × 0.40 × 0.30 mm
β = 104.427 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2853 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2141 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 1.0Rint = 0.021
6136 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
2853 reflectionsΔρmin = 0.29 e Å3
201 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.11303 (4)0.78022 (10)0.26632 (2)0.05062 (18)
O10.23464 (10)0.7514 (2)0.04172 (7)0.0446 (4)
O20.24014 (10)0.4073 (3)0.03503 (6)0.0469 (4)
O30.09905 (11)0.8273 (3)0.12205 (7)0.0517 (4)
O40.10943 (10)0.1444 (3)0.03156 (7)0.0509 (4)
O50.46457 (14)0.3369 (4)0.35706 (9)0.0855 (6)
O60.48067 (14)0.0203 (4)0.29216 (9)0.0910 (6)
N10.43369 (14)0.2060 (4)0.30716 (10)0.0592 (5)
N20.05320 (11)0.4776 (3)0.14363 (7)0.0360 (4)
H20.02630.61550.15650.043*
C10.33473 (15)0.2739 (4)0.26352 (9)0.0432 (5)
C20.27826 (15)0.4698 (4)0.28308 (9)0.0431 (5)
H2A0.30240.55690.32290.052*
C30.18530 (14)0.5341 (3)0.24251 (9)0.0377 (4)
C40.14835 (13)0.4042 (3)0.18250 (8)0.0337 (4)
C50.20803 (15)0.2071 (4)0.16447 (9)0.0421 (5)
H50.18470.11930.12470.051*
C60.30095 (15)0.1410 (4)0.20485 (10)0.0455 (5)
H60.34040.00860.19280.055*
C70.00122 (13)0.3622 (3)0.08932 (8)0.0336 (4)
H70.02540.21320.07360.040*
C80.09479 (13)0.4525 (3)0.05552 (8)0.0328 (4)
C90.14016 (14)0.6847 (3)0.07640 (9)0.0373 (4)
C100.29653 (14)0.5492 (4)0.00333 (10)0.0437 (5)
C110.14546 (14)0.3172 (4)0.00500 (9)0.0359 (4)
C120.33222 (18)0.3613 (4)0.04848 (13)0.0656 (7)
H12B0.37790.23370.02290.098*
H12C0.36680.45900.07560.098*
H12A0.27480.27130.07580.098*
C130.38047 (18)0.6932 (5)0.04496 (12)0.0695 (7)
H13B0.35140.82490.06780.104*
H13C0.42450.77740.02180.104*
H13A0.41880.56870.07600.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0589 (4)0.0482 (3)0.0464 (3)0.0072 (2)0.0162 (3)0.0079 (2)
O10.0400 (8)0.0317 (6)0.0572 (9)0.0054 (6)0.0025 (7)0.0053 (6)
O20.0393 (8)0.0582 (8)0.0405 (8)0.0068 (6)0.0048 (6)0.0090 (7)
O30.0527 (9)0.0407 (7)0.0556 (9)0.0058 (6)0.0018 (7)0.0167 (7)
O40.0477 (9)0.0585 (9)0.0464 (8)0.0064 (7)0.0118 (7)0.0192 (7)
O50.0679 (12)0.1027 (14)0.0660 (11)0.0073 (10)0.0210 (10)0.0129 (11)
O60.0689 (12)0.1144 (15)0.0783 (13)0.0444 (12)0.0031 (10)0.0001 (11)
N10.0447 (11)0.0748 (13)0.0522 (12)0.0057 (10)0.0013 (9)0.0098 (10)
N20.0349 (8)0.0370 (8)0.0364 (9)0.0019 (7)0.0092 (7)0.0035 (7)
C10.0369 (11)0.0526 (12)0.0382 (11)0.0015 (9)0.0060 (9)0.0074 (9)
C20.0462 (12)0.0481 (11)0.0327 (10)0.0039 (9)0.0051 (9)0.0018 (9)
C30.0409 (11)0.0385 (10)0.0358 (10)0.0014 (8)0.0136 (9)0.0005 (8)
C40.0317 (10)0.0373 (9)0.0333 (10)0.0022 (7)0.0107 (8)0.0030 (8)
C50.0404 (11)0.0500 (11)0.0357 (11)0.0028 (9)0.0090 (9)0.0051 (9)
C60.0412 (11)0.0497 (11)0.0467 (12)0.0067 (9)0.0128 (9)0.0008 (10)
C70.0340 (10)0.0351 (9)0.0340 (10)0.0001 (8)0.0130 (8)0.0005 (8)
C80.0342 (10)0.0314 (9)0.0344 (10)0.0008 (7)0.0115 (8)0.0017 (8)
C90.0388 (10)0.0308 (9)0.0416 (11)0.0010 (8)0.0086 (9)0.0004 (8)
C100.0365 (10)0.0413 (10)0.0529 (12)0.0015 (8)0.0099 (9)0.0124 (9)
C110.0339 (10)0.0400 (10)0.0356 (10)0.0012 (8)0.0120 (8)0.0014 (9)
C120.0596 (15)0.0528 (13)0.0971 (19)0.0072 (11)0.0431 (14)0.0094 (13)
C130.0470 (14)0.0787 (17)0.0703 (16)0.0174 (12)0.0089 (12)0.0148 (13)
Geometric parameters (Å, º) top
Cl1—C31.7321 (19)C3—C41.399 (2)
O1—C91.351 (2)C4—C51.394 (2)
O1—C101.436 (2)C5—H50.9300
O2—C101.434 (2)C5—C61.375 (3)
O2—C111.362 (2)C6—H60.9300
O3—C91.218 (2)C7—H70.9300
O4—C111.203 (2)C7—C81.371 (2)
O5—N11.222 (2)C8—C91.442 (2)
O6—N11.218 (2)C8—C111.457 (2)
N1—C11.467 (3)C10—C121.505 (3)
N2—H20.8600C10—C131.511 (3)
N2—C41.396 (2)C12—H12B0.9600
N2—C71.330 (2)C12—H12C0.9600
C1—C21.375 (3)C12—H12A0.9600
C1—C61.378 (3)C13—H13B0.9600
C2—H2A0.9300C13—H13C0.9600
C2—C31.375 (2)C13—H13A0.9600
O1—C9—C8117.28 (15)C5—C4—N2123.12 (16)
O1—C10—C12109.17 (17)C5—C4—C3118.49 (16)
O1—C10—C13105.94 (16)C5—C6—C1118.96 (19)
O2—C10—O1110.53 (15)C5—C6—H6120.5
O2—C10—C12109.99 (15)C6—C1—N1119.67 (19)
O2—C10—C13106.34 (17)C6—C5—C4120.78 (17)
O2—C11—C8115.76 (16)C6—C5—H5119.6
O3—C9—O1117.76 (16)C7—N2—H2115.8
O3—C9—C8124.94 (17)C7—N2—C4128.46 (15)
O4—C11—O2118.24 (17)C7—C8—C9121.58 (16)
O4—C11—C8125.91 (17)C7—C8—C11118.19 (16)
O5—N1—C1118.4 (2)C8—C7—H7118.5
O6—N1—O5123.2 (2)C9—O1—C10118.10 (13)
O6—N1—C1118.38 (19)C9—C8—C11120.12 (16)
N2—C4—C3118.39 (16)C10—C12—H12B109.5
N2—C7—H7118.5C10—C12—H12C109.5
N2—C7—C8123.03 (16)C10—C12—H12A109.5
C1—C2—H2A120.7C10—C13—H13B109.5
C1—C2—C3118.59 (17)C10—C13—H13C109.5
C1—C6—H6120.5C10—C13—H13A109.5
C2—C1—N1118.25 (18)C11—O2—C10118.74 (14)
C2—C1—C6122.08 (18)C12—C10—C13114.77 (19)
C2—C3—Cl1119.27 (14)H12B—C12—H12C109.5
C2—C3—C4121.10 (17)H12B—C12—H12A109.5
C3—C2—H2A120.7H12C—C12—H12A109.5
C4—N2—H2115.8H13B—C13—H13C109.5
C4—C3—Cl1119.63 (14)H13B—C13—H13A109.5
C4—C5—H5119.6H13C—C13—H13A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl10.862.462.9328 (15)115
N2—H2···O30.861.992.670 (2)136

Experimental details

Crystal data
Chemical formulaC13H11ClN2O6
Mr326.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.5850 (5), 5.04379 (14), 21.0272 (7)
β (°) 104.427 (4)
V3)1395.35 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.984, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
6136, 2853, 2141
Rint0.021
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.04
No. of reflections2853
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.29

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl10.862.462.9328 (15)115
N2—H2···O30.861.992.670 (2)136
 

Acknowledgements

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

References

First citationCassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125–133.  CrossRef CAS Web of Science Google Scholar
First citationDarque, A., Dumetre, A., Hutter, S., Casano, G., Robin, M., Pannecouque, C. & Azas, N. (2009). Bioorg. Med. Chem. Lett. 19, 5962–5964.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGriera, R., Armengol, M., Reyes, A., Alvarez, M., Palomer, A., Cabre, F., Pascual, J., Garcia, M. L. & Mauleon, D. (1997). Eur. J. Med. Chem. 32, 547–570.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds