organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o422-o423

5-Hy­dr­oxy-8,8-di­methyl-10-(2-methyl­but-3-en-2-yl)-2H,6H-7,8-di­hydro­pyrano[3,2-g]chromene-2,6-dione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bNatural Products Research Laboratory, School of Science, Mae Fah Luang University, Tasud, Muang Chiang Rai 57100, Thailand, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 1 January 2011; accepted 11 January 2011; online 15 January 2011)

In the title compound, C19H20O5, the pyran ring is in an envelope conformation, whereas the benzene and dihydro­pyran ring system is planar with an r.m.s. deviation of 0.0190 (1) Å. The hy­droxy group is coplanar with the attached benzene ring [r.m.s. deviation = 0.0106 (1) Å]. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked into chains along the b axis by weak C—H⋯O inter­actions. These chains are stacked along the a axis. C—H⋯π and weak ππ inter­actions [centroid–centroid distance = 3.7698 (7) Å] are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) and for ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For background to Rutaceae plants, coumarins and their biological activity, see: Kongkathip et al. (2005[Kongkathip, B., Kongkathip, N., Sunthitikawinsakul, A., Napaswat, C. & Yoosook, C. (2005). Phytother. Res. 19, 728-731.]); Laphookhieo et al. (2009[Laphookhieo, S., Sripisut, T., Prawat, U. & Karalai, C. (2009). Heterocycles, 78, 2115-2119.]); Maneerat et al. (2010[Maneerat, W., Prawat, U., Saewan, N. & Laphookhieo, S. (2010). J. Braz. Chem. Soc. 21, 665-668.]); Huang et al. (1997[Huang, S.-C., Wu, P.-L. & Wu, T.-S. (1997). Phytochemistry, 44, 179-181.]); Su et al. (2009[Su, C.-R., Yeh, S.-F., Liu, C.-M., Damu, A.-G., Kuo, T.-H., Chaing, P.-C., Bastow, K. F., Lee, K.-H. & Wu, T.-S. (2009). Bioorg. Med. Chem. 17, 6137-6143.]); Tangyuenyongwatthana et al. (1992[Tangyuenyongwatthana, P., Pummangura, S. & Thanyavuthi, D. (1992). Songklanakarin J. Sci. Technol. 14, 157-162.]); Yenjai et al. (2000[Yenjai, C., Sripontan, S., Sriprajun, P., Kittakoop, P., Jintasirikul, A., Tanticharoen, M. & Thebtaranonth, Y. (2000). Planta Med. 66, 277-279.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20O5

  • Mr = 328.35

  • Monoclinic, P 21 /c

  • a = 10.2239 (2) Å

  • b = 11.3090 (3) Å

  • c = 13.8764 (3) Å

  • β = 93.108 (1)°

  • V = 1602.06 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.81 mm−1

  • T = 100 K

  • 0.43 × 0.43 × 0.33 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.721, Tmax = 0.774

  • 48432 measured reflections

  • 3114 independent reflections

  • 3088 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.147

  • S = 1.29

  • 3114 reflections

  • 234 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C5/O1ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1O5⋯O4 0.93 (2) 1.66 (2) 2.5361 (14) 155 (2)
C9—H9B⋯O3i 0.97 2.36 3.2621 (17) 155
C16—H16B⋯O5ii 0.96 2.59 3.4982 (17) 159
C16—H16C⋯O2 0.96 2.34 2.9441 (16) 121
C15—H15BCg1iii 0.97 (2) 2.83 (2) 3.5908 (16) 136.7 (15)
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+2, -z+2; (iii) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Rutaceae plants are the rich sources of coumarins and carbazole alkaloids. Many of them have been isolated from several genera of Rutaceae especially from Clausena genus (Laphookhieo et al., 2009; Maneerat et al., 2010; Tangyuenyongwatthana et al., 1992) and some of these compounds show interesting pharmacological activities (Yenjai et al., 2000). During our on-going research on bioactive natural products from Thai medicinal plants, the title pyranocoumarin which known as clausenidin (Huang et al., 1997) was isolated from the roots of C. excavata which were collected from Suratthani province in the southern part of Thailand. Previous reports have found that clausenidin displayed anti-HIV-1 activity in a syncytial assay (Kongkathip et al., 2005) and cytotoxicity against four human cancer cell lines (A549, MCF7, KB and KB-VIN) (Su et al., 2009). We report herein the crystal structure of the title pyranocoumarin (I).

Fig. 1 shows that in the structure of (I), the pyran ring (C7–C11/O2) adopts an envelope conformation with the puckering atom C10 having deviation of 0.3279 (15) Å, and puckering parameters Q = 0.4648 (14) Å, θ = 123.32 (17)° and ϕ = 204.32° (Cremer & Pople, 1975). The benzene and dihydro-pyran ring system (C1–C7/C11-C12/O1) is planar with the r.m.s. 0.0190 (1) Å. The hydroxy group are planarly attached to the benzene ring. The orientation of the 2-methyl-but-3-enyl [C13–C17] side chain with respect to the benzene ring is indicated by the torsion angle of C12–C13–C14–C15 = 138.93 (16)°, indicating a (+)-anticlinal conformation (Fig. 1). Intramolecular O5—H1O5···O4 hydrogen bond (Table 1) generates an S(6) ring motif (Fig. 1 and Table 1) (Bernstein et al., 1995). The bond distances in (I) are within normal ranges (Allen et al., 1987).

The crystal packing of (I) is stabilized by intermolecular C—H···O and C—H···π weak interactions (Table 1). The molecules are linked into chains along the b axis and these chains are stacked along the a axis (Fig. 2 and Table 1). ππ interactions with the Cg1···Cg2 distance = 3.7698 (7) Å (symmetry code: -x, 2-y, 2-z) are observed; Cg1 and Cg2 are the centroids of C1–C5/O1 and C1/C5–C7/C11-C12 rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995) and for ring conformations, see: Cremer & Pople (1975). For background to Rutaceae plants, coumarins and their biological activity, see: Kongkathip et al. (2005); Laphookhieo et al. (2009); Maneerat et al. (2010); Huang et al. (1997); Su et al. (2009); Tangyuenyongwatthana et al. (1992); Yenjai et al. (2000).

Experimental top

The roots of C. excavata (3.98 Kg) were successively extracted with CH2Cl2 over the period of 3 days at room temperature to provide the crude CH2Cl2 extract which was subjected to quick column chromatography (QCC) over silica gel eluted with a gradient of hexane-EtOAc (100% hexane to 100% EtOAc) to provide twenty-one fractions (A-U). Fraction G (10.68 g) was further separated by QCC with a gradient of 10% EtOAc-hexane to 100% EtOAc to give seven subfractions (G1-G7). Subfraction G4 (1.82 g) was subjected to repeated column chromatography using 6% EtOAc-hexane to yield the yellow solid of the title compound (30.0 mg). Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from CH2Cl2/CH3OH (4:1 v/v) by the slow evaporation of the solvent at room temperature after several days, Mp. 410-411 K (decomposition).

Refinement top

Hydrogen atoms attached to C15 and hydroxyl H atom were located from the difference map and refined isotropically. The remaining H atoms were placed in calculated positions with (C—H) = 0.93 for aromatic and CH, 0.97 for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.51 Å from H16C and the deepest hole is located at 1.43 Å from C11.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. O—H···O hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the c axis, showing chains along the b axis. Hydrogen bonds are shown as dashed lines.
5-Hydroxy-8,8-dimethyl-10-(2-methylbut-3-en-2-yl)-2H,6H- 7,8-dihydropyrano[3,2-g]chromene-2,6-dione top
Crystal data top
C19H20O5F(000) = 696
Mr = 328.35Dx = 1.361 Mg m3
Monoclinic, P21/cMelting point = 410–411 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 10.2239 (2) ÅCell parameters from 3114 reflections
b = 11.3090 (3) Åθ = 5.8–72.0°
c = 13.8764 (3) ŵ = 0.81 mm1
β = 93.108 (1)°T = 100 K
V = 1602.06 (6) Å3Block, yellow
Z = 40.43 × 0.43 × 0.33 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3114 independent reflections
Radiation source: sealed tube3088 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 72.0°, θmin = 5.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.721, Tmax = 0.774k = 1213
48432 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.085P)2 + 0.4129P]
where P = (Fo2 + 2Fc2)/3
S = 1.29(Δ/σ)max = 0.001
3114 reflectionsΔρmax = 0.71 e Å3
234 parametersΔρmin = 0.84 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.041 (2)
Crystal data top
C19H20O5V = 1602.06 (6) Å3
Mr = 328.35Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.2239 (2) ŵ = 0.81 mm1
b = 11.3090 (3) ÅT = 100 K
c = 13.8764 (3) Å0.43 × 0.43 × 0.33 mm
β = 93.108 (1)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3114 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3088 reflections with I > 2σ(I)
Tmin = 0.721, Tmax = 0.774Rint = 0.027
48432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.29Δρmax = 0.71 e Å3
3114 reflectionsΔρmin = 0.84 e Å3
234 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24205 (9)1.16069 (8)0.99936 (7)0.0182 (3)
O20.25452 (9)0.76187 (8)0.90044 (6)0.0178 (3)
O30.25906 (11)1.34713 (9)1.04469 (8)0.0251 (3)
O40.01977 (10)0.66004 (9)1.11316 (7)0.0228 (3)
O50.01904 (10)0.87092 (9)1.17530 (7)0.0216 (3)
H1O50.010 (2)0.789 (2)1.1695 (16)0.046 (6)*
C10.20676 (12)1.04507 (12)1.01109 (9)0.0155 (3)
C20.21353 (13)1.25150 (12)1.06206 (10)0.0188 (3)
C30.13341 (13)1.22145 (13)1.14119 (10)0.0201 (3)
H3A0.10831.28021.18330.024*
C40.09493 (13)1.10932 (12)1.15431 (10)0.0186 (3)
H4A0.04401.09121.20590.022*
C50.13116 (12)1.01699 (12)1.09000 (9)0.0164 (3)
C60.09425 (12)0.89887 (12)1.10224 (9)0.0165 (3)
C70.13559 (12)0.81207 (12)1.03860 (9)0.0162 (3)
C80.09306 (12)0.69006 (12)1.04907 (10)0.0180 (3)
C90.13851 (13)0.60284 (12)0.97689 (10)0.0194 (3)
H9A0.07240.59560.92440.023*
H9B0.14900.52601.00740.023*
C100.26803 (14)0.63988 (11)0.93635 (10)0.0183 (3)
C110.21402 (12)0.84528 (12)0.96178 (9)0.0154 (3)
C120.25049 (12)0.96284 (12)0.94385 (9)0.0154 (3)
C130.33249 (13)0.98950 (12)0.85555 (9)0.0176 (3)
C140.45881 (13)0.91792 (13)0.86498 (10)0.0211 (3)
H14A0.50020.91340.92620.025*
C150.51505 (15)0.86207 (14)0.79547 (11)0.0258 (4)
H15A0.473 (2)0.8581 (18)0.7301 (16)0.038 (5)*
H15B0.598 (2)0.8228 (18)0.8085 (14)0.034 (5)*
C160.24997 (13)0.95973 (13)0.76241 (9)0.0204 (3)
H16A0.29770.98120.70730.031*
H16B0.16911.00290.76140.031*
H16C0.23180.87650.76050.031*
C170.37739 (16)1.11907 (13)0.84519 (11)0.0273 (4)
H17A0.42881.12630.78960.041*
H17B0.42931.14190.90190.041*
H17C0.30201.16950.83770.041*
C180.29707 (16)0.56754 (13)0.84802 (11)0.0252 (3)
H18A0.37680.59510.82220.038*
H18B0.22630.57590.80010.038*
H18C0.30650.48580.86580.038*
C190.38167 (14)0.63524 (12)1.01187 (10)0.0213 (3)
H19A0.46030.66150.98370.032*
H19B0.39320.55551.03450.032*
H19C0.36310.68571.06500.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0233 (5)0.0130 (5)0.0188 (5)0.0003 (4)0.0045 (4)0.0003 (3)
O20.0241 (5)0.0126 (5)0.0169 (5)0.0009 (4)0.0044 (4)0.0005 (3)
O30.0334 (6)0.0144 (5)0.0278 (6)0.0006 (4)0.0039 (4)0.0006 (4)
O40.0219 (5)0.0208 (5)0.0261 (5)0.0027 (4)0.0059 (4)0.0046 (4)
O50.0235 (5)0.0213 (6)0.0208 (5)0.0009 (4)0.0088 (4)0.0018 (4)
C10.0153 (6)0.0140 (6)0.0171 (6)0.0002 (5)0.0007 (5)0.0011 (5)
C20.0205 (7)0.0156 (7)0.0201 (7)0.0024 (5)0.0015 (5)0.0020 (5)
C30.0209 (7)0.0203 (7)0.0191 (7)0.0042 (5)0.0011 (5)0.0048 (5)
C40.0165 (6)0.0225 (7)0.0168 (6)0.0024 (5)0.0018 (5)0.0015 (5)
C50.0156 (6)0.0183 (7)0.0153 (6)0.0013 (5)0.0010 (5)0.0002 (5)
C60.0139 (6)0.0210 (7)0.0147 (6)0.0006 (5)0.0012 (5)0.0019 (5)
C70.0154 (6)0.0164 (7)0.0166 (6)0.0001 (5)0.0002 (5)0.0019 (5)
C80.0150 (6)0.0183 (7)0.0204 (7)0.0003 (5)0.0015 (5)0.0033 (5)
C90.0200 (7)0.0138 (6)0.0242 (7)0.0017 (5)0.0011 (5)0.0014 (5)
C100.0227 (7)0.0120 (6)0.0206 (7)0.0008 (5)0.0028 (5)0.0009 (5)
C110.0152 (6)0.0161 (7)0.0148 (6)0.0014 (5)0.0004 (5)0.0009 (5)
C120.0159 (6)0.0157 (7)0.0147 (6)0.0003 (5)0.0013 (5)0.0007 (5)
C130.0203 (7)0.0170 (7)0.0160 (6)0.0000 (5)0.0052 (5)0.0003 (5)
C140.0180 (7)0.0267 (7)0.0187 (7)0.0006 (5)0.0011 (5)0.0007 (5)
C150.0217 (7)0.0305 (8)0.0250 (8)0.0060 (6)0.0003 (6)0.0025 (6)
C160.0217 (7)0.0233 (7)0.0165 (7)0.0032 (5)0.0030 (5)0.0028 (5)
C170.0376 (9)0.0201 (7)0.0257 (7)0.0052 (6)0.0160 (6)0.0010 (6)
C180.0338 (8)0.0174 (7)0.0248 (7)0.0017 (6)0.0048 (6)0.0037 (5)
C190.0204 (7)0.0199 (7)0.0237 (7)0.0020 (5)0.0028 (5)0.0017 (5)
Geometric parameters (Å, º) top
O1—C11.3685 (16)C10—C181.5164 (19)
O1—C21.3872 (16)C10—C191.5227 (19)
O2—C111.3505 (16)C11—C121.4065 (19)
O2—C101.4708 (15)C12—C131.5513 (17)
O3—C21.2069 (18)C13—C141.5238 (19)
O4—C81.2410 (17)C13—C161.5419 (18)
O5—C61.3430 (16)C13—C171.5445 (18)
O5—H1O50.93 (2)C14—C151.311 (2)
C1—C121.4073 (19)C14—H14A0.9300
C1—C51.4103 (18)C15—H15A0.98 (2)
C2—C31.4456 (19)C15—H15B0.97 (2)
C3—C41.343 (2)C16—H16A0.9600
C3—H3A0.9300C16—H16B0.9600
C4—C51.4352 (18)C16—H16C0.9600
C4—H4A0.9300C17—H17A0.9600
C5—C61.4009 (19)C17—H17B0.9600
C6—C71.4009 (19)C17—H17C0.9600
C7—C111.4189 (18)C18—H18A0.9600
C7—C81.4564 (18)C18—H18B0.9600
C8—C91.4975 (19)C18—H18C0.9600
C9—C101.5253 (19)C19—H19A0.9600
C9—H9A0.9700C19—H19B0.9600
C9—H9B0.9700C19—H19C0.9600
C1—O1—C2124.55 (11)C12—C11—C7123.30 (12)
C11—O2—C10117.90 (10)C11—C12—C1114.24 (12)
C6—O5—H1O5103.0 (14)C11—C12—C13118.90 (11)
O1—C1—C12117.21 (12)C1—C12—C13126.86 (12)
O1—C1—C5117.81 (12)C14—C13—C16112.25 (11)
C12—C1—C5124.97 (13)C14—C13—C17104.91 (11)
O3—C2—O1116.21 (12)C16—C13—C17106.32 (11)
O3—C2—C3127.09 (13)C14—C13—C12108.70 (11)
O1—C2—C3116.70 (12)C16—C13—C12108.97 (11)
C4—C3—C2120.48 (12)C17—C13—C12115.72 (11)
C4—C3—H3A119.8C15—C14—C13126.59 (13)
C2—C3—H3A119.8C15—C14—H14A116.7
C3—C4—C5121.02 (13)C13—C14—H14A116.7
C3—C4—H4A119.5C14—C15—H15A120.7 (12)
C5—C4—H4A119.5C14—C15—H15B120.0 (12)
C6—C5—C1118.12 (12)H15A—C15—H15B119.3 (17)
C6—C5—C4122.55 (12)C13—C16—H16A109.5
C1—C5—C4119.32 (12)C13—C16—H16B109.5
O5—C6—C7121.03 (12)H16A—C16—H16B109.5
O5—C6—C5119.01 (12)C13—C16—H16C109.5
C7—C6—C5119.95 (12)H16A—C16—H16C109.5
C6—C7—C11119.36 (12)H16B—C16—H16C109.5
C6—C7—C8119.95 (12)C13—C17—H17A109.5
C11—C7—C8120.64 (12)C13—C17—H17B109.5
O4—C8—C7121.72 (13)H17A—C17—H17B109.5
O4—C8—C9121.36 (12)C13—C17—H17C109.5
C7—C8—C9116.89 (12)H17A—C17—H17C109.5
C8—C9—C10111.89 (11)H17B—C17—H17C109.5
C8—C9—H9A109.2C10—C18—H18A109.5
C10—C9—H9A109.2C10—C18—H18B109.5
C8—C9—H9B109.2H18A—C18—H18B109.5
C10—C9—H9B109.2C10—C18—H18C109.5
H9A—C9—H9B107.9H18A—C18—H18C109.5
O2—C10—C18104.54 (11)H18B—C18—H18C109.5
O2—C10—C19108.64 (11)C10—C19—H19A109.5
C18—C10—C19111.23 (12)C10—C19—H19B109.5
O2—C10—C9108.37 (11)H19A—C19—H19B109.5
C18—C10—C9111.21 (12)C10—C19—H19C109.5
C19—C10—C9112.46 (11)H19A—C19—H19C109.5
O2—C11—C12117.10 (12)H19B—C19—H19C109.5
O2—C11—C7119.58 (12)
C2—O1—C1—C12176.20 (11)C11—O2—C10—C1968.22 (14)
C2—O1—C1—C52.95 (18)C11—O2—C10—C954.25 (14)
C1—O1—C2—O3175.33 (12)C8—C9—C10—O252.54 (14)
C1—O1—C2—C34.33 (18)C8—C9—C10—C18166.91 (11)
O3—C2—C3—C4176.61 (14)C8—C9—C10—C1967.58 (14)
O1—C2—C3—C43.01 (19)C10—O2—C11—C12154.89 (11)
C2—C3—C4—C50.5 (2)C10—O2—C11—C726.57 (16)
O1—C1—C5—C6179.76 (11)C6—C7—C11—O2179.76 (11)
C12—C1—C5—C61.2 (2)C8—C7—C11—O23.05 (18)
O1—C1—C5—C40.19 (18)C6—C7—C11—C121.79 (19)
C12—C1—C5—C4178.89 (12)C8—C7—C11—C12175.40 (11)
C3—C4—C5—C6179.13 (12)O2—C11—C12—C1179.17 (10)
C3—C4—C5—C10.9 (2)C7—C11—C12—C12.35 (19)
C1—C5—C6—O5178.07 (11)O2—C11—C12—C130.61 (17)
C4—C5—C6—O51.87 (19)C7—C11—C12—C13177.87 (11)
C1—C5—C6—C71.80 (19)O1—C1—C12—C11178.22 (10)
C4—C5—C6—C7178.26 (11)C5—C1—C12—C110.87 (19)
O5—C6—C7—C11179.45 (11)O1—C1—C12—C131.54 (19)
C5—C6—C7—C110.42 (19)C5—C1—C12—C13179.37 (12)
O5—C6—C7—C82.24 (19)C11—C12—C13—C1457.89 (15)
C5—C6—C7—C8177.63 (11)C1—C12—C13—C14121.86 (14)
C6—C7—C8—O40.37 (19)C11—C12—C13—C1664.73 (15)
C11—C7—C8—O4176.81 (12)C1—C12—C13—C16115.52 (14)
C6—C7—C8—C9178.52 (11)C11—C12—C13—C17175.57 (12)
C11—C7—C8—C91.35 (18)C1—C12—C13—C174.2 (2)
O4—C8—C9—C10154.56 (12)C16—C13—C14—C1518.3 (2)
C7—C8—C9—C1027.28 (16)C17—C13—C14—C1596.71 (17)
C11—O2—C10—C18172.93 (11)C12—C13—C14—C15138.93 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C5/O1ring.
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O40.93 (2)1.66 (2)2.5361 (14)155 (2)
C9—H9B···O3i0.972.363.2621 (17)155
C16—H16B···O5ii0.962.593.4982 (17)159
C16—H16C···O20.962.342.9441 (16)121
C15—H15B···Cg1iii0.97 (2)2.83 (2)3.5908 (16)136.7 (15)
Symmetry codes: (i) x, y1, z; (ii) x, y+2, z+2; (iii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC19H20O5
Mr328.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.2239 (2), 11.3090 (3), 13.8764 (3)
β (°) 93.108 (1)
V3)1602.06 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.81
Crystal size (mm)0.43 × 0.43 × 0.33
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.721, 0.774
No. of measured, independent and
observed [I > 2σ(I)] reflections
48432, 3114, 3088
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.147, 1.29
No. of reflections3114
No. of parameters234
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.71, 0.84

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C5/O1ring.
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O40.93 (2)1.66 (2)2.5361 (14)155 (2)
C9—H9B···O3i0.972.363.2621 (17)155
C16—H16B···O5ii0.962.593.4982 (17)159
C16—H16C···O20.962.342.9441 (16)121
C15—H15B···Cg1iii0.97 (2)2.83 (2)3.5908 (16)136.7 (15)
Symmetry codes: (i) x, y1, z; (ii) x, y+2, z+2; (iii) x+1, y+2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

SL and TS are grateful to the Thailand Research Fund through the Royal Golden Jubilee PhD Program and Mae Fah Luang University for financial support. SC thanks the Prince of Songkla University for generous support through the Crystal Materials Research Unit. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHuang, S.-C., Wu, P.-L. & Wu, T.-S. (1997). Phytochemistry, 44, 179–181.  CAS Google Scholar
First citationKongkathip, B., Kongkathip, N., Sunthitikawinsakul, A., Napaswat, C. & Yoosook, C. (2005). Phytother. Res. 19, 728–731.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLaphookhieo, S., Sripisut, T., Prawat, U. & Karalai, C. (2009). Heterocycles, 78, 2115–2119.  Web of Science CrossRef CAS Google Scholar
First citationManeerat, W., Prawat, U., Saewan, N. & Laphookhieo, S. (2010). J. Braz. Chem. Soc. 21, 665–668.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C.-R., Yeh, S.-F., Liu, C.-M., Damu, A.-G., Kuo, T.-H., Chaing, P.-C., Bastow, K. F., Lee, K.-H. & Wu, T.-S. (2009). Bioorg. Med. Chem. 17, 6137–6143.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTangyuenyongwatthana, P., Pummangura, S. & Thanyavuthi, D. (1992). Songklanakarin J. Sci. Technol. 14, 157–162.  Google Scholar
First citationYenjai, C., Sripontan, S., Sriprajun, P., Kittakoop, P., Jintasirikul, A., Tanticharoen, M. & Thebtaranonth, Y. (2000). Planta Med. 66, 277–279.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o422-o423
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds