metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis­(μ-benzoato-κ2O:O′)bis­{[4-(di­methyl­amino)­pyridine-κN1]zinc(II)}

aState Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China, bDepartment of Chemistry, College of Science, Shanghai University, Shanghai 200444, People's Republic of China, and cInstrumental Analysis and Research Center, Shanghai University, Shanghai 200444, People's Republic of China
*Correspondence e-mail: yuzheyin09@sjtu.edu.cn

(Received 4 January 2011; accepted 9 January 2011; online 15 January 2011)

In the centrosymmetric binuclear title complex, [Zn2(C7H5O2)4(C7H10N2)2], the Zn atoms [Zn⋯Zn = 3.0037 (6) Å] are bridged by four benzoate ligands. Each of the Zn atoms assumes an approximately square-pyramidal environment, with four O atoms in a plane and the pyridine N atom at the apical site.

Related literature

For the nucleophilic properties of 4-(dimethyl­amino)­pyridine (DMAP), see: Fu (2000[Fu, G.-C. (2000). Acc. Chem. Res. 33, 412-420.]). For complexes of DMAP, see: Tyrra et al. (2003[Tyrra, W., Naumann, D. & Pantenburg, I. (2003). J. Fluorine Chem. 120, 13-19.]) and for complexes of DMAP which exhibit luminescence, see: Araki et al. (2005[Araki, H., Tsuge, K., Sasaki, Y., Ishizaka, S. & Kitamura, N. (2005). Inorg. Chem. 44, 9667-9675.]). For Zn⋯Zn distances in related structures, see: Anirban et al. (2006[Anirban, K., Rupam, J. & Jubaraj, B. (2006). Inorg. Chem. Commun. 9, 1169-1172.]); Han et al. (2009[Han, K., Sun, H., Soo, H., Young, M., Byeong, K., Yu, J., Je, Y., Cheal, K., Sung-Jin, K. & Youngmee, K. (2009). Polyhedron, 28, 553-561.]); Konidaris et al. (2009[Konidaris, K. F., Kaplanis, M., Raptopoulou, C. P., Perlepes, S. P., Manessi-Zoupa, E, & Katsoulakou, E. (2009). Polyhedron, 28, 3243-3250. ]); Wang et al. (2008[Wang, K., Yin, P., Shen, Y., Li, Z., Qin, Y. & Yao, Y. (2008). Chin. J. Struct. Chem. 27, 1093-1096.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C7H5O2)4(C7H10N2)2]

  • Mr = 859.56

  • Monoclinic, P 21 /n

  • a = 10.3146 (12) Å

  • b = 11.1558 (13) Å

  • c = 17.324 (2) Å

  • β = 95.616 (1)°

  • V = 1983.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 296 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.702, Tmax = 0.786

  • 10123 measured reflections

  • 3515 independent reflections

  • 2860 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.066

  • S = 0.99

  • 3515 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 2.0134 (19)
Zn1—O3 2.0390 (18)
Zn1—O1 2.0467 (16)
Zn1—O2i 2.0472 (17)
Zn1—O4i 2.0782 (18)
Symmetry code: (i) -x+1, -y, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4-(dimethylamino)pyridine (DMAP) has good coordination ability, but there are few reports on its complexes (Tyrra et al., 2003) except a lot of reports on its nucleophilic properties (Fu et al., 2000). The DMAP complexes which exhibit luminescence properties was reported (Araki et al., 2005). In our systematic studies on transition metal complexes with the DMAP, the title compound was prepared and its x-ray structure is presented here.

The title compound has a paddlewheel type dimeric structure (Fig. 1) with an inversion centre located between the Zn ions. Each Zn atom is five-coordinate: the four equatorial O atoms belong to four bridging carboxyl groups and the N atom at the apical position is the pyridine N atom of the DMAP ligand. The Zn—O bond lengths are between 2.0390 Å and 2.0782 Å, but the Zn1—N1 distance is shorter [2.0134 (19) Å] (Table 1.). The Zn···Zn distance of 3.0037 (6) Å is longer than the corresponding distance of 2.9827 (7) Å in [Zn2(C6H5COO)4(H2O)2][Zn(C6H5COO)2(1,2-bis(4-pyridyl)ethane)] (Han et al., 2009) and 2.9692 (15) Å in [Zn2 (C6H5COO)2(4,4'-bipyridine)]n (Wang et al., 2008) and 2.9582 (4) Å in [Zn2 (C6H5COO)2(pyridine)2] (Anirban et al., 2006), but shorter than the corresponding distance of 3.392 (5) Å in {Zn3(C6H5COO)6[(3-py)(CH) NOH]2} (Konidaris et al., 2009).

Related literature top

For the nucleophilic properties of 4-(dimethylamino)pyridine (DMAP), see: Fu (2000). For complexes of (DMAP), see: Tyrra et al. (2003) and for those which exhibit luminescence, see: Araki et al. (2005). For Z···Z distances in related structures, see: Anirban et al. (2006); Han et al. (2009); Konidaris et al. (2009); Wang et al. (2008).

Experimental top

An ethanol solution (2 ml) containing DMAP (0.0611 g, 0.5 mmol) and Zn(CH3COO)2.2H2O (0.0549 g, 0.25 mmol) was mixed with an aqueous solution (5 ml) of benzoic acid (0.0611 g, 0.5 mmol) and NaOH (0.0200 g, 0.5 mmol). The mixture was refluxed for 5 h. The solution was filtered after cooling to room temperature. Colorless single crystals suitable for x-ray diffraction were obtained from the filtrate after 6 days.

Refinement top

Methyl H atoms were placed in calculated positions with C—H distances = 0.96 Å and Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H distances = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry code for atoms labeled with A : -x, -y, -z
Tetrakis(µ-benzoato-κ2O:O')bis{[4- (dimethylamino)pyridine-κN1]zinc(II)} top
Crystal data top
[Zn2(C7H5O2)4(C7H10N2)2]F(000) = 888
Mr = 859.56Dx = 1.439 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3350 reflections
a = 10.3146 (12) Åθ = 2.4–24.2°
b = 11.1558 (13) ŵ = 1.27 mm1
c = 17.324 (2) ÅT = 296 K
β = 95.616 (1)°Block, colorless
V = 1983.9 (4) Å30.30 × 0.30 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3515 independent reflections
Radiation source: fine-focus sealed tube2860 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.702, Tmax = 0.786k = 913
10123 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0188P)2 + 1.4303P]
where P = (Fo2 + 2Fc2)/3
3515 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
[Zn2(C7H5O2)4(C7H10N2)2]V = 1983.9 (4) Å3
Mr = 859.56Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.3146 (12) ŵ = 1.27 mm1
b = 11.1558 (13) ÅT = 296 K
c = 17.324 (2) Å0.30 × 0.30 × 0.20 mm
β = 95.616 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3515 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2860 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 0.786Rint = 0.030
10123 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 0.99Δρmax = 0.27 e Å3
3515 reflectionsΔρmin = 0.20 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.63121 (3)0.05006 (2)0.028407 (16)0.03192 (9)
C10.8975 (2)0.1390 (2)0.00916 (15)0.0405 (6)
H10.90110.07140.02200.049*
C21.0020 (2)0.2142 (2)0.01489 (15)0.0445 (7)
H21.07390.19690.01170.053*
C31.0015 (2)0.3180 (2)0.06093 (15)0.0412 (6)
C40.8891 (3)0.3349 (2)0.09862 (16)0.0504 (7)
H40.88240.40140.13030.060*
C50.7892 (3)0.2544 (2)0.08927 (16)0.0478 (7)
H50.71590.26910.11500.057*
C61.2169 (3)0.3787 (3)0.0269 (2)0.0689 (9)
H6A1.19040.36550.02710.103*
H6B1.27110.44870.03260.103*
H6C1.26490.31040.04770.103*
C71.1030 (3)0.4980 (3)0.1208 (2)0.0769 (11)
H7A1.09490.47000.17250.115*
H7B1.18330.54120.11980.115*
H7C1.03120.54990.10470.115*
C80.5952 (2)0.0937 (2)0.11840 (14)0.0352 (6)
C90.6546 (2)0.1572 (2)0.18291 (13)0.0356 (6)
C100.7862 (3)0.1480 (3)0.19036 (16)0.0515 (7)
H100.83820.09940.15640.062*
C110.8415 (3)0.2103 (3)0.24778 (18)0.0687 (9)
H110.93030.20330.25240.082*
C120.7658 (4)0.2825 (3)0.29808 (19)0.0721 (10)
H120.80320.32530.33630.086*
C130.6348 (4)0.2911 (3)0.29167 (17)0.0670 (9)
H130.58290.33890.32620.080*
C140.5794 (3)0.2289 (2)0.23407 (15)0.0489 (7)
H140.49050.23570.22990.059*
C150.5854 (3)0.1832 (2)0.08035 (14)0.0388 (6)
C160.6088 (2)0.2987 (2)0.12389 (14)0.0359 (6)
C170.7090 (3)0.3097 (2)0.18238 (16)0.0513 (7)
H170.76580.24590.19330.062*
C180.7261 (3)0.4143 (3)0.22497 (17)0.0609 (8)
H180.79240.42020.26520.073*
C190.6448 (3)0.5083 (3)0.2074 (2)0.0686 (9)
H190.65510.57850.23620.082*
C200.5481 (3)0.5007 (3)0.1477 (2)0.0739 (10)
H200.49500.56670.13510.089*
C210.5290 (3)0.3959 (3)0.10635 (18)0.0550 (8)
H210.46210.39060.06640.066*
N10.78988 (18)0.15549 (18)0.04532 (11)0.0354 (5)
N21.1022 (2)0.3960 (2)0.06836 (14)0.0556 (6)
O10.67051 (17)0.03548 (16)0.07120 (10)0.0453 (5)
O20.47447 (17)0.10480 (17)0.11606 (10)0.0469 (5)
O30.67429 (19)0.10512 (16)0.08761 (11)0.0518 (5)
O40.47960 (18)0.17275 (17)0.04000 (11)0.0527 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02949 (15)0.03168 (16)0.03423 (16)0.00493 (12)0.00125 (11)0.00011 (13)
C10.0364 (14)0.0381 (15)0.0468 (15)0.0033 (11)0.0032 (12)0.0100 (12)
C20.0336 (14)0.0471 (16)0.0540 (17)0.0053 (12)0.0112 (12)0.0081 (14)
C30.0379 (15)0.0423 (16)0.0426 (15)0.0095 (12)0.0006 (12)0.0009 (12)
C40.0529 (17)0.0440 (17)0.0560 (17)0.0136 (14)0.0140 (14)0.0212 (14)
C50.0425 (16)0.0479 (18)0.0554 (17)0.0078 (13)0.0165 (13)0.0117 (14)
C60.0460 (18)0.070 (2)0.092 (3)0.0233 (16)0.0155 (17)0.0007 (19)
C70.078 (2)0.058 (2)0.094 (3)0.0313 (18)0.003 (2)0.021 (2)
C80.0403 (15)0.0335 (14)0.0323 (13)0.0005 (11)0.0054 (12)0.0039 (11)
C90.0431 (15)0.0335 (14)0.0309 (13)0.0023 (11)0.0071 (11)0.0032 (11)
C100.0463 (17)0.065 (2)0.0439 (16)0.0012 (14)0.0082 (13)0.0045 (14)
C110.059 (2)0.091 (3)0.060 (2)0.0180 (19)0.0240 (17)0.0015 (19)
C120.099 (3)0.068 (2)0.054 (2)0.024 (2)0.029 (2)0.0061 (17)
C130.099 (3)0.053 (2)0.0504 (19)0.0054 (19)0.0109 (18)0.0174 (15)
C140.0572 (18)0.0435 (17)0.0468 (16)0.0054 (14)0.0098 (14)0.0045 (13)
C150.0478 (16)0.0354 (15)0.0343 (14)0.0030 (12)0.0100 (13)0.0027 (11)
C160.0393 (14)0.0309 (14)0.0375 (14)0.0026 (11)0.0047 (11)0.0037 (11)
C170.0591 (18)0.0380 (16)0.0534 (17)0.0031 (13)0.0116 (14)0.0005 (13)
C180.072 (2)0.050 (2)0.0552 (19)0.0074 (16)0.0186 (16)0.0095 (15)
C190.078 (2)0.0427 (19)0.083 (2)0.0012 (17)0.005 (2)0.0268 (17)
C200.068 (2)0.0414 (18)0.108 (3)0.0141 (16)0.015 (2)0.0204 (19)
C210.0503 (17)0.0445 (18)0.067 (2)0.0064 (14)0.0091 (15)0.0137 (15)
N10.0320 (11)0.0343 (12)0.0397 (12)0.0057 (9)0.0031 (9)0.0040 (9)
N20.0487 (14)0.0509 (15)0.0678 (16)0.0235 (12)0.0091 (12)0.0100 (13)
O10.0433 (10)0.0516 (12)0.0418 (10)0.0097 (9)0.0076 (8)0.0137 (9)
O20.0357 (10)0.0635 (13)0.0419 (10)0.0024 (9)0.0070 (8)0.0109 (9)
O30.0574 (12)0.0360 (11)0.0605 (12)0.0055 (9)0.0017 (10)0.0124 (9)
O40.0491 (12)0.0513 (12)0.0553 (12)0.0048 (9)0.0062 (10)0.0180 (9)
Geometric parameters (Å, º) top
Zn1—N12.0134 (19)C9—C141.376 (3)
Zn1—O32.0390 (18)C9—C101.380 (3)
Zn1—O12.0467 (16)C10—C111.381 (4)
Zn1—O2i2.0472 (17)C10—H100.9300
Zn1—O4i2.0782 (18)C11—C121.373 (5)
Zn1—Zn1i3.0037 (6)C11—H110.9300
C1—N11.340 (3)C12—C131.371 (5)
C1—C21.362 (3)C12—H120.9300
C1—H10.9300C13—C141.384 (4)
C2—C31.406 (4)C13—H130.9300
C2—H20.9300C14—H140.9300
C3—N21.351 (3)C15—O41.243 (3)
C3—C41.398 (4)C15—O31.262 (3)
C4—C51.364 (3)C15—C161.500 (3)
C4—H40.9300C16—C171.380 (3)
C5—N11.341 (3)C16—C211.377 (4)
C5—H50.9300C17—C181.382 (4)
C6—N21.456 (4)C17—H170.9300
C6—H6A0.9600C18—C191.358 (4)
C6—H6B0.9600C18—H180.9300
C6—H6C0.9600C19—C201.367 (4)
C7—N21.456 (4)C19—H190.9300
C7—H7A0.9600C20—C211.376 (4)
C7—H7B0.9600C20—H200.9300
C7—H7C0.9600C21—H210.9300
C8—O11.253 (3)O2—Zn1i2.0471 (17)
C8—O21.256 (3)O4—Zn1i2.0782 (18)
C8—C91.503 (3)
N1—Zn1—O3106.79 (8)C10—C9—C8120.7 (2)
N1—Zn1—O199.78 (7)C9—C10—C11120.6 (3)
O3—Zn1—O188.67 (8)C9—C10—H10119.7
N1—Zn1—O2i101.66 (8)C11—C10—H10119.7
O3—Zn1—O2i89.18 (8)C12—C11—C10120.2 (3)
O1—Zn1—O2i158.15 (7)C12—C11—H11119.9
N1—Zn1—O4i95.29 (8)C10—C11—H11119.9
O3—Zn1—O4i157.92 (8)C13—C12—C11119.6 (3)
O1—Zn1—O4i88.25 (8)C13—C12—H12120.2
O2i—Zn1—O4i85.61 (8)C11—C12—H12120.2
N1—Zn1—Zn1i163.45 (6)C12—C13—C14120.2 (3)
O3—Zn1—Zn1i89.66 (5)C12—C13—H13119.9
O1—Zn1—Zn1i78.28 (5)C14—C13—H13119.9
O2i—Zn1—Zn1i79.97 (5)C9—C14—C13120.7 (3)
O4i—Zn1—Zn1i68.30 (5)C9—C14—H14119.7
N1—C1—C2124.6 (2)C13—C14—H14119.7
N1—C1—H1117.7O4—C15—O3125.5 (2)
C2—C1—H1117.7O4—C15—C16116.9 (2)
C1—C2—C3120.1 (2)O3—C15—C16117.6 (2)
C1—C2—H2119.9C17—C16—C21118.7 (2)
C3—C2—H2119.9C17—C16—C15121.2 (2)
N2—C3—C4122.2 (2)C21—C16—C15120.1 (2)
N2—C3—C2122.6 (2)C16—C17—C18121.0 (3)
C4—C3—C2115.2 (2)C16—C17—H17119.5
C5—C4—C3120.5 (2)C18—C17—H17119.5
C5—C4—H4119.8C19—C18—C17119.2 (3)
C3—C4—H4119.8C19—C18—H18120.4
N1—C5—C4124.3 (2)C17—C18—H18120.4
N1—C5—H5117.9C18—C19—C20120.7 (3)
C4—C5—H5117.9C18—C19—H19119.6
N2—C6—H6A109.5C20—C19—H19119.6
N2—C6—H6B109.5C19—C20—C21120.2 (3)
H6A—C6—H6B109.5C19—C20—H20119.9
N2—C6—H6C109.5C21—C20—H20119.9
H6A—C6—H6C109.5C20—C21—C16120.2 (3)
H6B—C6—H6C109.5C20—C21—H21119.9
N2—C7—H7A109.5C16—C21—H21119.9
N2—C7—H7B109.5C1—N1—C5115.4 (2)
H7A—C7—H7B109.5C1—N1—Zn1123.41 (16)
N2—C7—H7C109.5C5—N1—Zn1120.93 (16)
H7A—C7—H7C109.5C3—N2—C6121.4 (2)
H7B—C7—H7C109.5C3—N2—C7121.3 (2)
O1—C8—O2125.7 (2)C6—N2—C7117.2 (2)
O1—C8—C9117.2 (2)C8—O1—Zn1129.10 (16)
O2—C8—C9117.1 (2)C8—O2—Zn1i126.60 (16)
C14—C9—C10118.7 (2)C15—O3—Zn1114.55 (17)
C14—C9—C8120.5 (2)C15—O4—Zn1i141.85 (18)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn2(C7H5O2)4(C7H10N2)2]
Mr859.56
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.3146 (12), 11.1558 (13), 17.324 (2)
β (°) 95.616 (1)
V3)1983.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.702, 0.786
No. of measured, independent and
observed [I > 2σ(I)] reflections
10123, 3515, 2860
Rint0.030
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.066, 0.99
No. of reflections3515
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.20

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N12.0134 (19)Zn1—O2i2.0472 (17)
Zn1—O32.0390 (18)Zn1—O4i2.0782 (18)
Zn1—O12.0467 (16)Zn1—Zn1i3.0037 (6)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We thank Min Shao of Shanghai University for working on the crystal structure analysis.

References

First citationAnirban, K., Rupam, J. & Jubaraj, B. (2006). Inorg. Chem. Commun. 9, 1169–1172.  Google Scholar
First citationAraki, H., Tsuge, K., Sasaki, Y., Ishizaka, S. & Kitamura, N. (2005). Inorg. Chem. 44, 9667–9675.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFu, G.-C. (2000). Acc. Chem. Res. 33, 412–420.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHan, K., Sun, H., Soo, H., Young, M., Byeong, K., Yu, J., Je, Y., Cheal, K., Sung-Jin, K. & Youngmee, K. (2009). Polyhedron, 28, 553–561.  Google Scholar
First citationKonidaris, K. F., Kaplanis, M., Raptopoulou, C. P., Perlepes, S. P., Manessi-Zoupa, E, & Katsoulakou, E. (2009). Polyhedron, 28, 3243–3250.   Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTyrra, W., Naumann, D. & Pantenburg, I. (2003). J. Fluorine Chem. 120, 13–19.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, K., Yin, P., Shen, Y., Li, Z., Qin, Y. & Yao, Y. (2008). Chin. J. Struct. Chem. 27, 1093–1096.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds