metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m222-m223

Bis[2-(hy­dr­oxy­imino­meth­yl)phenolato]nickel(II): a second monoclinic polymorph

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01033 Kyiv, Ukraine, and bInst. of Organic Chemistry, Acad. Sci. Ukraine, Murmanska Str. 5, Kiev 02094, Ukraine
*Correspondence e-mail: rusanova_j@yahoo.com

(Received 21 December 2010; accepted 10 January 2011; online 15 January 2011)

The title compound, [Ni(C7H6NO2)2], (I), is a second monoclinic polymorph of the compound, (II), reported by Srivastava et al. [Acta Cryst. (1967), 22, 922] and Mereiter [Private communication (2002) CCDC refcode NISALO01]. The bond lengths and angles are similar in both structures. The mol­ecule in both structures lies on a crystallographic inversion center and both have an inter­nal hydrogen bond. The title compound crystallizes in the space group P21/c (Z = 2), whereas compound (II) is in the space group P21/n (Z = 2) with a similar cell volume but different cell parameters. In both polymorphs, mol­ecules are arranged in the layers but in contrast to the previously published compound (II) where the dihedral angle between the layers is 86.3°, in the title polymorph the same dihedral angle is 29.4°. The structure of (I) is stabilized by strong intra­molecular O—H⋯O hydrogen bonding between the O—H group and the phenolate O atom.

Related literature

For the original monoclinic polymorph, see: Srivastava et al. (1967[Srivastava, R. C., Lingafelter, E. C. & Jain, P. C. (1967). Acta Cryst. 22, 922-923.]); Mereiter (2002[Mereiter, K. (2002). Private communication (refcode NISALO01). CCDC, Cambrige, England.]). For background to direct synthesis, see: Nesterov et al. (2004[Nesterov, D. S., Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Kovbasyuk, L. A., Skelton, B. W. & Jezierska, J. (2004). Inorg. Chem. 43, 7868-7876.], 2006[Nesterov, D. S., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Jezierska, J., Ozarowski, F., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2006). Chem. Commun. pp. 4605-4607.]); Kovbasyuk et al. (1998[Kovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Linert, W., Reedijk, J., Skelton, B. W. & Oliver, A. G. (1998). J. Chem. Soc. Dalton Trans. pp. 2735-2738.]); Vassilyeva et al. (1997[Vassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263-266.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H6NO2)2]

  • Mr = 330.97

  • Monoclinic, P 21 /c

  • a = 4.9912 (2) Å

  • b = 7.4717 (3) Å

  • c = 17.4152 (7) Å

  • β = 90.653 (3)°

  • V = 649.42 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 296 K

  • 0.53 × 0.36 × 0.11 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.501, Tmax = 0.851

  • 4678 measured reflections

  • 1342 independent reflections

  • 1096 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.072

  • S = 1.06

  • 1342 reflections

  • 121 parameters

  • All H-atom parameters refined

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—Ni1 1.8661 (19)
Ni1—O1 1.8292 (16)
O1—Ni1—N1 93.08 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.80 (3) 1.80 (3) 2.511 (2) 146 (4)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The cell dimensions of the title modification after transformation from P21/c to P21/n setting, are: a=18.062, b=7.472, c=4.991, β =105.39, whereas the cell dimensions of the reported compound (II) monoclinic P21/n modification are: a = 13. 830, b = 4.880, c = 10.200 Å; β = 110.43° ( Srivastava et al., 1967). The asymmetric unit of the title compound contains half molecule (Fig. 1), lying across a crystallographic inversion centre. The bond lengths and angles are within normal ranges (Allen et al., 1987) and are comparable with the structure of the compound (II).

Related literature top

For the original monoclinic polymorph, see: Srivastava et al. (1967); Mereiter (2002). For background to direct synthesis, see: Nesterov et al. (2004, 2006); Kovbasyuk et al. (1998); Vassilyeva et al. (1997). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by direct synthesis: manganese powder (0.06 g, 1 mmol), Ni(OAc)2 (0.25 g, 1 mmol), salicylic aldehyde (0.21 ml, 2 mmol), NH2OH.HCl (0.14 g, 2 mmol), dimethylformamide (20 ml) were heated to 323–333 K and stirred magnetically for 40 min, until total dissolution of the manganese powder was observed. The transparent brown solution was allowed to stand at room temperature and brown-green crystals of the title compound suitable for X-ray analysis precipitated within few days. They were collected by filter-suction, washed with dry PriOH and finally dried in vacuo at room temperature (yield; 0.12 g)

Refinement top

The hydrogen atoms were located in difference Fourier synthesis and refined in isotropic aproximation.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: 1-x;1-y;1-z].
[Figure 2] Fig. 2. The crystal packing of the title compound (a) and compound (II) (NISALO) (b). Hydrogen atoms are omited for clarity.
Bis[2-(hydroxyiminomethyl)phenolato]nickel(II) top
Crystal data top
[Ni(C7H6NO2)2]F(000) = 340
Mr = 330.97Dx = 1.693 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1800 reflections
a = 4.9912 (2) Åθ = 2.3–26.1°
b = 7.4717 (3) ŵ = 1.51 mm1
c = 17.4152 (7) ÅT = 296 K
β = 90.653 (3)°Prizm, green
V = 649.42 (5) Å30.53 × 0.36 × 0.11 mm
Z = 2
Data collection top
Bruker SMART APEXII
diffractometer
1342 independent reflections
Radiation source: fine-focus sealed tube1096 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: numerical
(SADABS; Sheldrick, 2002)
h = 66
Tmin = 0.501, Tmax = 0.851k = 98
4678 measured reflectionsl = 1921
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.030P)2 + 0.3216P]
where P = (Fo2 + 2Fc2)/3
1342 reflections(Δ/σ)max = 0.005
121 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Ni(C7H6NO2)2]V = 649.42 (5) Å3
Mr = 330.97Z = 2
Monoclinic, P21/cMo Kα radiation
a = 4.9912 (2) ŵ = 1.51 mm1
b = 7.4717 (3) ÅT = 296 K
c = 17.4152 (7) Å0.53 × 0.36 × 0.11 mm
β = 90.653 (3)°
Data collection top
Bruker SMART APEXII
diffractometer
1342 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2002)
1096 reflections with I > 2σ(I)
Tmin = 0.501, Tmax = 0.851Rint = 0.028
4678 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.072All H-atom parameters refined
S = 1.06Δρmax = 0.28 e Å3
1342 reflectionsΔρmin = 0.26 e Å3
121 parameters
Special details top

Experimental. Numerical absorption corrections based on indexed crystal faces were applied using the Crystal Faces plugin in Bruker APEX2 software (Bruker, 2007)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0820 (4)0.3351 (3)0.41130 (12)0.0363 (5)
C20.0261 (5)0.4911 (3)0.36993 (13)0.0383 (5)
C30.1766 (5)0.4888 (4)0.31268 (15)0.0471 (6)
C40.3212 (6)0.3375 (4)0.29774 (16)0.0540 (7)
C50.2652 (6)0.1845 (4)0.33888 (16)0.0530 (7)
C60.0674 (5)0.1815 (4)0.39413 (15)0.0482 (6)
C70.1642 (5)0.6566 (3)0.38506 (14)0.0415 (6)
H30.208 (5)0.586 (3)0.2867 (14)0.040 (7)*
H40.455 (6)0.342 (4)0.2600 (17)0.071 (9)*
H50.369 (6)0.088 (4)0.3311 (16)0.064 (9)*
H60.029 (5)0.081 (4)0.4202 (15)0.048 (7)*
H70.106 (5)0.757 (3)0.3582 (13)0.037 (6)*
H20.578 (7)0.828 (5)0.4672 (18)0.074 (11)*
N10.3534 (4)0.6733 (3)0.43480 (11)0.0386 (4)
Ni10.50000.50000.50000.03283 (15)
O10.2671 (3)0.3269 (2)0.46661 (9)0.0413 (4)
O20.4542 (4)0.8474 (3)0.43860 (12)0.0586 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0337 (11)0.0407 (13)0.0346 (12)0.0023 (10)0.0046 (9)0.0038 (10)
C20.0372 (11)0.0425 (12)0.0355 (12)0.0022 (11)0.0022 (9)0.0003 (11)
C30.0458 (14)0.0516 (16)0.0436 (14)0.0049 (14)0.0054 (11)0.0030 (13)
C40.0467 (15)0.069 (2)0.0457 (15)0.0028 (15)0.0113 (12)0.0060 (15)
C50.0522 (16)0.0531 (17)0.0536 (16)0.0145 (14)0.0064 (13)0.0100 (14)
C60.0537 (16)0.0421 (15)0.0488 (15)0.0064 (13)0.0030 (12)0.0010 (12)
C70.0470 (14)0.0384 (13)0.0391 (13)0.0027 (11)0.0033 (11)0.0092 (11)
N10.0450 (11)0.0306 (10)0.0401 (10)0.0052 (9)0.0023 (9)0.0034 (9)
Ni10.0366 (2)0.0295 (2)0.0324 (2)0.00221 (19)0.00104 (15)0.00314 (18)
O10.0474 (10)0.0329 (9)0.0434 (9)0.0062 (7)0.0100 (7)0.0056 (7)
O20.0717 (14)0.0338 (10)0.0698 (13)0.0151 (9)0.0272 (11)0.0166 (9)
Geometric parameters (Å, º) top
C1—O11.328 (3)C5—C61.371 (4)
C1—C21.397 (3)C5—H50.90 (3)
C1—C61.399 (3)C6—H60.90 (3)
C2—C31.412 (3)C7—N11.280 (3)
C2—C71.439 (3)C7—H70.93 (2)
C3—C41.365 (4)N1—O21.396 (3)
C3—H30.87 (2)N1—Ni11.8661 (19)
C4—C51.376 (4)Ni1—O11.8292 (16)
C4—H40.93 (3)O2—H20.80 (3)
O1—C1—C2123.1 (2)C5—C6—C1121.0 (3)
O1—C1—C6118.8 (2)C5—C6—H6121.2 (17)
C2—C1—C6118.1 (2)C1—C6—H6117.8 (18)
C1—C2—C3119.4 (2)N1—C7—C2123.8 (2)
C1—C2—C7122.0 (2)N1—C7—H7119.1 (15)
C3—C2—C7118.5 (2)C2—C7—H7117.1 (15)
C4—C3—C2121.2 (3)C7—N1—O2112.7 (2)
C4—C3—H3120.3 (17)C7—N1—Ni1128.70 (18)
C2—C3—H3118.6 (17)O2—N1—Ni1118.62 (15)
C3—C4—C5119.0 (3)O1i—Ni1—O1180.0
C3—C4—H4118 (2)O1i—Ni1—N186.92 (8)
C5—C4—H4123 (2)O1—Ni1—N193.08 (8)
C6—C5—C4121.3 (3)N1i—Ni1—N1180.00 (9)
C6—C5—H5120.1 (19)C1—O1—Ni1129.22 (15)
C4—C5—H5118.5 (19)N1—O2—H298 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.80 (3)1.80 (3)2.511 (2)146 (4)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C7H6NO2)2]
Mr330.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.9912 (2), 7.4717 (3), 17.4152 (7)
β (°) 90.653 (3)
V3)649.42 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.53 × 0.36 × 0.11
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionNumerical
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.501, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
4678, 1342, 1096
Rint0.028
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.072, 1.06
No. of reflections1342
No. of parameters121
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.28, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
N1—Ni11.8661 (19)Ni1—O11.8292 (16)
O1—Ni1—N193.08 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.80 (3)1.80 (3)2.511 (2)146 (4)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge the Ukrainian State Fund for Fundamental Researchers (SFFR) for financial support of the Research Program (Chemistry).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Linert, W., Reedijk, J., Skelton, B. W. & Oliver, A. G. (1998). J. Chem. Soc. Dalton Trans. pp. 2735–2738.  Web of Science CSD CrossRef Google Scholar
First citationMereiter, K. (2002). Private communication (refcode NISALO01). CCDC, Cambrige, England.  Google Scholar
First citationNesterov, D. S., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Jezierska, J., Ozarowski, F., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2006). Chem. Commun. pp. 4605–4607.  Web of Science CSD CrossRef Google Scholar
First citationNesterov, D. S., Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Kovbasyuk, L. A., Skelton, B. W. & Jezierska, J. (2004). Inorg. Chem. 43, 7868–7876.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, R. C., Lingafelter, E. C. & Jain, P. C. (1967). Acta Cryst. 22, 922–923.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationVassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263–266.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m222-m223
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds