organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′-Methyl-3′-(4-methyl­benzo­yl)-4′-[5-(2-thien­yl)-2-thien­yl]spiro­[ace­naphthyl­ene-1,2′-pyrrolidin]-2(1H)-one

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: as_pandian59@yahoo.com

(Received 28 October 2010; accepted 22 December 2010; online 8 January 2011)

In the title compound, C32H25NO2S2, the mean plane through the five-membered pyrrolidine ring, which exhibits an envelope conformation, makes dihedral angles of 82.3 (1) and 83.9 (9)° with the benzene ring and the acenaphthyl­ene ring system, respectively. The dihedral angle between the thiophene rings is 19.0(3)°. The crystal structure shows C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.869 (2) Å].

Related literature

For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C32H25NO2S2

  • Mr = 519.65

  • Monoclinic, P 21 /n

  • a = 10.2188 (5) Å

  • b = 10.0191 (5) Å

  • c = 24.8192 (11) Å

  • β = 96.115 (2)°

  • V = 2526.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.931, Tmax = 0.953

  • 24301 measured reflections

  • 4373 independent reflections

  • 3294 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.127

  • S = 1.06

  • 4373 reflections

  • 357 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg8 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32⋯Cg8i 0.93 2.86 3.661 (3) 145
Symmetry code: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Fig. 1 shows a displacement ellipsoid diagram of the molecule with the atomic numbering scheme. The geometry of the acenaphthylene moiety compares well with that reported in other compounds. The N—C and C—C bond lengths in the pyrrolidine moiety are slightly longer than the normal values reported for similar structures. This may be due to steric forces caused by the bulky substituents on the pyrrolidine moiety. The pyrrolidine ring makes dihedral angles of 82.3 (1) and 83.9 (9)° with the phenyl ring and the acenaphthylene ring system respectively. Ketone atom O1 deviates by 0.272 (2)Å from the (C1/C2/C11/C10/C12) plane. The sum of the angles at N1 of the pyrrolidine ring (340.1°) is in accordance with sp3 hybridization.

The pyrrolidine ring adopt an twist conformation, with the puckering parameters q2 and ϕ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters, Δ, (Nardelli et al., 1983) as follows: q2= 0.379 (2) Å, ϕ=160.3 (3)°, Δs(C12)= 16.28 (19)°. The ring (C1/C2/C11/C10/C12) adopt an twist conformation, with the puckering parameters q2 and ϕ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters, Δ, (Nardelli et al., 1983) as follows: q2= 0.122 (2) Å, ϕ=162.5 (10)°, Δs(C11)= 4.1 (2)°.

The molecular structure is influenced by C–H···O intramolecular interactions. In addition to van der Waals interaction, the crystal packing is stabilized by C–H···π (Table. 1) hydrogen bonds as well as by ππ electron interactions. The ππ electron interactions between the rings Cg7 - Cg8 at x, y, z with the centroid-centroid distance equal to 3.8655 (12) Å, is observed in the crystal structure [Cg7 and Cg8 are the centeroid of the rings C6—C11 and C18—C23].

Related literature top

For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983).

Experimental top

A solution of the (4-chloro-phenyl-3-Bithiophenyl-prop-2-ene-1-one derived from Bithiophene (1- mmol), Acenapthoquinone (1 mmol), sarcosine (1 mmol) in toluene (30 ml) was refluxed for 8 hrs. The progress of the reacion was evidenced by the TLC analysis. The solvent was removed under reduced pressure and the crude product was subjected to column chromatogarphy using petroleum ether/ethyl acetate (4:1) as solvent. X-ray diffraction were obtained by slow evaporation of a solution of the title compound in hexene at room temperature.

Refinement top

The C and S atoms of one thiophene ring are disordered over two positions (C30/C30'and S2/S2') with refined occupancies of 0.553 (5) and 0.448 (5). The corresponding bond distances involving the disordered atoms were restrained to be equal. All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 30% probability level. For clarity, H atoms are omitted.
1'-Methyl-3'-(4-methylbenzoyl)-4'-[5-(2-thienyl)-2- thienyl]spiro[acenaphthylene-1,2'-pyrrolidin]-2(1H)-one top
Crystal data top
C32H25NO2S2F(000) = 1088
Mr = 519.65Dx = 1.366 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4373 reflections
a = 10.2188 (5) Åθ = 1.6–24.9°
b = 10.0191 (5) ŵ = 0.24 mm1
c = 24.8192 (11) ÅT = 293 K
β = 96.115 (2)°Block, colourless
V = 2526.6 (2) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area detector
diffractometer
4373 independent reflections
Radiation source: fine-focus sealed tube3294 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω and ϕ scansθmax = 24.9°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.931, Tmax = 0.953k = 1111
24301 measured reflectionsl = 2829
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.2786P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
4373 reflectionsΔρmax = 0.31 e Å3
357 parametersΔρmin = 0.26 e Å3
5 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (11)
Crystal data top
C32H25NO2S2V = 2526.6 (2) Å3
Mr = 519.65Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.2188 (5) ŵ = 0.24 mm1
b = 10.0191 (5) ÅT = 293 K
c = 24.8192 (11) Å0.30 × 0.20 × 0.20 mm
β = 96.115 (2)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
4373 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3294 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.953Rint = 0.041
24301 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0405 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
4373 reflectionsΔρmin = 0.26 e Å3
357 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3304 (2)0.1779 (2)0.70015 (8)0.0454 (5)
C20.4379 (2)0.1287 (2)0.67042 (8)0.0461 (5)
C30.5595 (2)0.0752 (2)0.68669 (11)0.0606 (7)
H30.58670.06000.72310.073*
C40.6408 (2)0.0445 (3)0.64671 (13)0.0700 (8)
H40.72240.00610.65720.084*
C50.6064 (2)0.0679 (3)0.59330 (12)0.0666 (7)
H50.66540.04840.56840.080*
C60.4809 (2)0.1221 (2)0.57501 (9)0.0526 (6)
C70.4291 (3)0.1523 (3)0.52189 (10)0.0619 (7)
H70.47940.13720.49340.074*
C80.3062 (3)0.2032 (2)0.51176 (9)0.0608 (7)
H80.27490.22400.47620.073*
C90.2238 (2)0.2262 (2)0.55289 (8)0.0509 (6)
H90.13950.26060.54460.061*
C100.2702 (2)0.1968 (2)0.60496 (8)0.0413 (5)
C110.3991 (2)0.1476 (2)0.61535 (8)0.0432 (5)
C120.2087 (2)0.2050 (2)0.65756 (7)0.0401 (5)
C130.10321 (19)0.0952 (2)0.66736 (7)0.0385 (5)
H130.14180.03380.69540.046*
C140.0093 (2)0.1721 (2)0.68969 (8)0.0410 (5)
H140.08010.18340.66020.049*
C150.0487 (2)0.3089 (2)0.70413 (9)0.0490 (5)
H15A0.01900.37710.70160.059*
H15B0.09480.30940.74040.059*
C160.2182 (3)0.4476 (2)0.66936 (11)0.0677 (7)
H16A0.27150.44580.70360.102*
H16B0.16210.52460.66770.102*
H16C0.27400.45160.64060.102*
C170.0632 (2)0.0156 (2)0.61614 (8)0.0432 (5)
C180.1546 (2)0.0889 (2)0.60031 (8)0.0412 (5)
C190.2411 (2)0.1560 (2)0.63759 (9)0.0488 (5)
H190.24440.13420.67410.059*
C200.3225 (2)0.2549 (2)0.62147 (10)0.0571 (6)
H200.37900.29910.64740.068*
C210.3219 (2)0.2891 (2)0.56801 (10)0.0562 (6)
C220.2383 (2)0.2199 (2)0.53054 (9)0.0580 (6)
H220.23830.23970.49390.070*
C230.1546 (2)0.1218 (2)0.54609 (8)0.0507 (6)
H230.09820.07790.52010.061*
C240.4083 (3)0.3996 (3)0.55094 (13)0.0844 (9)
H24A0.48950.40070.57430.127*
H24B0.42640.38500.51420.127*
H24C0.36420.48360.55340.127*
C250.06508 (19)0.1024 (2)0.73551 (8)0.0410 (5)
C260.0606 (2)0.0272 (2)0.75010 (9)0.0498 (6)
H260.01530.09150.73240.060*
C270.1308 (2)0.0565 (2)0.79456 (9)0.0519 (6)
H270.13630.14170.80890.062*
C280.1894 (2)0.0515 (2)0.81428 (8)0.0436 (5)
C290.2731 (2)0.0571 (2)0.85757 (9)0.0461 (5)
C310.3873 (3)0.0005 (3)0.93282 (12)0.0756 (8)
H310.40910.04820.96250.091*
C320.4376 (3)0.1141 (3)0.91528 (12)0.0762 (8)
H320.50470.15440.93200.091*
N10.13862 (18)0.32821 (16)0.66354 (7)0.0466 (5)
O10.33278 (17)0.19761 (17)0.74813 (6)0.0642 (5)
O20.03837 (15)0.04042 (19)0.58800 (6)0.0649 (5)
S10.15669 (5)0.19129 (5)0.77771 (2)0.0469 (2)
S20.3801 (3)0.1833 (4)0.86351 (12)0.0651 (7)0.553 (5)
C300.2931 (13)0.0330 (12)0.8975 (5)0.099 (7)0.553 (5)
H300.24650.11290.90110.119*0.553 (5)
S2'0.2696 (4)0.0663 (5)0.90273 (15)0.0671 (9)0.448 (5)
C30'0.3667 (15)0.1454 (14)0.8715 (6)0.102 (8)0.448 (5)
H30'0.38270.22450.85230.123*0.448 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0547 (13)0.0417 (12)0.0382 (12)0.0115 (10)0.0020 (10)0.0012 (9)
C20.0448 (12)0.0423 (12)0.0493 (13)0.0100 (10)0.0034 (10)0.0005 (10)
C30.0528 (15)0.0552 (15)0.0691 (16)0.0106 (12)0.0150 (13)0.0012 (12)
C40.0407 (14)0.0669 (18)0.101 (2)0.0018 (12)0.0014 (14)0.0031 (15)
C50.0465 (14)0.0642 (17)0.092 (2)0.0044 (12)0.0177 (14)0.0057 (14)
C60.0503 (14)0.0466 (13)0.0632 (15)0.0076 (11)0.0169 (11)0.0005 (11)
C70.0735 (18)0.0598 (15)0.0570 (15)0.0050 (13)0.0284 (13)0.0005 (12)
C80.0806 (18)0.0639 (16)0.0393 (12)0.0006 (14)0.0124 (12)0.0099 (11)
C90.0566 (14)0.0527 (13)0.0437 (12)0.0050 (11)0.0065 (10)0.0084 (10)
C100.0481 (12)0.0379 (11)0.0382 (11)0.0038 (9)0.0055 (9)0.0026 (8)
C110.0437 (12)0.0376 (11)0.0484 (12)0.0076 (9)0.0060 (9)0.0007 (9)
C120.0459 (12)0.0388 (11)0.0350 (10)0.0014 (9)0.0018 (9)0.0001 (8)
C130.0418 (11)0.0402 (11)0.0334 (10)0.0017 (9)0.0033 (8)0.0004 (8)
C140.0406 (11)0.0457 (12)0.0365 (11)0.0040 (9)0.0028 (8)0.0024 (9)
C150.0595 (14)0.0436 (13)0.0450 (12)0.0044 (10)0.0107 (10)0.0036 (9)
C160.0919 (19)0.0432 (14)0.0706 (17)0.0094 (13)0.0213 (14)0.0038 (12)
C170.0454 (12)0.0484 (12)0.0359 (11)0.0036 (10)0.0044 (10)0.0033 (9)
C180.0473 (12)0.0386 (11)0.0387 (11)0.0092 (9)0.0091 (9)0.0042 (9)
C190.0598 (14)0.0408 (12)0.0459 (12)0.0017 (11)0.0053 (10)0.0043 (10)
C200.0632 (15)0.0442 (13)0.0640 (15)0.0024 (11)0.0076 (12)0.0001 (11)
C210.0611 (15)0.0432 (13)0.0691 (16)0.0049 (11)0.0291 (12)0.0017 (11)
C220.0774 (17)0.0545 (14)0.0463 (13)0.0107 (13)0.0268 (12)0.0095 (11)
C230.0616 (14)0.0510 (13)0.0408 (12)0.0039 (11)0.0111 (10)0.0058 (10)
C240.094 (2)0.0637 (17)0.103 (2)0.0127 (16)0.0463 (18)0.0040 (16)
C250.0383 (11)0.0443 (12)0.0400 (11)0.0029 (9)0.0028 (9)0.0039 (9)
C260.0542 (13)0.0460 (13)0.0510 (13)0.0092 (11)0.0131 (10)0.0053 (10)
C270.0590 (14)0.0401 (12)0.0581 (13)0.0053 (10)0.0132 (11)0.0036 (10)
C280.0430 (12)0.0437 (12)0.0438 (12)0.0008 (9)0.0032 (9)0.0019 (9)
C290.0441 (12)0.0483 (13)0.0466 (13)0.0005 (10)0.0079 (10)0.0031 (11)
C310.0747 (19)0.084 (2)0.0728 (18)0.0009 (16)0.0309 (15)0.0127 (16)
C320.0676 (17)0.087 (2)0.0796 (19)0.0142 (16)0.0322 (15)0.0011 (16)
N10.0599 (12)0.0349 (10)0.0459 (10)0.0009 (8)0.0104 (9)0.0014 (7)
O10.0742 (11)0.0774 (12)0.0387 (9)0.0101 (9)0.0044 (8)0.0033 (8)
O20.0512 (10)0.0888 (13)0.0518 (9)0.0103 (9)0.0081 (8)0.0197 (8)
S10.0524 (4)0.0412 (3)0.0490 (3)0.0046 (2)0.0141 (3)0.0023 (2)
S20.0711 (10)0.0674 (15)0.0612 (11)0.0223 (8)0.0278 (8)0.0127 (10)
C300.103 (9)0.084 (9)0.114 (10)0.044 (5)0.030 (5)0.008 (5)
S2'0.0722 (15)0.0687 (19)0.0657 (13)0.0090 (15)0.0328 (11)0.0155 (11)
C30'0.141 (14)0.093 (13)0.073 (7)0.006 (8)0.012 (7)0.034 (6)
Geometric parameters (Å, º) top
C1—O11.205 (2)C17—C181.484 (3)
C1—C21.472 (3)C18—C191.384 (3)
C1—C121.567 (3)C18—C231.385 (3)
C2—C31.375 (3)C19—C201.380 (3)
C2—C111.395 (3)C19—H190.9300
C3—C41.394 (4)C20—C211.370 (3)
C3—H30.9300C20—H200.9300
C4—C51.355 (4)C21—C221.380 (3)
C4—H40.9300C21—C241.505 (3)
C5—C61.421 (3)C22—C231.385 (3)
C5—H50.9300C22—H220.9300
C6—C111.395 (3)C23—H230.9300
C6—C71.401 (3)C24—H24A0.9600
C7—C81.354 (3)C24—H24B0.9600
C7—H70.9300C24—H24C0.9600
C8—C91.410 (3)C25—C261.347 (3)
C8—H80.9300C25—S11.725 (2)
C9—C101.361 (3)C26—C271.409 (3)
C9—H90.9300C26—H260.9300
C10—C111.404 (3)C27—C281.353 (3)
C10—C121.510 (3)C27—H270.9300
C12—N11.443 (3)C28—C291.444 (3)
C12—C131.577 (3)C28—S11.721 (2)
C13—C171.519 (3)C29—C301.371 (8)
C13—C141.535 (3)C29—C30'1.374 (9)
C13—H130.9800C29—S2'1.667 (4)
C14—C251.498 (3)C29—S21.689 (3)
C14—C151.521 (3)C31—C321.304 (4)
C14—H140.9800C31—C301.411 (8)
C15—N11.447 (3)C31—S2'1.626 (5)
C15—H15A0.9700C31—H310.9300
C15—H15B0.9700C32—C30'1.404 (8)
C16—N11.445 (3)C32—S21.624 (4)
C16—H16A0.9600C32—H320.9300
C16—H16B0.9600C30—H300.9300
C16—H16C0.9600C30'—H30'0.9300
C17—O21.213 (2)
O1—C1—C2127.8 (2)C19—C18—C23117.9 (2)
O1—C1—C12124.7 (2)C19—C18—C17122.77 (18)
C2—C1—C12107.48 (16)C23—C18—C17119.36 (19)
C3—C2—C11119.6 (2)C20—C19—C18121.1 (2)
C3—C2—C1133.1 (2)C20—C19—H19119.4
C11—C2—C1107.25 (18)C18—C19—H19119.4
C2—C3—C4117.7 (2)C21—C20—C19121.3 (2)
C2—C3—H3121.1C21—C20—H20119.4
C4—C3—H3121.1C19—C20—H20119.4
C5—C4—C3123.1 (2)C20—C21—C22117.8 (2)
C5—C4—H4118.5C20—C21—C24120.9 (3)
C3—C4—H4118.5C22—C21—C24121.3 (2)
C4—C5—C6120.7 (2)C21—C22—C23121.6 (2)
C4—C5—H5119.7C21—C22—H22119.2
C6—C5—H5119.7C23—C22—H22119.2
C11—C6—C7116.1 (2)C18—C23—C22120.2 (2)
C11—C6—C5115.5 (2)C18—C23—H23119.9
C7—C6—C5128.4 (2)C22—C23—H23119.9
C8—C7—C6120.4 (2)C21—C24—H24A109.5
C8—C7—H7119.8C21—C24—H24B109.5
C6—C7—H7119.8H24A—C24—H24B109.5
C7—C8—C9122.7 (2)C21—C24—H24C109.5
C7—C8—H8118.6H24A—C24—H24C109.5
C9—C8—H8118.6H24B—C24—H24C109.5
C10—C9—C8118.5 (2)C26—C25—C14130.42 (19)
C10—C9—H9120.7C26—C25—S1109.82 (15)
C8—C9—H9120.7C14—C25—S1119.72 (15)
C9—C10—C11118.43 (19)C25—C26—C27113.94 (19)
C9—C10—C12132.4 (2)C25—C26—H26123.0
C11—C10—C12109.19 (17)C27—C26—H26123.0
C6—C11—C2123.3 (2)C28—C27—C26113.5 (2)
C6—C11—C10123.7 (2)C28—C27—H27123.3
C2—C11—C10113.00 (19)C26—C27—H27123.3
N1—C12—C10113.09 (16)C27—C28—C29128.3 (2)
N1—C12—C1116.45 (16)C27—C28—S1109.98 (16)
C10—C12—C1101.57 (16)C29—C28—S1121.63 (16)
N1—C12—C13103.05 (15)C30—C29—C30'94.7 (6)
C10—C12—C13116.72 (16)C30—C29—C28131.1 (4)
C1—C12—C13106.35 (15)C30'—C29—C28134.1 (4)
C17—C13—C14114.85 (16)C30'—C29—S2'105.9 (4)
C17—C13—C12111.36 (15)C28—C29—S2'120.0 (2)
C14—C13—C12104.84 (16)C30—C29—S2106.4 (4)
C17—C13—H13108.5C28—C29—S2122.32 (18)
C14—C13—H13108.5S2'—C29—S2117.67 (19)
C12—C13—H13108.5C32—C31—C30105.7 (4)
C25—C14—C15114.28 (16)C32—C31—S2'119.4 (3)
C25—C14—C13113.61 (17)C32—C31—H31127.1
C15—C14—C13104.45 (16)C30—C31—H31127.1
C25—C14—H14108.1S2'—C31—H31113.5
C15—C14—H14108.1C31—C32—C30'103.6 (5)
C13—C14—H14108.1C31—C32—S2118.3 (2)
N1—C15—C14102.53 (16)C31—C32—H32120.9
N1—C15—H15A111.3C30'—C32—H32135.5
C14—C15—H15A111.3S2—C32—H32120.9
N1—C15—H15B111.3C12—N1—C16115.98 (18)
C14—C15—H15B111.3C12—N1—C15108.42 (15)
H15A—C15—H15B109.2C16—N1—C15115.71 (17)
N1—C16—H16A109.5C28—S1—C2592.78 (10)
N1—C16—H16B109.5C32—S2—C2992.4 (2)
H16A—C16—H16B109.5C29—C30—C31117.2 (7)
N1—C16—H16C109.5C29—C30—H30121.4
H16A—C16—H16C109.5C31—C30—H30121.4
H16B—C16—H16C109.5C31—S2'—C2992.3 (3)
O2—C17—C18121.07 (18)C29—C30'—C32118.8 (8)
O2—C17—C13120.77 (19)C29—C30'—H30'120.6
C18—C17—C13118.11 (18)C32—C30'—H30'120.6
O1—C1—C2—C310.4 (4)C19—C20—C21—C24178.3 (2)
C12—C1—C2—C3171.0 (2)C20—C21—C22—C232.0 (3)
O1—C1—C2—C11168.1 (2)C24—C21—C22—C23177.3 (2)
C12—C1—C2—C1110.5 (2)C19—C18—C23—C220.6 (3)
C11—C2—C3—C41.4 (3)C17—C18—C23—C22179.5 (2)
C1—C2—C3—C4176.9 (2)C21—C22—C23—C181.2 (3)
C2—C3—C4—C51.6 (4)C15—C14—C25—C26140.7 (2)
C3—C4—C5—C62.2 (4)C13—C14—C25—C2621.0 (3)
C4—C5—C6—C110.2 (4)C15—C14—C25—S141.9 (2)
C4—C5—C6—C7179.9 (3)C13—C14—C25—S1161.63 (14)
C11—C6—C7—C80.0 (4)C14—C25—C26—C27177.1 (2)
C5—C6—C7—C8179.7 (2)S1—C25—C26—C270.5 (2)
C6—C7—C8—C91.2 (4)C25—C26—C27—C280.1 (3)
C7—C8—C9—C100.5 (4)C26—C27—C28—C29177.0 (2)
C8—C9—C10—C111.3 (3)C26—C27—C28—S10.3 (3)
C8—C9—C10—C12178.0 (2)C27—C28—C29—C3016.4 (10)
C7—C6—C11—C2177.0 (2)S1—C28—C29—C30166.6 (10)
C5—C6—C11—C23.3 (3)C27—C28—C29—C30'157.7 (12)
C7—C6—C11—C101.9 (3)S1—C28—C29—C30'19.4 (12)
C5—C6—C11—C10177.8 (2)C27—C28—C29—S2'20.0 (4)
C3—C2—C11—C63.9 (3)S1—C28—C29—S2'162.9 (2)
C1—C2—C11—C6174.77 (19)C27—C28—C29—S2157.9 (3)
C3—C2—C11—C10177.0 (2)S1—C28—C29—S219.1 (3)
C1—C2—C11—C104.3 (2)C30—C31—C32—C30'2.4 (12)
C9—C10—C11—C62.6 (3)S2'—C31—C32—C30'0.0 (9)
C12—C10—C11—C6176.90 (19)C30—C31—C32—S22.0 (8)
C9—C10—C11—C2176.44 (19)S2'—C31—C32—S20.3 (5)
C12—C10—C11—C24.1 (2)C10—C12—N1—C1667.1 (2)
C9—C10—C12—N145.2 (3)C1—C12—N1—C1650.0 (2)
C11—C10—C12—N1135.43 (18)C13—C12—N1—C16166.00 (17)
C9—C10—C12—C1170.8 (2)C10—C12—N1—C15160.78 (17)
C11—C10—C12—C19.9 (2)C1—C12—N1—C1582.1 (2)
C9—C10—C12—C1374.1 (3)C13—C12—N1—C1533.87 (19)
C11—C10—C12—C13105.3 (2)C14—C15—N1—C1242.9 (2)
O1—C1—C12—N143.1 (3)C14—C15—N1—C16175.15 (19)
C2—C1—C12—N1135.53 (18)C27—C28—S1—C250.51 (17)
O1—C1—C12—C10166.4 (2)C29—C28—S1—C25177.02 (18)
C2—C1—C12—C1012.2 (2)C26—C25—S1—C280.56 (17)
O1—C1—C12—C1371.0 (2)C14—C25—S1—C28177.31 (16)
C2—C1—C12—C13110.34 (17)C31—C32—S2—C290.7 (3)
N1—C12—C13—C17113.41 (17)C30'—C32—S2—C292 (4)
C10—C12—C13—C1711.2 (2)C30—C29—S2—C320.9 (8)
C1—C12—C13—C17123.60 (18)C30'—C29—S2—C323 (5)
N1—C12—C13—C1411.37 (19)C28—C29—S2—C32176.4 (2)
C10—C12—C13—C14135.95 (17)S2'—C29—S2—C321.6 (3)
C1—C12—C13—C14111.62 (17)C30'—C29—C30—C311.6 (15)
C17—C13—C14—C2599.2 (2)C28—C29—C30—C31177.3 (6)
C12—C13—C14—C25138.30 (17)S2'—C29—C30—C31167 (5)
C17—C13—C14—C15135.67 (18)S2—C29—C30—C312.3 (14)
C12—C13—C14—C1513.1 (2)C32—C31—C30—C292.8 (14)
C25—C14—C15—N1157.67 (17)S2'—C31—C30—C29169 (5)
C13—C14—C15—N132.9 (2)C32—C31—S2'—C291.2 (4)
C14—C13—C17—O219.0 (3)C30—C31—S2'—C298 (3)
C12—C13—C17—O2100.0 (2)C30—C29—S2'—C3110 (4)
C14—C13—C17—C18163.69 (17)C30'—C29—S2'—C311.9 (9)
C12—C13—C17—C1877.4 (2)C28—C29—S2'—C31176.4 (2)
O2—C17—C18—C19154.7 (2)S2—C29—S2'—C311.7 (3)
C13—C17—C18—C1927.9 (3)C30—C29—C30'—C320.1 (16)
O2—C17—C18—C2325.3 (3)C28—C29—C30'—C32175.4 (7)
C13—C17—C18—C23152.00 (19)S2'—C29—C30'—C322.5 (17)
C23—C18—C19—C201.6 (3)S2—C29—C30'—C32177 (6)
C17—C18—C19—C20178.5 (2)C31—C32—C30'—C291.7 (17)
C18—C19—C20—C210.8 (4)S2—C32—C30'—C29177 (5)
C19—C20—C21—C221.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg8 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C32—H32···Cg8i0.932.863.661 (3)145
Symmetry code: (i) x1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC32H25NO2S2
Mr519.65
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.2188 (5), 10.0191 (5), 24.8192 (11)
β (°) 96.115 (2)
V3)2526.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.931, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
24301, 4373, 3294
Rint0.041
(sin θ/λ)max1)0.592
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.127, 1.06
No. of reflections4373
No. of parameters357
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.26

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg8 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C32—H32···Cg8i0.932.863.661 (3)145
Symmetry code: (i) x1/2, y+1/2, z+3/2.
 

Acknowledgements

ST and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds