organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3′-(4-Chloro­benzo­yl)-1′-methyl-4′-[5-(2-thien­yl)-2-thien­yl]spiro­[ace­naphthyl­ene-1,2′-pyrrolidin]-2(1H)-one

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: as_pandian59@yahoo.com

(Received 28 October 2010; accepted 22 December 2010; online 8 January 2011)

In the title compound, C31H22ClNO2S2, the five-membered pyrrolidine ring, which exhibits an envelope conformation, makes a dihedral angle of 87.4 (2)° with the acenaphthyl­ene ring system. The crystal structure is stabilized by ππ inter­actions [centroid–centroid distance = 3.869 (2) Å]. A C atom and the S atom of the thiophene ring are disordered over two positions with refined occupancies of 0.629 (7) and 0.372 (7).

Related literature

For general background to the applications and biological activity of the title compound, see: Sarala et al. (2006[Sarala, G., Kavitha, C. V., Mantelingu, K., Anandalwar, S. M., Shashidhara Prasad, J. & Rangappa, K. S. (2006). Anal. Sci. 22, x241-x242.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and for asymmetry parameters, see: Nardelli et al. (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C31H22ClNO2S2

  • Mr = 540.07

  • Orthorhombic, P 21 21 21

  • a = 12.6858 (13) Å

  • b = 13.6733 (13) Å

  • c = 15.2782 (17) Å

  • V = 2650.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2006[Sheldrick, G. M. (2006). SADABS. University of Göttingen, Germany.]) Tmin = 0.920, Tmax = 0.939

  • 13196 measured reflections

  • 4384 independent reflections

  • 3364 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.113

  • S = 1.04

  • 4384 reflections

  • 355 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1898 Friedel pairs

  • Flack parameter: 0.00 (9)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1.The geometric parameters in the title compound agree with the reported values of a similar structure (Sarala et al., 2006). The pyrrolidine ring makes dihedral angles of 42.3 (2), 89.8 (2) and 87.5 (1)° with the acenaphthylene ring system and the phenyl ring, and bithiophene rings respectively. The sum of the angles at N1 of the pyrrolidine ring (341.1°) is in accordance with sp3 hybridization. The pyrrolidine ring (N1/C9/C8/C23/C22) adopt an envelope conformation, with the puckering parameters q2 and ϕ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters, Δ, (Nardelli et al., 1983) as follows: q2= 0.410 (3) Å, ϕ= 316.4 (5)°, Δs(C9)= 4.2 (3)°.The thiophene ring (S2/C28/C29'/C31/C30) adopt an envelope conformation, with the puckering parameters q2 and ϕ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters, Δ, (Nardelli et al., 1983) as follows: q2= 0.062 (7) Å, ϕ= 357 (12)°, Δs(C29')= 1.1 (12)°.

The molecular structure of the title compound shows two intramolecular hydrogen bonds. The crystal packing is stabilized by ππ electron interactions. The ππ interactions between the rings Cg4 - Cg6 at x, y, z with the centroid-centroid distance equal to 3.869 (2) Å, is observed in the crystal structure [Cg4 and Cg6 are the centroids of the rings C9/C10/C11/C19/C20 and C1—C6].

Related literature top

For general background to the applications and biological activity of the title compound, see: Sarala et al. (2006). For puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Nardelli et al. (1983).

Experimental top

A solution of the (4-chloro-phenyl-3-Bithiophenyl-prop-2-ene-1-one derived from Bithiophene (1- mmol), Acenapthoquinone (1 mmol), sarcosine (1 mmol) in toluene (30 ml) was refluxed for 8 hrs. The progress of the reacion was evidenced by the TLC analysis. The solvent was removed under reduced pressure and the crude product was subjected to column chromatogarphy using petroleum ether/ethyl acetate (4:1) as solvent. X-ray diffraction were obtained by slow evaporation of a solution of the title compound in hexene at room temperature.

Refinement top

The C and S atoms of the thiophene ring are disordered over two positions (C29/C29' and S2/S2') with refined occupancies of 0.629 (7) and 0.373 (7). The corresponding bond distances involving the disordered atoms were restrained to be equal, and also the same Uij parameters were used for atoms C29 and C29'and S2 and S2'. All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of showing the atom-numbering scheme and intramolecular hydrogen bond. Displacement ellipsoids are drawn at the 30% probability level.For clarity H atoms are omitted.
3'-(4-Chlorobenzoyl)-1'-methyl-4'-[5-(2-thienyl)-2- thienyl]spiro[acenaphthylene-1,2'-pyrrolidin]-2(1H)-one top
Crystal data top
C31H22ClNO2S2F(000) = 1120
Mr = 540.07Dx = 1.354 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4384 reflections
a = 12.6858 (13) Åθ = 2.0–24.5°
b = 13.6733 (13) ŵ = 0.33 mm1
c = 15.2782 (17) ÅT = 293 K
V = 2650.1 (5) Å3Block, colourless
Z = 40.25 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
4384 independent reflections
Radiation source: fine-focus sealed tube3364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scansθmax = 24.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2006)
h = 1414
Tmin = 0.920, Tmax = 0.939k = 1512
13196 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.7498P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4384 reflectionsΔρmax = 0.31 e Å3
355 parametersΔρmin = 0.28 e Å3
5 restraintsAbsolute structure: Flack (1983), 1898 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (9)
Crystal data top
C31H22ClNO2S2V = 2650.1 (5) Å3
Mr = 540.07Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 12.6858 (13) ŵ = 0.33 mm1
b = 13.6733 (13) ÅT = 293 K
c = 15.2782 (17) Å0.25 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
4384 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2006)
3364 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.939Rint = 0.033
13196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.113Δρmax = 0.31 e Å3
S = 1.04Δρmin = 0.28 e Å3
4384 reflectionsAbsolute structure: Flack (1983), 1898 Friedel pairs
355 parametersAbsolute structure parameter: 0.00 (9)
5 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.3937 (4)0.2222 (3)0.0631 (3)0.0800 (13)
C21.3483 (5)0.2581 (3)0.1358 (4)0.1047 (17)
H21.37140.31740.15860.126*
C31.2680 (4)0.2083 (3)0.1769 (3)0.0861 (13)
H31.23590.23500.22610.103*
C41.2353 (3)0.1191 (3)0.1455 (2)0.0566 (9)
C51.2854 (4)0.0835 (3)0.0728 (3)0.0832 (13)
H51.26620.02230.05140.100*
C61.3632 (4)0.1351 (3)0.0302 (3)0.0966 (16)
H61.39420.11040.02040.116*
C71.1509 (3)0.0646 (2)0.1911 (2)0.0533 (8)
C81.1575 (3)0.0467 (2)0.1911 (2)0.0472 (8)
H81.16890.06840.13070.057*
C91.2525 (3)0.0844 (2)0.2484 (2)0.0496 (8)
C101.3424 (3)0.1227 (3)0.1863 (2)0.0624 (10)
C111.4414 (3)0.0747 (3)0.2121 (2)0.0654 (10)
C121.5430 (4)0.0814 (4)0.1802 (3)0.0920 (15)
H121.56000.12360.13460.110*
C131.6186 (4)0.0224 (5)0.2192 (4)0.1115 (19)
H131.68740.02570.19850.134*
C141.5970 (4)0.0401 (4)0.2861 (4)0.1040 (18)
H141.65120.07730.31010.125*
C151.4942 (4)0.0495 (3)0.3196 (3)0.0740 (12)
C161.4591 (5)0.1096 (3)0.3881 (3)0.0922 (15)
H161.50670.15040.41660.111*
C171.3559 (5)0.1086 (3)0.4134 (3)0.0899 (15)
H171.33470.14890.45920.108*
C181.2801 (3)0.0481 (3)0.3719 (2)0.0705 (11)
H181.21030.04860.39050.085*
C191.3106 (3)0.0107 (2)0.3048 (2)0.0552 (9)
C201.4180 (3)0.0097 (3)0.2798 (2)0.0565 (8)
C211.2724 (4)0.2350 (3)0.3369 (3)0.0880 (13)
H21A1.29670.27520.28950.132*
H21B1.33180.20510.36530.132*
H21C1.23480.27460.37830.132*
C221.1089 (3)0.1941 (2)0.2613 (2)0.0567 (9)
H22A1.12510.23890.21390.068*
H22B1.06240.22620.30270.068*
C231.0607 (3)0.1006 (2)0.2272 (2)0.0496 (8)
H231.03290.06340.27690.060*
C240.9739 (3)0.1152 (2)0.1621 (2)0.0508 (8)
C250.9350 (3)0.1998 (3)0.1294 (2)0.0663 (10)
H250.96060.26100.14530.080*
C260.8532 (3)0.1871 (3)0.0695 (3)0.0721 (11)
H260.81940.23930.04230.086*
C270.8272 (3)0.0943 (3)0.0545 (2)0.0522 (8)
C280.7479 (3)0.0563 (3)0.0029 (2)0.0568 (9)
C300.6091 (4)0.0442 (3)0.1079 (3)0.0979 (16)
H300.55930.05650.15110.117*
C310.6363 (4)0.0460 (4)0.0872 (4)0.111 (2)
H310.60680.10320.10910.133*
N11.2030 (2)0.1596 (2)0.30319 (19)0.0615 (8)
O11.3271 (2)0.1816 (2)0.1289 (2)0.0946 (10)
O21.0810 (2)0.10617 (19)0.23110 (18)0.0746 (7)
S10.90714 (8)0.01840 (7)0.11587 (6)0.0631 (3)
S20.6657 (4)0.1332 (3)0.0552 (3)0.0847 (11)0.629 (7)
C29'0.7190 (17)0.0390 (8)0.0252 (15)0.105 (8)0.629 (7)
H29'0.75150.09370.00110.126*0.629 (7)
S2'0.7253 (10)0.0658 (7)0.0140 (8)0.097 (2)0.372 (7)
C290.686 (2)0.1034 (13)0.0665 (19)0.128 (16)0.372 (7)
H290.69570.16900.08060.153*0.372 (7)
Cl11.49143 (12)0.28892 (10)0.00879 (10)0.1206 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.084 (3)0.079 (3)0.077 (3)0.026 (3)0.020 (3)0.028 (2)
C20.144 (5)0.069 (3)0.102 (4)0.045 (3)0.011 (4)0.006 (3)
C30.118 (4)0.062 (3)0.078 (3)0.018 (3)0.003 (3)0.005 (2)
C40.072 (2)0.048 (2)0.050 (2)0.0084 (18)0.0128 (18)0.0038 (16)
C50.117 (4)0.064 (3)0.068 (3)0.032 (3)0.016 (3)0.003 (2)
C60.128 (4)0.082 (3)0.080 (3)0.032 (3)0.027 (3)0.001 (3)
C70.060 (2)0.054 (2)0.0459 (19)0.0004 (18)0.0096 (17)0.0039 (16)
C80.056 (2)0.0465 (18)0.0389 (16)0.0059 (16)0.0012 (15)0.0043 (14)
C90.047 (2)0.0477 (18)0.0542 (19)0.0028 (16)0.0017 (15)0.0025 (15)
C100.060 (2)0.065 (2)0.062 (2)0.006 (2)0.0040 (19)0.008 (2)
C110.050 (2)0.080 (3)0.066 (2)0.005 (2)0.0023 (18)0.011 (2)
C120.068 (3)0.133 (4)0.075 (3)0.000 (3)0.011 (2)0.012 (3)
C130.066 (3)0.169 (6)0.100 (4)0.033 (4)0.000 (3)0.037 (4)
C140.075 (4)0.124 (4)0.113 (4)0.048 (3)0.032 (3)0.040 (4)
C150.073 (3)0.073 (3)0.076 (3)0.023 (2)0.027 (2)0.020 (2)
C160.112 (4)0.067 (3)0.098 (3)0.013 (3)0.054 (3)0.000 (3)
C170.119 (4)0.077 (3)0.073 (3)0.016 (3)0.046 (3)0.020 (2)
C180.084 (3)0.073 (2)0.054 (2)0.010 (2)0.012 (2)0.004 (2)
C190.066 (2)0.0488 (19)0.0512 (19)0.0036 (17)0.0095 (17)0.0001 (17)
C200.056 (2)0.057 (2)0.0570 (19)0.0089 (18)0.0102 (18)0.0111 (17)
C210.084 (3)0.069 (3)0.112 (3)0.012 (2)0.015 (3)0.023 (2)
C220.058 (2)0.054 (2)0.057 (2)0.0021 (18)0.0014 (17)0.0056 (17)
C230.051 (2)0.055 (2)0.0430 (17)0.0017 (16)0.0066 (15)0.0018 (15)
C240.047 (2)0.056 (2)0.0495 (18)0.0076 (17)0.0057 (15)0.0022 (16)
C250.068 (3)0.050 (2)0.081 (3)0.0092 (19)0.014 (2)0.0122 (19)
C260.069 (3)0.061 (2)0.086 (3)0.016 (2)0.019 (2)0.000 (2)
C270.047 (2)0.056 (2)0.054 (2)0.0063 (17)0.0044 (16)0.0018 (17)
C280.050 (2)0.059 (2)0.061 (2)0.0014 (19)0.0058 (19)0.0064 (19)
C300.099 (4)0.081 (3)0.113 (4)0.008 (3)0.055 (3)0.001 (3)
C310.109 (4)0.072 (3)0.152 (5)0.009 (3)0.057 (4)0.003 (3)
N10.0594 (19)0.0587 (18)0.0664 (19)0.0014 (15)0.0048 (15)0.0101 (15)
O10.076 (2)0.109 (2)0.099 (2)0.0064 (18)0.0060 (17)0.052 (2)
O20.0753 (18)0.0601 (15)0.0886 (18)0.0089 (15)0.0040 (16)0.0109 (14)
S10.0631 (6)0.0538 (5)0.0724 (6)0.0014 (5)0.0180 (5)0.0079 (5)
S20.0851 (18)0.0775 (18)0.0916 (17)0.0007 (15)0.0399 (16)0.0029 (13)
C29'0.094 (8)0.099 (16)0.123 (11)0.021 (10)0.056 (7)0.015 (10)
S2'0.127 (5)0.053 (3)0.112 (4)0.000 (3)0.073 (3)0.010 (3)
C290.13 (2)0.11 (2)0.14 (2)0.036 (19)0.001 (17)0.018 (17)
Cl10.1074 (10)0.1174 (11)0.1371 (12)0.0501 (9)0.0110 (9)0.0470 (9)
Geometric parameters (Å, º) top
C1—C21.344 (7)C17—H170.9300
C1—C61.349 (6)C18—C191.360 (5)
C1—Cl11.748 (4)C18—H180.9300
C2—C31.377 (6)C19—C201.415 (5)
C2—H20.9300C21—N11.450 (5)
C3—C41.375 (5)C21—H21A0.9600
C3—H30.9300C21—H21B0.9600
C4—C51.370 (5)C21—H21C0.9600
C4—C71.479 (5)C22—N11.435 (4)
C5—C61.377 (6)C22—C231.510 (5)
C5—H50.9300C22—H22A0.9700
C6—H60.9300C22—H22B0.9700
C7—O21.218 (4)C23—C241.498 (4)
C7—C81.524 (5)C23—H230.9800
C8—C231.535 (4)C24—C251.354 (5)
C8—C91.577 (5)C24—S11.723 (4)
C8—H80.9800C25—C261.394 (5)
C9—N11.466 (4)C25—H250.9300
C9—C191.517 (5)C26—C271.332 (5)
C9—C101.573 (5)C26—H260.9300
C10—O11.206 (4)C27—C281.432 (5)
C10—C111.470 (5)C27—S11.727 (3)
C11—C121.381 (5)C28—C29'1.396 (9)
C11—C201.396 (5)C28—C291.402 (10)
C12—C131.387 (7)C28—S21.682 (5)
C12—H120.9300C28—S2'1.703 (8)
C13—C141.360 (8)C30—C311.318 (6)
C13—H130.9300C30—C291.420 (10)
C14—C151.408 (7)C30—S21.625 (6)
C14—H140.9300C30—H300.9300
C15—C201.400 (5)C31—C29'1.416 (9)
C15—C161.403 (7)C31—S2'1.612 (9)
C16—C171.365 (7)C31—H310.9300
C16—H160.9300C29'—H29'0.9300
C17—C181.419 (6)C29—H290.9300
C2—C1—C6120.5 (4)C11—C20—C15122.9 (4)
C2—C1—Cl1120.4 (4)C11—C20—C19113.5 (3)
C6—C1—Cl1119.2 (4)C15—C20—C19123.6 (4)
C1—C2—C3120.9 (4)N1—C21—H21A109.5
C1—C2—H2119.6N1—C21—H21B109.5
C3—C2—H2119.6H21A—C21—H21B109.5
C4—C3—C2120.2 (4)N1—C21—H21C109.5
C4—C3—H3119.9H21A—C21—H21C109.5
C2—C3—H3119.9H21B—C21—H21C109.5
C5—C4—C3117.3 (4)N1—C22—C23102.3 (3)
C5—C4—C7122.6 (3)N1—C22—H22A111.3
C3—C4—C7120.1 (4)C23—C22—H22A111.3
C4—C5—C6122.2 (4)N1—C22—H22B111.3
C4—C5—H5118.9C23—C22—H22B111.3
C6—C5—H5118.9H22A—C22—H22B109.2
C1—C6—C5118.8 (4)C24—C23—C22114.4 (3)
C1—C6—H6120.6C24—C23—C8114.5 (3)
C5—C6—H6120.6C22—C23—C8101.9 (3)
O2—C7—C4121.9 (3)C24—C23—H23108.6
O2—C7—C8120.4 (3)C22—C23—H23108.6
C4—C7—C8117.6 (3)C8—C23—H23108.6
C7—C8—C23115.8 (3)C25—C24—C23128.9 (3)
C7—C8—C9111.7 (3)C25—C24—S1109.0 (3)
C23—C8—C9104.7 (2)C23—C24—S1122.1 (2)
C7—C8—H8108.1C24—C25—C26114.0 (3)
C23—C8—H8108.1C24—C25—H25123.0
C9—C8—H8108.1C26—C25—H25123.0
N1—C9—C19110.5 (3)C27—C26—C25114.6 (4)
N1—C9—C10114.9 (3)C27—C26—H26122.7
C19—C9—C10102.2 (3)C25—C26—H26122.7
N1—C9—C8102.7 (3)C26—C27—C28128.7 (3)
C19—C9—C8118.0 (3)C26—C27—S1109.5 (3)
C10—C9—C8109.1 (3)C28—C27—S1121.8 (3)
O1—C10—C11129.1 (4)C29'—C28—C2996.6 (8)
O1—C10—C9122.9 (4)C29'—C28—C27132.2 (5)
C11—C10—C9108.0 (3)C29—C28—C27130.4 (6)
C12—C11—C20120.1 (4)C29'—C28—S2107.7 (6)
C12—C11—C10132.3 (4)C27—C28—S2120.0 (3)
C20—C11—C10107.5 (3)C29—C28—S2'106.7 (7)
C11—C12—C13117.1 (5)C27—C28—S2'122.3 (3)
C11—C12—H12121.5S2—C28—S2'117.5 (3)
C13—C12—H12121.5C31—C30—C29104.2 (8)
C14—C13—C12123.3 (5)C31—C30—S2117.8 (4)
C14—C13—H13118.3C31—C30—H30121.1
C12—C13—H13118.3C29—C30—H30133.1
C13—C14—C15121.1 (4)S2—C30—H30121.1
C13—C14—H14119.4C30—C31—C29'106.9 (6)
C15—C14—H14119.4C30—C31—S2'120.4 (5)
C20—C15—C16116.4 (4)C30—C31—H31126.5
C20—C15—C14115.4 (4)C29'—C31—H31126.5
C16—C15—C14128.2 (5)S2'—C31—H31113.0
C17—C16—C15120.6 (4)C22—N1—C21115.5 (3)
C17—C16—H16119.7C22—N1—C9109.4 (3)
C15—C16—H16119.7C21—N1—C9116.2 (3)
C16—C17—C18121.9 (5)C24—S1—C2792.86 (17)
C16—C17—H17119.0C30—S2—C2892.3 (3)
C18—C17—H17119.0C28—C29'—C31114.8 (8)
C19—C18—C17119.3 (4)C28—C29'—H29'122.6
C19—C18—H18120.3C31—C29'—H29'122.6
C17—C18—H18120.3C31—S2'—C2891.2 (5)
C18—C19—C20118.2 (3)C28—C29—C30115.5 (10)
C18—C19—C9133.1 (4)C28—C29—H29122.3
C20—C19—C9108.7 (3)C30—C29—H29122.3
C6—C1—C2—C31.7 (8)N1—C22—C23—C24166.4 (3)
Cl1—C1—C2—C3177.1 (4)N1—C22—C23—C842.3 (3)
C1—C2—C3—C42.0 (8)C7—C8—C23—C2483.9 (4)
C2—C3—C4—C50.1 (6)C9—C8—C23—C24152.7 (3)
C2—C3—C4—C7178.5 (4)C7—C8—C23—C22152.0 (3)
C3—C4—C5—C62.1 (7)C9—C8—C23—C2228.6 (3)
C7—C4—C5—C6179.4 (4)C22—C23—C24—C251.3 (5)
C2—C1—C6—C50.5 (8)C8—C23—C24—C25115.8 (4)
Cl1—C1—C6—C5179.3 (4)C22—C23—C24—S1179.3 (2)
C4—C5—C6—C12.4 (7)C8—C23—C24—S163.6 (4)
C5—C4—C7—O2151.1 (4)C23—C24—C25—C26179.9 (3)
C3—C4—C7—O230.3 (5)S1—C24—C25—C260.7 (4)
C5—C4—C7—C832.4 (5)C24—C25—C26—C270.2 (5)
C3—C4—C7—C8146.1 (4)C25—C26—C27—C28179.7 (3)
O2—C7—C8—C2312.0 (5)C25—C26—C27—S10.4 (5)
C4—C7—C8—C23171.5 (3)C26—C27—C28—C29'176.8 (17)
O2—C7—C8—C9107.7 (4)S1—C27—C28—C29'2.5 (17)
C4—C7—C8—C968.8 (4)C26—C27—C28—C2910 (2)
C7—C8—C9—N1131.0 (3)S1—C27—C28—C29170 (2)
C23—C8—C9—N15.0 (3)C26—C27—C28—S25.6 (6)
C7—C8—C9—C199.3 (4)S1—C27—C28—S2175.2 (3)
C23—C8—C9—C19116.7 (3)C26—C27—C28—S2'180.0 (8)
C7—C8—C9—C10106.6 (3)S1—C27—C28—S2'0.8 (8)
C23—C8—C9—C10127.3 (3)C29—C30—C31—C29'8 (2)
N1—C9—C10—O162.6 (5)S2—C30—C31—C29'4.8 (15)
C19—C9—C10—O1177.7 (4)C29—C30—C31—S2'10.7 (18)
C8—C9—C10—O152.1 (5)S2—C30—C31—S2'1.8 (11)
N1—C9—C10—C11117.3 (3)C23—C22—N1—C21175.1 (3)
C19—C9—C10—C112.4 (4)C23—C22—N1—C941.8 (3)
C8—C9—C10—C11128.1 (3)C19—C9—N1—C22149.3 (3)
O1—C10—C11—C120.1 (8)C10—C9—N1—C2295.7 (3)
C9—C10—C11—C12180.0 (4)C8—C9—N1—C2222.7 (3)
O1—C10—C11—C20177.7 (4)C19—C9—N1—C2177.8 (4)
C9—C10—C11—C202.5 (4)C10—C9—N1—C2137.2 (4)
C20—C11—C12—C130.8 (6)C8—C9—N1—C21155.6 (3)
C10—C11—C12—C13178.2 (4)C25—C24—S1—C270.7 (3)
C11—C12—C13—C140.2 (8)C23—C24—S1—C27179.8 (3)
C12—C13—C14—C150.8 (8)C26—C27—S1—C240.6 (3)
C13—C14—C15—C200.4 (6)C28—C27—S1—C24180.0 (3)
C13—C14—C15—C16179.6 (5)C31—C30—S2—C286.1 (6)
C20—C15—C16—C170.2 (6)C29—C30—S2—C2837 (4)
C14—C15—C16—C17179.0 (4)C29'—C28—S2—C305.1 (13)
C15—C16—C17—C180.3 (7)C29—C28—S2—C3042 (4)
C16—C17—C18—C190.2 (6)C27—C28—S2—C30176.7 (3)
C17—C18—C19—C200.8 (5)S2'—C28—S2—C308.6 (8)
C17—C18—C19—C9178.5 (4)C29—C28—C29'—C318 (2)
N1—C9—C19—C1856.5 (5)C27—C28—C29'—C31178.6 (9)
C10—C9—C19—C18179.3 (4)S2—C28—C29'—C314 (2)
C8—C9—C19—C1861.1 (5)S2'—C28—C29'—C31166 (12)
N1—C9—C19—C20121.3 (3)C30—C31—C29'—C280 (2)
C10—C9—C19—C201.5 (3)S2'—C31—C29'—C28169 (9)
C8—C9—C19—C20121.1 (3)C30—C31—S2'—C283.6 (11)
C12—C11—C20—C151.3 (6)C29'—C31—S2'—C288 (7)
C10—C11—C20—C15179.2 (3)C29'—C28—S2'—C3111 (9)
C12—C11—C20—C19179.5 (4)C29—C28—S2'—C315.2 (19)
C10—C11—C20—C191.6 (4)C27—C28—S2'—C31177.6 (4)
C16—C15—C20—C11178.7 (4)S2—C28—S2'—C317.8 (10)
C14—C15—C20—C110.6 (5)C29'—C28—C29—C3014 (3)
C16—C15—C20—C190.5 (5)C27—C28—C29—C30175.8 (12)
C14—C15—C20—C19179.8 (4)S2—C28—C29—C30121 (6)
C18—C19—C20—C11178.2 (3)S2'—C28—C29—C3013 (3)
C9—C19—C20—C110.0 (4)C31—C30—C29—C2815 (3)
C18—C19—C20—C151.0 (5)S2—C30—C29—C28127 (6)
C9—C19—C20—C15179.2 (3)

Experimental details

Crystal data
Chemical formulaC31H22ClNO2S2
Mr540.07
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)12.6858 (13), 13.6733 (13), 15.2782 (17)
V3)2650.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2006)
Tmin, Tmax0.920, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
13196, 4384, 3364
Rint0.033
(sin θ/λ)max1)0.583
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.113, 1.04
No. of reflections4384
No. of parameters355
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.28
Absolute structureFlack (1983), 1898 Friedel pairs
Absolute structure parameter0.00 (9)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

ST and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSarala, G., Kavitha, C. V., Mantelingu, K., Anandalwar, S. M., Shashidhara Prasad, J. & Rangappa, K. S. (2006). Anal. Sci. 22, x241–x242.  CAS Google Scholar
First citationSheldrick, G. M. (2006). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds