organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 1,1-dioxo-3,5-bis­­(pyridin-2-yl)-1λ6,4-thio­morpholine-2,6-dicarbox­ylate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 19 November 2010; accepted 5 January 2011; online 8 January 2011)

The title compound, C20H23N3O6S, crystallizes with two crystallographically independent mol­ecules in the asymmetric unit. The thio­morpholine ring in both mol­ecules adopts a chair conformation. The crystal structure is stabilized by C—H⋯O inter­actions. The amino groups are shielded and, as a result, these groups are not involved in hydrogen bonding.

Related literature

For general background to quinoline derivatives, see: Katritzky et al. (1985[Katritzky, A. R. (1985). Advances in Heterocyclic Chemistry, Vol. 38, p. 135. London: Academic Press.]); Ramana Reddy et al. (1990[Ramana Reddy, M. V., Vijayalakshmi, S., Ramana Reddy, P. V. & Reddy, S. (1990). Indian J. Chem. Sect. B, 29, 168-170.]); Bhaskar et al. (2000[Bhaskar, R. D., Chandrasekhar, B. N. & Padmaja, A. (2000). Indian J. Chem. Sect. B, 39, 406-409.]). For the synthesis, see: Baliah & Rangarajan et al. (1954[Baliah, V. & Rangarajan, T. (1954). J. Chem. Soc. 5295, 3068-3070.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.])

[Scheme 1]

Experimental

Crystal data
  • C20H23N3O6S

  • Mr = 433.47

  • Orthorhombic, P n a 21

  • a = 20.7258 (13) Å

  • b = 8.3921 (5) Å

  • c = 24.4923 (15) Å

  • V = 4260.0 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.970

  • 22898 measured reflections

  • 9897 independent reflections

  • 7453 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.113

  • S = 1.03

  • 9897 reflections

  • 553 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4584 Friedel pairs

  • Flack parameter: 0.14 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4B—H4B⋯O2B 0.98 2.59 3.167 (3) 118
C2A—H2A⋯O4Bi 0.98 2.34 3.273 (3) 158
C19A—H19A⋯O6Bi 0.93 2.49 3.360 (4) 155
C5B—H5B⋯O4Aii 0.98 2.34 3.269 (3) 157
C11B—H11B⋯O2Aii 0.93 2.53 3.404 (4) 156
C17B—H17E⋯O3Aiii 0.96 2.52 3.402 (4) 153
C14A—H14B⋯O3Biv 0.96 2.52 3.402 (4) 153
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tetrahydro-1,4-thiazine-1,1-dioxide derivatives possess antibacterial, antifungal and antihistaminic properties (Katritzky, 1985; Ramana Reddy et al., 1990; Bhaskar et al. 2000). Against this background and to ascertain the structure of title compound, the crystallographic studies has been carried out.

The ORTEP plot of the molecule is shown in Fig.1. There are two crystallographically independent molecules in the asymmetric unit. Both thiomorpholine ring systems adopt a chair conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: for molecule A, q2 = 0.029 (3) Å, q3 = 0.598 (3) Å, ϕ2 = 41 (5)° and Δs(S1A & N1A)= 2.6 (2) °; for molecule B: q2 = 0.039 (3) Å, q3 = 0.599 (3) Å, ϕ2 = 305 (4)° and Δs(S1B & N1B)= 3.5 (2)°. The sum of the bond angles around the atoms N1A (346.5°) and N1B (332.2°) of the thiomorphline ring in both the molecules are in accordance with sp3 hybridization.

The packing of the molecules in the crystal is stabilized by C—H···O interactions which form a three demensional network.

Related literature top

For general background to quinoline derivatives, see: Katritzky et al. (1985); Ramana Reddy et al. (1990); Bhaskar et al. (2000). For the synthesis, see: Baliah & Rangarajan et al. (1954). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli 1983)

Experimental top

A mixture of diethyl 2,2'-sulfonyldiacetate (1.0 mol), pyridine-2-aldehyde (2.0 mol), ammonium acetate (2.0 mol) and a few drops of alcohol were made as a homogeneous paste. Then it was stirred with 10 ml of water at room temperature for about 3 h and left overnight. The reaction mixture was diluted with excess of water. The solid that separated was filtered, washed with water and dried; crystallization from aqueous alcohol gave pure 2,6-dicarbethoxy-3,5-bis(pyridin-2-yl)tetrahydro-1,4-thiazine-1,1-dioxide (Baliah and Rangarajan, 1954).

Refinement top

H atoms were positioned geometrically (C—H=0.93–0.98 Å) and allowed to ride on their parent atoms,with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms. The amino H atoms were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing just one of the two molecules in the asymmetric unit. The displacement ellipsoids are drawn at the 30% probability level.
Diethyl 1,1-dioxo-3,5-bis(pyridin-2-yl)-1λ6,4-thiomorpholine-2,6-dicarboxylate top
Crystal data top
C20H23N3O6SF(000) = 1824
Mr = 433.47Dx = 1.352 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4535 reflections
a = 20.7258 (13) Åθ = 1.7–28.3°
b = 8.3921 (5) ŵ = 0.19 mm1
c = 24.4923 (15) ÅT = 293 K
V = 4260.0 (5) Å3Block, colourless
Z = 80.20 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
9897 independent reflections
Radiation source: fine-focus sealed tube7453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2127
Tmin = 0.962, Tmax = 0.970k = 1011
22898 measured reflectionsl = 3232
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.0627P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
9897 reflectionsΔρmax = 0.29 e Å3
553 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 4584 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.14 (6)
Crystal data top
C20H23N3O6SV = 4260.0 (5) Å3
Mr = 433.47Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 20.7258 (13) ŵ = 0.19 mm1
b = 8.3921 (5) ÅT = 293 K
c = 24.4923 (15) Å0.20 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
9897 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
7453 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.970Rint = 0.027
22898 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113Δρmax = 0.29 e Å3
S = 1.03Δρmin = 0.17 e Å3
9897 reflectionsAbsolute structure: Flack (1983), 4584 Friedel pairs
553 parametersAbsolute structure parameter: 0.14 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.07796 (3)0.29281 (10)0.17383 (2)0.03724 (14)
O1A0.08829 (9)0.1886 (3)0.18546 (9)0.0567 (5)
O2A0.02641 (10)0.0197 (3)0.13848 (9)0.0649 (6)
O3A0.05012 (9)0.4478 (2)0.16522 (8)0.0481 (5)
O4A0.10104 (11)0.2054 (3)0.12711 (8)0.0491 (5)
O5A0.17481 (10)0.5395 (2)0.26684 (9)0.0538 (5)
O6A0.08102 (10)0.4278 (3)0.29336 (10)0.0538 (6)
N1A0.10848 (11)0.0586 (3)0.27062 (12)0.0374 (6)
H1A0.0979 (17)0.092 (4)0.3042 (15)0.060 (11)*
C2A0.05581 (12)0.0218 (3)0.23411 (11)0.0368 (5)
H2A0.07310.03980.20340.044*
C3A0.02173 (12)0.1721 (3)0.21064 (10)0.0347 (5)
H3A0.00370.23440.24090.042*
C4A0.14360 (13)0.3100 (3)0.22123 (10)0.0364 (6)
H4A0.18110.34930.20100.044*
C5A0.16188 (12)0.1416 (3)0.24529 (11)0.0351 (6)
H5A0.17740.07550.21500.042*
C6A0.00661 (13)0.0803 (3)0.26320 (11)0.0420 (6)
C10A0.04476 (19)0.3286 (4)0.27768 (18)0.0736 (10)
H10A0.04970.43670.27030.088*
C9A0.0819 (2)0.2545 (4)0.3169 (3)0.0729 (17)
H9A0.11350.31120.33560.088*
C8A0.07184 (18)0.0963 (5)0.32788 (15)0.0717 (10)
H8A0.09650.04860.35510.086*
N7A0.02839 (13)0.0069 (3)0.30152 (10)0.0577 (7)
C12A0.03341 (13)0.1183 (3)0.17295 (12)0.0440 (6)
C13A0.14618 (16)0.1198 (5)0.16069 (16)0.0735 (11)
H13A0.13590.07520.12520.088*
H13B0.17890.20130.15590.088*
C14A0.17102 (18)0.0106 (5)0.19873 (18)0.0800 (11)
H14A0.14100.09780.19910.120*
H14B0.21220.04750.18600.120*
H14C0.17550.03140.23500.120*
C15A0.12790 (15)0.4312 (4)0.26447 (14)0.0424 (7)
C16A0.16830 (19)0.6658 (4)0.30708 (18)0.0735 (11)
H16A0.15000.62390.34060.088*
H16B0.14010.74890.29340.088*
C17A0.2328 (3)0.7300 (6)0.3173 (3)0.115 (2)
H17A0.25900.65000.33440.172*
H17B0.22970.82110.34080.172*
H17C0.25220.76110.28330.172*
C18A0.21738 (12)0.1620 (3)0.28544 (10)0.0354 (5)
C19A0.28099 (13)0.1448 (3)0.26942 (12)0.0452 (6)
H19A0.29100.11660.23370.054*
C20A0.32921 (14)0.1699 (4)0.30700 (13)0.0557 (8)
H20A0.37220.16050.29670.067*
C21A0.31343 (18)0.2091 (5)0.36023 (16)0.0567 (8)
H21A0.34500.22580.38660.068*
C22A0.24882 (18)0.2220 (6)0.3722 (2)0.0659 (12)
H22A0.23760.24700.40800.079*
C11A0.00059 (17)0.2393 (4)0.2500 (2)0.0585 (13)
H11A0.02440.28490.22260.070*
N23A0.20096 (12)0.2015 (4)0.33639 (12)0.0539 (6)
S1B0.16804 (3)0.70742 (10)0.10968 (2)0.03664 (14)
O1B0.07041 (10)0.4650 (2)0.01390 (9)0.0517 (5)
O2B0.16626 (10)0.5726 (3)0.00902 (9)0.0503 (6)
O3B0.19608 (9)0.5531 (2)0.11852 (8)0.0470 (5)
O4B0.14445 (11)0.7948 (3)0.15549 (8)0.0495 (5)
O5B0.33391 (9)0.8084 (3)0.09752 (8)0.0561 (5)
O6B0.27294 (11)0.9824 (3)0.14422 (9)0.0645 (6)
N1B0.13666 (12)0.9403 (3)0.01219 (12)0.0375 (6)
H1B0.1533 (11)0.885 (3)0.0151 (10)0.016 (6)*
C2B0.08363 (12)0.8566 (3)0.03772 (11)0.0364 (6)
H2B0.06750.92310.06760.044*
C3B0.10241 (12)0.6909 (3)0.06219 (11)0.0350 (5)
H3B0.06490.65090.08240.042*
C4B0.22467 (12)0.8277 (3)0.07248 (10)0.0360 (5)
H4B0.24260.76550.04220.043*
C5B0.18996 (12)0.9771 (3)0.04946 (10)0.0368 (5)
H5B0.17251.03790.08030.044*
C6B0.02908 (13)0.8343 (3)0.00298 (10)0.0379 (6)
N7B0.04684 (13)0.7879 (4)0.05309 (11)0.0515 (6)
C8B0.00031 (19)0.7602 (4)0.0897 (2)0.0568 (11)
H8B0.01120.72980.12490.068*
C9B0.0645 (2)0.7749 (5)0.07749 (18)0.0585 (10)
H9B0.09570.75270.10370.070*
C10B0.08203 (15)0.8230 (4)0.02585 (14)0.0591 (8)
H10B0.12530.83410.01660.071*
C11B0.03454 (13)0.8544 (4)0.01173 (12)0.0488 (7)
H11B0.04520.88880.04670.059*
C12B0.11816 (14)0.5696 (4)0.01801 (13)0.0367 (6)
C13B0.07553 (18)0.3485 (4)0.02997 (18)0.0738 (11)
H13C0.10730.26790.02080.089*
H13D0.08860.40020.06360.089*
C14B0.0110 (2)0.2750 (6)0.0364 (2)0.1052 (19)
H14D0.00490.24240.00140.158*
H14E0.01420.18380.06000.158*
H14F0.01810.35120.05220.158*
C15B0.27901 (12)0.8812 (3)0.10983 (11)0.0425 (6)
C16B0.39240 (16)0.8787 (5)0.12212 (16)0.0777 (12)
H16C0.42530.79750.12640.093*
H16D0.38240.92150.15790.093*
C17B0.41688 (19)1.0101 (5)0.08536 (18)0.0843 (12)
H17D0.42620.96720.04990.126*
H17E0.45541.05500.10070.126*
H17F0.38461.09150.08220.126*
C18B0.23894 (13)1.0806 (3)0.02030 (11)0.0411 (6)
N23B0.27697 (14)1.0074 (3)0.01583 (10)0.0572 (7)
C22B0.32086 (19)1.0969 (4)0.04148 (16)0.0744 (10)
H22B0.34871.04650.06580.089*
C21B0.3276 (2)1.2571 (5)0.0344 (2)0.0787 (17)
H21B0.35761.31500.05450.094*
C20B0.28872 (18)1.3298 (4)0.0032 (2)0.0831 (13)
H20B0.29261.43860.00970.100*
C19B0.24368 (18)1.2407 (4)0.0315 (2)0.0593 (13)
H19B0.21721.28800.05750.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0374 (3)0.0421 (3)0.0323 (3)0.0025 (3)0.0030 (3)0.0002 (4)
O1A0.0377 (11)0.0668 (13)0.0655 (14)0.0079 (10)0.0082 (10)0.0139 (11)
O2A0.0520 (13)0.0804 (15)0.0622 (13)0.0050 (12)0.0126 (11)0.0321 (12)
O3A0.0476 (11)0.0430 (10)0.0537 (12)0.0053 (8)0.0067 (9)0.0093 (9)
O4A0.0532 (12)0.0603 (11)0.0337 (11)0.0042 (12)0.0014 (9)0.0040 (11)
O5A0.0589 (13)0.0410 (11)0.0614 (12)0.0130 (9)0.0042 (10)0.0063 (10)
O6A0.0538 (13)0.0502 (13)0.0574 (13)0.0001 (10)0.0068 (11)0.0100 (11)
N1A0.0323 (12)0.0400 (13)0.0399 (14)0.0009 (11)0.0043 (11)0.0006 (11)
C2A0.0352 (13)0.0345 (13)0.0408 (13)0.0022 (11)0.0021 (11)0.0047 (11)
C3A0.0324 (13)0.0374 (13)0.0344 (12)0.0013 (10)0.0024 (10)0.0018 (10)
C4A0.0323 (14)0.0416 (16)0.0352 (14)0.0007 (12)0.0001 (10)0.0036 (12)
C5A0.0349 (14)0.0346 (14)0.0358 (13)0.0015 (11)0.0006 (11)0.0025 (11)
C6A0.0368 (14)0.0416 (14)0.0475 (15)0.0005 (12)0.0081 (11)0.0030 (12)
C10A0.065 (2)0.0521 (19)0.103 (3)0.0119 (18)0.005 (2)0.013 (2)
C9A0.050 (2)0.063 (3)0.106 (4)0.0172 (17)0.009 (2)0.035 (2)
C8A0.067 (2)0.080 (2)0.068 (2)0.002 (2)0.0171 (18)0.0119 (19)
N7A0.0614 (17)0.0557 (15)0.0561 (15)0.0071 (13)0.0131 (13)0.0039 (12)
C12A0.0407 (15)0.0507 (15)0.0405 (13)0.0041 (12)0.0055 (12)0.0069 (13)
C13A0.0383 (17)0.107 (3)0.075 (2)0.0097 (19)0.0178 (16)0.019 (2)
C14A0.050 (2)0.093 (3)0.097 (3)0.012 (2)0.016 (2)0.020 (2)
C15A0.0462 (17)0.0414 (16)0.0396 (16)0.0018 (14)0.0072 (14)0.0037 (13)
C16A0.082 (3)0.0501 (19)0.089 (3)0.0045 (17)0.019 (2)0.0198 (18)
C17A0.092 (3)0.075 (3)0.177 (7)0.033 (3)0.002 (4)0.051 (3)
C18A0.0331 (13)0.0388 (12)0.0343 (12)0.0019 (11)0.0024 (10)0.0006 (10)
C19A0.0363 (14)0.0587 (16)0.0405 (14)0.0039 (13)0.0010 (11)0.0047 (13)
C20A0.0342 (15)0.077 (2)0.0561 (18)0.0046 (15)0.0052 (13)0.0026 (15)
C21A0.0467 (19)0.073 (2)0.050 (2)0.0023 (18)0.0194 (16)0.0008 (19)
C22A0.055 (3)0.102 (3)0.040 (2)0.0021 (19)0.0054 (17)0.0149 (19)
C11A0.054 (2)0.039 (2)0.082 (4)0.0049 (13)0.007 (2)0.0010 (15)
N23A0.0359 (14)0.0854 (18)0.0403 (14)0.0052 (15)0.0017 (11)0.0102 (16)
S1B0.0379 (4)0.0414 (3)0.0307 (3)0.0043 (3)0.0034 (3)0.0005 (4)
O1B0.0532 (12)0.0473 (12)0.0547 (12)0.0092 (9)0.0001 (10)0.0088 (10)
O2B0.0460 (13)0.0588 (13)0.0463 (12)0.0013 (10)0.0042 (10)0.0114 (11)
O3B0.0485 (11)0.0453 (10)0.0472 (11)0.0073 (8)0.0081 (9)0.0048 (9)
O4B0.0553 (13)0.0604 (11)0.0329 (10)0.0066 (12)0.0027 (9)0.0046 (11)
O5B0.0375 (11)0.0719 (14)0.0589 (14)0.0093 (11)0.0105 (9)0.0063 (11)
O6B0.0548 (13)0.0805 (15)0.0582 (12)0.0028 (12)0.0105 (10)0.0314 (12)
N1B0.0380 (13)0.0373 (13)0.0374 (14)0.0029 (11)0.0031 (11)0.0001 (11)
C2B0.0320 (13)0.0415 (15)0.0358 (14)0.0041 (11)0.0027 (11)0.0024 (11)
C3B0.0305 (13)0.0410 (16)0.0335 (13)0.0004 (12)0.0005 (10)0.0004 (11)
C4B0.0348 (14)0.0408 (14)0.0325 (12)0.0037 (11)0.0002 (10)0.0062 (10)
C5B0.0364 (14)0.0391 (13)0.0351 (13)0.0004 (11)0.0025 (11)0.0045 (11)
C6B0.0371 (14)0.0376 (13)0.0390 (13)0.0024 (11)0.0027 (11)0.0065 (10)
N7B0.0429 (15)0.0785 (16)0.0332 (13)0.0011 (14)0.0019 (10)0.0008 (14)
C8B0.057 (2)0.082 (3)0.032 (2)0.0012 (15)0.0099 (16)0.0009 (13)
C9B0.049 (2)0.077 (2)0.050 (2)0.0088 (18)0.0166 (16)0.0103 (18)
C10B0.0347 (16)0.076 (2)0.066 (2)0.0028 (15)0.0032 (15)0.0044 (16)
C11B0.0404 (15)0.0606 (18)0.0454 (15)0.0073 (13)0.0001 (13)0.0013 (13)
C12B0.0385 (15)0.0351 (14)0.0366 (14)0.0026 (13)0.0081 (13)0.0010 (11)
C13B0.076 (3)0.060 (2)0.086 (3)0.0058 (18)0.011 (2)0.0311 (19)
C14B0.095 (4)0.110 (4)0.111 (5)0.034 (3)0.005 (3)0.047 (3)
C15B0.0384 (14)0.0501 (15)0.0390 (13)0.0035 (11)0.0026 (12)0.0004 (13)
C16B0.0412 (18)0.117 (3)0.075 (2)0.013 (2)0.0250 (17)0.020 (2)
C17B0.053 (2)0.102 (3)0.099 (3)0.018 (2)0.011 (2)0.019 (3)
C18B0.0384 (14)0.0385 (13)0.0464 (15)0.0006 (11)0.0063 (12)0.0011 (12)
N23B0.0644 (18)0.0517 (14)0.0557 (15)0.0036 (13)0.0154 (13)0.0002 (12)
C22B0.073 (2)0.072 (2)0.079 (2)0.002 (2)0.026 (2)0.015 (2)
C21B0.063 (3)0.081 (4)0.093 (4)0.010 (2)0.014 (3)0.033 (2)
C20B0.059 (2)0.0443 (18)0.146 (4)0.0100 (17)0.003 (3)0.014 (2)
C19B0.046 (2)0.045 (2)0.087 (4)0.0008 (13)0.002 (2)0.0031 (15)
Geometric parameters (Å, º) top
S1A—O3A1.439 (2)S1B—O4B1.427 (2)
S1A—O4A1.441 (2)S1B—O3B1.4356 (19)
S1A—C3A1.788 (3)S1B—C3B1.795 (3)
S1A—C4A1.794 (3)S1B—C4B1.796 (3)
O1A—C12A1.318 (3)O1B—C12B1.327 (3)
O1A—C13A1.463 (4)O1B—C13B1.456 (4)
O2A—C12A1.191 (3)O2B—C12B1.197 (3)
O5A—C15A1.332 (4)O5B—C15B1.326 (3)
O5A—C16A1.454 (4)O5B—C16B1.477 (4)
O6A—C15A1.202 (4)O6B—C15B1.202 (3)
N1A—C2A1.445 (4)N1B—C2B1.447 (4)
N1A—C5A1.447 (3)N1B—C5B1.466 (4)
N1A—H1A0.90 (4)N1B—H1B0.88 (2)
C2A—C6A1.511 (4)C2B—C6B1.519 (4)
C2A—C3A1.556 (4)C2B—C3B1.563 (4)
C2A—H2A0.9800C2B—H2B0.9800
C3A—C12A1.537 (4)C3B—C12B1.521 (4)
C3A—H3A0.9800C3B—H3B0.9800
C4A—C15A1.504 (4)C4B—C15B1.519 (4)
C4A—C5A1.577 (4)C4B—C5B1.552 (4)
C4A—H4A0.9800C4B—H4B0.9800
C5A—C18A1.523 (3)C5B—C18B1.515 (4)
C5A—H5A0.9800C5B—H5B0.9800
C6A—N7A1.337 (4)C6B—N7B1.339 (4)
C6A—C11A1.381 (4)C6B—C11B1.377 (4)
C10A—C11A1.364 (5)N7B—C8B1.346 (5)
C10A—C9A1.379 (6)C8B—C9B1.368 (5)
C10A—H10A0.9300C8B—H8B0.9300
C9A—C8A1.371 (5)C9B—C10B1.377 (6)
C9A—H9A0.9300C9B—H9B0.9300
C8A—N7A1.338 (4)C10B—C11B1.373 (4)
C8A—H8A0.9300C10B—H10B0.9300
C13A—C14A1.527 (6)C11B—H11B0.9300
C13A—H13A0.9700C13B—C14B1.481 (5)
C13A—H13B0.9700C13B—H13C0.9700
C14A—H14A0.9600C13B—H13D0.9700
C14A—H14B0.9600C14B—H14D0.9600
C14A—H14C0.9600C14B—H14E0.9600
C16A—C17A1.464 (6)C14B—H14F0.9600
C16A—H16A0.9700C16B—C17B1.511 (6)
C16A—H16B0.9700C16B—H16C0.9700
C17A—H17A0.9600C16B—H16D0.9700
C17A—H17B0.9600C17B—H17D0.9600
C17A—H17C0.9600C17B—H17E0.9600
C18A—N23A1.335 (4)C17B—H17F0.9600
C18A—C19A1.383 (4)C18B—N23B1.335 (4)
C19A—C20A1.375 (4)C18B—C19B1.375 (4)
C19A—H19A0.9300N23B—C22B1.336 (4)
C20A—C21A1.384 (5)C22B—C21B1.362 (5)
C20A—H20A0.9300C22B—H22B0.9300
C21A—C22A1.375 (5)C21B—C20B1.367 (6)
C21A—H21A0.9300C21B—H21B0.9300
C22A—N23A1.335 (5)C20B—C19B1.382 (5)
C22A—H22A0.9300C20B—H20B0.9300
C11A—H11A0.9300C19B—H19B0.9300
O3A—S1A—O4A118.48 (13)O4B—S1B—O3B118.95 (13)
O3A—S1A—C3A108.96 (12)O4B—S1B—C3B106.83 (13)
O4A—S1A—C3A109.18 (13)O3B—S1B—C3B109.55 (13)
O3A—S1A—C4A109.05 (13)O4B—S1B—C4B109.49 (13)
O4A—S1A—C4A107.63 (13)O3B—S1B—C4B108.60 (12)
C3A—S1A—C4A102.32 (12)C3B—S1B—C4B102.12 (12)
C12A—O1A—C13A115.8 (2)C12B—O1B—C13B116.5 (2)
C15A—O5A—C16A117.4 (3)C15B—O5B—C16B115.3 (2)
C2A—N1A—C5A114.5 (2)C2B—N1B—C5B113.9 (2)
C2A—N1A—H1A117 (2)C2B—N1B—H1B111.6 (15)
C5A—N1A—H1A115 (2)C5B—N1B—H1B106.7 (15)
N1A—C2A—C6A109.8 (2)N1B—C2B—C6B110.0 (2)
N1A—C2A—C3A113.5 (2)N1B—C2B—C3B114.1 (2)
C6A—C2A—C3A109.1 (2)C6B—C2B—C3B109.1 (2)
N1A—C2A—H2A108.1N1B—C2B—H2B107.8
C6A—C2A—H2A108.1C6B—C2B—H2B107.8
C3A—C2A—H2A108.1C3B—C2B—H2B107.8
C12A—C3A—C2A108.8 (2)C12B—C3B—C2B112.1 (2)
C12A—C3A—S1A110.37 (18)C12B—C3B—S1B110.50 (18)
C2A—C3A—S1A110.48 (17)C2B—C3B—S1B111.6 (2)
C12A—C3A—H3A109.1C12B—C3B—H3B107.5
C2A—C3A—H3A109.1C2B—C3B—H3B107.5
S1A—C3A—H3A109.1S1B—C3B—H3B107.5
C15A—C4A—C5A113.3 (2)C15B—C4B—C5B108.9 (2)
C15A—C4A—S1A110.23 (19)C15B—C4B—S1B110.20 (18)
C5A—C4A—S1A110.61 (19)C5B—C4B—S1B109.61 (17)
C15A—C4A—H4A107.5C15B—C4B—H4B109.4
C5A—C4A—H4A107.5C5B—C4B—H4B109.4
S1A—C4A—H4A107.5S1B—C4B—H4B109.4
N1A—C5A—C18A110.8 (2)N1B—C5B—C18B109.4 (2)
N1A—C5A—C4A114.1 (2)N1B—C5B—C4B113.9 (2)
C18A—C5A—C4A108.8 (2)C18B—C5B—C4B108.9 (2)
N1A—C5A—H5A107.7N1B—C5B—H5B108.1
C18A—C5A—H5A107.7C18B—C5B—H5B108.1
C4A—C5A—H5A107.7C4B—C5B—H5B108.1
N7A—C6A—C11A123.4 (3)N7B—C6B—C11B122.6 (3)
N7A—C6A—C2A115.9 (2)N7B—C6B—C2B115.6 (2)
C11A—C6A—C2A120.7 (3)C11B—C6B—C2B121.7 (2)
C11A—C10A—C9A118.2 (4)C6B—N7B—C8B117.4 (3)
C11A—C10A—H10A120.9N7B—C8B—C9B123.0 (4)
C9A—C10A—H10A120.9N7B—C8B—H8B118.5
C8A—C9A—C10A119.2 (4)C9B—C8B—H8B118.5
C8A—C9A—H9A120.4C8B—C9B—C10B118.9 (4)
C10A—C9A—H9A120.4C8B—C9B—H9B120.5
N7A—C8A—C9A123.4 (4)C10B—C9B—H9B120.5
N7A—C8A—H8A118.3C11B—C10B—C9B118.9 (3)
C9A—C8A—H8A118.3C11B—C10B—H10B120.6
C6A—N7A—C8A116.5 (3)C9B—C10B—H10B120.6
O2A—C12A—O1A125.5 (3)C10B—C11B—C6B119.2 (3)
O2A—C12A—C3A122.6 (2)C10B—C11B—H11B120.4
O1A—C12A—C3A111.8 (2)C6B—C11B—H11B120.4
O1A—C13A—C14A107.9 (3)O2B—C12B—O1B126.4 (3)
O1A—C13A—H13A110.1O2B—C12B—C3B123.9 (3)
C14A—C13A—H13A110.1O1B—C12B—C3B109.7 (2)
O1A—C13A—H13B110.1O1B—C13B—C14B107.0 (3)
C14A—C13A—H13B110.1O1B—C13B—H13C110.3
H13A—C13A—H13B108.4C14B—C13B—H13C110.3
C13A—C14A—H14A109.5O1B—C13B—H13D110.3
C13A—C14A—H14B109.5C14B—C13B—H13D110.3
H14A—C14A—H14B109.5H13C—C13B—H13D108.6
C13A—C14A—H14C109.5C13B—C14B—H14D109.5
H14A—C14A—H14C109.5C13B—C14B—H14E109.5
H14B—C14A—H14C109.5H14D—C14B—H14E109.5
O6A—C15A—O5A125.4 (3)C13B—C14B—H14F109.5
O6A—C15A—C4A125.0 (3)H14D—C14B—H14F109.5
O5A—C15A—C4A109.5 (3)H14E—C14B—H14F109.5
O5A—C16A—C17A107.4 (4)O6B—C15B—O5B125.0 (3)
O5A—C16A—H16A110.2O6B—C15B—C4B123.6 (2)
C17A—C16A—H16A110.2O5B—C15B—C4B111.3 (2)
O5A—C16A—H16B110.2O5B—C16B—C17B108.9 (3)
C17A—C16A—H16B110.2O5B—C16B—H16C109.9
H16A—C16A—H16B108.5C17B—C16B—H16C109.9
C16A—C17A—H17A109.5O5B—C16B—H16D109.9
C16A—C17A—H17B109.5C17B—C16B—H16D109.9
H17A—C17A—H17B109.5H16C—C16B—H16D108.3
C16A—C17A—H17C109.5C16B—C17B—H17D109.5
H17A—C17A—H17C109.5C16B—C17B—H17E109.5
H17B—C17A—H17C109.5H17D—C17B—H17E109.5
N23A—C18A—C19A122.3 (2)C16B—C17B—H17F109.5
N23A—C18A—C5A116.0 (2)H17D—C17B—H17F109.5
C19A—C18A—C5A121.7 (2)H17E—C17B—H17F109.5
C20A—C19A—C18A119.1 (3)N23B—C18B—C19B122.6 (3)
C20A—C19A—H19A120.4N23B—C18B—C5B116.4 (2)
C18A—C19A—H19A120.4C19B—C18B—C5B121.0 (3)
C19A—C20A—C21A119.7 (3)C18B—N23B—C22B117.1 (3)
C19A—C20A—H20A120.2N23B—C22B—C21B124.4 (4)
C21A—C20A—H20A120.2N23B—C22B—H22B117.8
C22A—C21A—C20A116.7 (4)C21B—C22B—H22B117.8
C22A—C21A—H21A121.6C22B—C21B—C20B117.8 (4)
C20A—C21A—H21A121.6C22B—C21B—H21B121.1
N23A—C22A—C21A125.0 (4)C20B—C21B—H21B121.1
N23A—C22A—H22A117.5C21B—C20B—C19B119.6 (3)
C21A—C22A—H22A117.5C21B—C20B—H20B120.2
C10A—C11A—C6A119.1 (4)C19B—C20B—H20B120.2
C10A—C11A—H11A120.4C18B—C19B—C20B118.5 (4)
C6A—C11A—H11A120.4C18B—C19B—H19B120.7
C18A—N23A—C22A117.2 (3)C20B—C19B—H19B120.7
C5A—N1A—C2A—C6A173.6 (2)C5B—N1B—C2B—C6B176.0 (2)
C5A—N1A—C2A—C3A63.9 (3)C5B—N1B—C2B—C3B61.0 (3)
N1A—C2A—C3A—C12A179.6 (2)N1B—C2B—C3B—C12B69.3 (3)
C6A—C2A—C3A—C12A56.7 (3)C6B—C2B—C3B—C12B54.2 (3)
N1A—C2A—C3A—S1A59.1 (3)N1B—C2B—C3B—S1B55.2 (3)
C6A—C2A—C3A—S1A178.03 (17)C6B—C2B—C3B—S1B178.71 (17)
O3A—S1A—C3A—C12A74.7 (2)O4B—S1B—C3B—C12B167.6 (2)
O4A—S1A—C3A—C12A56.1 (2)O3B—S1B—C3B—C12B37.5 (2)
C4A—S1A—C3A—C12A169.94 (18)C4B—S1B—C3B—C12B77.5 (2)
O3A—S1A—C3A—C2A164.99 (17)O4B—S1B—C3B—C2B67.0 (2)
O4A—S1A—C3A—C2A64.2 (2)O3B—S1B—C3B—C2B162.92 (17)
C4A—S1A—C3A—C2A49.63 (19)C4B—S1B—C3B—C2B47.94 (19)
O3A—S1A—C4A—C15A37.0 (2)O4B—S1B—C4B—C15B56.6 (2)
O4A—S1A—C4A—C15A166.8 (2)O3B—S1B—C4B—C15B74.7 (2)
C3A—S1A—C4A—C15A78.3 (2)C3B—S1B—C4B—C15B169.59 (18)
O3A—S1A—C4A—C5A163.07 (17)O4B—S1B—C4B—C5B63.2 (2)
O4A—S1A—C4A—C5A67.2 (2)O3B—S1B—C4B—C5B165.46 (16)
C3A—S1A—C4A—C5A47.8 (2)C3B—S1B—C4B—C5B49.78 (19)
C2A—N1A—C5A—C18A174.9 (2)C2B—N1B—C5B—C18B173.5 (2)
C2A—N1A—C5A—C4A62.0 (3)C2B—N1B—C5B—C4B64.3 (3)
C15A—C4A—C5A—N1A68.8 (3)C15B—C4B—C5B—N1B179.4 (2)
S1A—C4A—C5A—N1A55.5 (3)S1B—C4B—C5B—N1B60.0 (2)
C15A—C4A—C5A—C18A55.4 (3)C15B—C4B—C5B—C18B57.0 (3)
S1A—C4A—C5A—C18A179.67 (17)S1B—C4B—C5B—C18B177.62 (17)
N1A—C2A—C6A—N7A71.3 (3)N1B—C2B—C6B—N7B43.8 (3)
C3A—C2A—C6A—N7A53.7 (3)C3B—C2B—C6B—N7B82.1 (3)
N1A—C2A—C6A—C11A108.8 (3)N1B—C2B—C6B—C11B138.7 (3)
C3A—C2A—C6A—C11A126.3 (3)C3B—C2B—C6B—C11B95.4 (3)
C11A—C10A—C9A—C8A2.2 (7)C11B—C6B—N7B—C8B0.2 (5)
C10A—C9A—C8A—N7A1.7 (7)C2B—C6B—N7B—C8B177.2 (3)
C11A—C6A—N7A—C8A0.5 (5)C6B—N7B—C8B—C9B1.1 (5)
C2A—C6A—N7A—C8A179.5 (3)N7B—C8B—C9B—C10B1.3 (6)
C9A—C8A—N7A—C6A0.8 (5)C8B—C9B—C10B—C11B0.1 (5)
C13A—O1A—C12A—O2A10.4 (5)C9B—C10B—C11B—C6B1.1 (5)
C13A—O1A—C12A—C3A166.5 (3)N7B—C6B—C11B—C10B1.3 (4)
C2A—C3A—C12A—O2A48.3 (4)C2B—C6B—C11B—C10B176.0 (3)
S1A—C3A—C12A—O2A73.0 (3)C13B—O1B—C12B—O2B3.9 (5)
C2A—C3A—C12A—O1A128.7 (2)C13B—O1B—C12B—C3B174.9 (3)
S1A—C3A—C12A—O1A109.9 (2)C2B—C3B—C12B—O2B72.3 (4)
C12A—O1A—C13A—C14A88.6 (3)S1B—C3B—C12B—O2B52.8 (4)
C16A—O5A—C15A—O6A1.1 (5)C2B—C3B—C12B—O1B106.4 (3)
C16A—O5A—C15A—C4A179.2 (3)S1B—C3B—C12B—O1B128.4 (2)
C5A—C4A—C15A—O6A68.7 (4)C12B—O1B—C13B—C14B165.0 (4)
S1A—C4A—C15A—O6A55.8 (4)C16B—O5B—C15B—O6B10.6 (4)
C5A—C4A—C15A—O5A109.4 (3)C16B—O5B—C15B—C4B166.0 (3)
S1A—C4A—C15A—O5A126.1 (2)C5B—C4B—C15B—O6B46.4 (3)
C15A—O5A—C16A—C17A158.4 (4)S1B—C4B—C15B—O6B73.8 (3)
N1A—C5A—C18A—N23A41.2 (3)C5B—C4B—C15B—O5B130.3 (2)
C4A—C5A—C18A—N23A84.9 (3)S1B—C4B—C15B—O5B109.5 (2)
N1A—C5A—C18A—C19A140.5 (3)C15B—O5B—C16B—C17B86.6 (3)
C4A—C5A—C18A—C19A93.4 (3)N1B—C5B—C18B—N23B75.4 (3)
N23A—C18A—C19A—C20A0.4 (4)C4B—C5B—C18B—N23B49.7 (3)
C5A—C18A—C19A—C20A177.8 (3)N1B—C5B—C18B—C19B105.2 (4)
C18A—C19A—C20A—C21A1.1 (5)C4B—C5B—C18B—C19B129.7 (3)
C19A—C20A—C21A—C22A0.5 (6)C19B—C18B—N23B—C22B0.0 (5)
C20A—C21A—C22A—N23A0.8 (7)C5B—C18B—N23B—C22B179.3 (3)
C9A—C10A—C11A—C6A1.9 (6)C18B—N23B—C22B—C21B2.3 (6)
N7A—C6A—C11A—C10A1.1 (6)N23B—C22B—C21B—C20B3.0 (8)
C2A—C6A—C11A—C10A179.0 (3)C22B—C21B—C20B—C19B1.3 (7)
C19A—C18A—N23A—C22A0.9 (5)N23B—C18B—C19B—C20B1.5 (6)
C5A—C18A—N23A—C22A179.2 (3)C5B—C18B—C19B—C20B179.3 (3)
C21A—C22A—N23A—C18A1.5 (7)C21B—C20B—C19B—C18B0.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4B—H4B···O2B0.982.593.167 (3)118
C2A—H2A···O4Bi0.982.343.273 (3)158
C19A—H19A···O6Bi0.932.493.360 (4)155
C5B—H5B···O4Aii0.982.343.269 (3)157
C11B—H11B···O2Aii0.932.533.404 (4)156
C17B—H17E···O3Aiii0.962.523.402 (4)153
C14A—H14B···O3Biv0.962.523.402 (4)153
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1/2, y+3/2, z; (iv) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC20H23N3O6S
Mr433.47
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)20.7258 (13), 8.3921 (5), 24.4923 (15)
V3)4260.0 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.962, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
22898, 9897, 7453
Rint0.027
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.03
No. of reflections9897
No. of parameters553
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.17
Absolute structureFlack (1983), 4584 Friedel pairs
Absolute structure parameter0.14 (6)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4B—H4B···O2B0.982.593.167 (3)118
C2A—H2A···O4Bi0.982.343.273 (3)158
C19A—H19A···O6Bi0.932.493.360 (4)155
C5B—H5B···O4Aii0.982.343.269 (3)157
C11B—H11B···O2Aii0.932.533.404 (4)156
C17B—H17E···O3Aiii0.962.523.402 (4)153
C14A—H14B···O3Biv0.962.523.402 (4)153
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1/2, y+3/2, z; (iv) x1/2, y+1/2, z.
 

Acknowledgements

The authors thank the TBI consultancy, University of Madras, India, for the data collection

References

First citationBaliah, V. & Rangarajan, T. (1954). J. Chem. Soc. 5295, 3068–3070.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhaskar, R. D., Chandrasekhar, B. N. & Padmaja, A. (2000). Indian J. Chem. Sect. B, 39, 406–409.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKatritzky, A. R. (1985). Advances in Heterocyclic Chemistry, Vol. 38, p. 135. London: Academic Press.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRamana Reddy, M. V., Vijayalakshmi, S., Ramana Reddy, P. V. & Reddy, S. (1990). Indian J. Chem. Sect. B, 29, 168–170.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds