organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,9-Dioxa-1,3(1,2)-dibenzena-2(4,5)-1,3-oxazolidina­cyclononaphane

aDepartment of Physics, P. T. Lee Chengalvaraya Naicker College of Engineering & Technology, Kancheepuram 631 502, India, bPostGraduate & Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: seshadri_pr@yahoo.com

(Received 30 November 2010; accepted 14 December 2010; online 22 January 2011)

The oxazole ring in the title compound, C20H23NO3, adopts an envelope conformation while the 12-membered ring is in a chair conformation. The dihedral angle between the benzene rings is 37.8 (1)°. The crystal structure displays inter­molecular C—H⋯O hydrogen bonding.

Related literature

For general background to cyclo­phanes and 1,3-dipolar cyclo­addition reactions, see: Whelligan et al. (2006[Whelligan, D. K. & Bolm, C. (2006). J. Org. Chem. 71, 4609-4618.]); Poornachandran et al. (2008[Poornachandran, M. & Raghunathan, R. (2008). Tetrahedron, 64, 6461-6474.]). For the chemistry of azomethine ylides, see; Longeon et al. (1990[Longeon, A., Guyot, M. & Vacelet, J. (1990). Experentia, 46, 548-550.]). For descriptions of ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C20H23NO3

  • Mr = 325.39

  • Monoclinic, P 21 /c

  • a = 9.5193 (7) Å

  • b = 13.0996 (8) Å

  • c = 13.6000 (9) Å

  • β = 96.704 (3)°

  • V = 1684.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • 33618 measured reflections

  • 3864 independent reflections

  • 2937 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.146

  • S = 1.02

  • 3864 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1i 0.93 2.56 3.396 (2) 150
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Cyclophanes can act as a ligand in asymmetric catalysis (Whelligan et al., 2006) and can as host molecules for the incorporation of guest molecules or ions. 1,3-dipolar cycloaddition (1,3-DC) reactions are efficient methods for the construction of heterocyclic units in a highly regio- and stereoselective manner (Poornachandran et al., 2008). In particular the chemistry of azomethine ylides has gained importance in recent years as it serves as an expedient route for the construction of nitrogen heterocycles (Longeon et al., 1990).

In the crystal structure of the title compound the oxazole ring is twisted along N1 - C9 and adopts an envelope conformation with the atom C9 displaced by -0.360 (0) \%A from the plane of the other ring atoms N1/O1//C7/C8. The puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are q~2~ =0.388 (2) Å, ϕ = 130.5 (2)°, Δ~S~ (C9) = 0.073 (1)° and Δ~2~ (C9) = 0.223 (1)°. In addition to van der Waals interactions the crystal structure is stabilized by C—H···O, hydrogen bonds.

Related literature top

For general background to cyclophanes and 1,3-dipolar cycloaddition reactions, see: Whelligan et al. (2006); Poornachandran et al. (2008). For the chemistry of azomethine ylides, see; Longeon et al. (1990). For descriptions of ring conformations, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

A solution of O,O' coupled salicylaldehyde (bis aldehyde) using 1,4-dibromobutane (2 mmol) and sarcosine 2 (1 eq.) was refluxed in dry acetonitrile (20 ml) for about 6hrs under N2 atm. After the completion of reaction as indicated by TLC, acetonitrile was evaporated under reduced pressure.The crude product was purified by column chromatography using hexane: EtOAc (8:2) as eluent.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uĩso~(H) = 1.5U~eq~(C) for methylH atoms and 1.2U~eq~(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids.
5-methyl-3,13,18-trioxa-5-azatetracyclo[17.4.0.02,6.07,12]tricosa- 1(19),7,9,11,20,22-hexaene top
Crystal data top
C20H23NO3F(000) = 696
Mr = 325.39Dx = 1.283 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.5193 (7) ÅCell parameters from 5405 reflections
b = 13.0996 (8) Åθ = 2.2–27.5°
c = 13.6000 (9) ŵ = 0.09 mm1
β = 96.704 (3)°T = 293 K
V = 1684.3 (2) Å3Block, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
2937 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
ω scansh = 1212
33618 measured reflectionsk = 1711
3864 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0761P)2 + 0.5036P]
where P = (Fo2 + 2Fc2)/3
3864 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C20H23NO3V = 1684.3 (2) Å3
Mr = 325.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5193 (7) ŵ = 0.09 mm1
b = 13.0996 (8) ÅT = 293 K
c = 13.6000 (9) Å0.30 × 0.20 × 0.20 mm
β = 96.704 (3)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
2937 reflections with I > 2σ(I)
33618 measured reflectionsRint = 0.053
3864 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
3864 reflectionsΔρmin = 0.19 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.03220 (16)0.21959 (11)0.36089 (11)0.0333 (3)
C21.17864 (17)0.22294 (13)0.37457 (13)0.0425 (4)
H21.23080.17560.34310.051*
C31.24706 (18)0.29660 (15)0.43489 (15)0.0501 (4)
H31.34540.29890.44360.060*
C41.17130 (19)0.36634 (14)0.48207 (14)0.0507 (5)
H41.21770.41610.52240.061*
C51.02488 (18)0.36210 (13)0.46926 (13)0.0420 (4)
H50.97360.40910.50190.050*
C60.95331 (15)0.28944 (11)0.40890 (11)0.0324 (3)
C70.79349 (16)0.28849 (11)0.39086 (12)0.0347 (3)
H70.76470.29100.31930.042*
C80.72211 (15)0.19497 (11)0.43422 (11)0.0328 (3)
H80.79100.15970.48170.039*
C90.6768 (2)0.33945 (15)0.51895 (15)0.0530 (5)
H9A0.60590.38650.53770.064*
H9B0.74890.33020.57480.064*
C100.5729 (2)0.18140 (19)0.56714 (16)0.0649 (6)
H10A0.65460.16670.61330.097*
H10B0.53240.11870.54060.097*
H10C0.50450.21750.60040.097*
C110.65494 (15)0.11940 (12)0.35916 (11)0.0353 (3)
C120.53468 (18)0.14587 (15)0.29742 (13)0.0479 (4)
H120.49660.21090.30180.058*
C130.46994 (19)0.0771 (2)0.22916 (15)0.0600 (6)
H130.38900.09580.18810.072*
C140.5258 (2)0.01856 (18)0.22248 (15)0.0601 (6)
H140.48220.06490.17680.072*
C150.6455 (2)0.04689 (15)0.28250 (14)0.0511 (5)
H150.68300.11200.27720.061*
C160.71063 (17)0.02175 (12)0.35126 (12)0.0381 (4)
C170.9048 (2)0.09245 (13)0.40456 (14)0.0490 (4)
H17A0.83880.14910.40150.059*
H17B0.97190.10160.46330.059*
C180.9838 (2)0.09675 (14)0.31489 (14)0.0507 (5)
H18A0.91510.09830.25640.061*
H18B1.03600.16050.31680.061*
C191.0867 (2)0.01005 (13)0.30337 (14)0.0503 (4)
H19A1.12480.01310.36880.060*
H19B1.16500.03670.27140.060*
C201.0258 (2)0.08130 (14)0.24472 (13)0.0482 (4)
H20A1.10220.11620.21720.058*
H20B0.96040.05690.18970.058*
N10.61418 (14)0.24377 (11)0.48733 (10)0.0425 (3)
O10.73653 (13)0.37542 (9)0.43567 (10)0.0488 (3)
O20.82817 (12)0.00023 (8)0.41494 (8)0.0418 (3)
O30.95377 (12)0.15360 (8)0.29970 (9)0.0398 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0358 (8)0.0314 (7)0.0331 (7)0.0014 (6)0.0058 (6)0.0058 (6)
C20.0354 (8)0.0427 (9)0.0509 (10)0.0030 (7)0.0114 (7)0.0064 (7)
C30.0323 (8)0.0550 (11)0.0620 (11)0.0054 (7)0.0012 (8)0.0121 (9)
C40.0467 (10)0.0496 (10)0.0527 (11)0.0123 (8)0.0067 (8)0.0007 (8)
C50.0433 (9)0.0390 (9)0.0431 (9)0.0012 (7)0.0021 (7)0.0025 (7)
C60.0322 (7)0.0319 (7)0.0333 (7)0.0001 (6)0.0042 (6)0.0055 (6)
C70.0344 (8)0.0326 (7)0.0367 (8)0.0047 (6)0.0026 (6)0.0009 (6)
C80.0291 (7)0.0375 (8)0.0318 (7)0.0037 (6)0.0042 (6)0.0007 (6)
C90.0487 (10)0.0550 (11)0.0568 (11)0.0091 (8)0.0124 (8)0.0136 (9)
C100.0673 (13)0.0814 (15)0.0513 (12)0.0039 (11)0.0287 (10)0.0040 (10)
C110.0303 (7)0.0439 (8)0.0325 (8)0.0055 (6)0.0071 (6)0.0007 (6)
C120.0339 (8)0.0651 (12)0.0442 (9)0.0007 (8)0.0023 (7)0.0005 (8)
C130.0363 (9)0.0961 (17)0.0455 (10)0.0113 (10)0.0039 (8)0.0031 (10)
C140.0527 (11)0.0779 (15)0.0492 (11)0.0288 (10)0.0047 (9)0.0154 (10)
C150.0552 (11)0.0491 (10)0.0496 (10)0.0175 (8)0.0088 (8)0.0093 (8)
C160.0405 (8)0.0405 (8)0.0340 (8)0.0097 (6)0.0078 (6)0.0005 (6)
C170.0680 (12)0.0342 (9)0.0441 (9)0.0083 (8)0.0040 (8)0.0021 (7)
C180.0648 (12)0.0383 (9)0.0485 (10)0.0084 (8)0.0043 (9)0.0104 (7)
C190.0559 (11)0.0435 (10)0.0518 (10)0.0095 (8)0.0071 (8)0.0102 (8)
C200.0598 (11)0.0477 (10)0.0387 (9)0.0055 (8)0.0124 (8)0.0061 (7)
N10.0366 (7)0.0511 (8)0.0415 (8)0.0051 (6)0.0124 (6)0.0044 (6)
O10.0459 (7)0.0345 (6)0.0667 (8)0.0107 (5)0.0093 (6)0.0020 (5)
O20.0524 (7)0.0364 (6)0.0357 (6)0.0058 (5)0.0010 (5)0.0028 (5)
O30.0401 (6)0.0356 (6)0.0442 (6)0.0002 (4)0.0069 (5)0.0042 (5)
Geometric parameters (Å, º) top
C1—O31.3610 (19)C10—H10C0.9600
C1—C21.385 (2)C11—C121.382 (2)
C1—C61.394 (2)C11—C161.394 (2)
C2—C31.380 (3)C12—C131.385 (3)
C2—H20.9300C12—H120.9300
C3—C41.369 (3)C13—C141.368 (3)
C3—H30.9300C13—H130.9300
C4—C51.385 (2)C14—C151.373 (3)
C4—H40.9300C14—H140.9300
C5—C61.383 (2)C15—C161.390 (2)
C5—H50.9300C15—H150.9300
C6—C71.513 (2)C16—O21.362 (2)
C7—O11.4281 (18)C17—O21.432 (2)
C7—C81.550 (2)C17—C181.507 (3)
C7—H70.9800C17—H17A0.9700
C8—N11.4694 (19)C17—H17B0.9700
C8—C111.509 (2)C18—C191.520 (3)
C8—H80.9800C18—H18A0.9700
C9—O11.406 (2)C18—H18B0.9700
C9—N11.432 (2)C19—C201.515 (3)
C9—H9A0.9700C19—H19A0.9700
C9—H9B0.9700C19—H19B0.9700
C10—N11.449 (2)C20—O31.430 (2)
C10—H10A0.9600C20—H20A0.9700
C10—H10B0.9600C20—H20B0.9700
O3—C1—C2125.02 (14)C11—C12—C13121.06 (19)
O3—C1—C6114.61 (13)C11—C12—H12119.5
C2—C1—C6120.33 (14)C13—C12—H12119.5
C3—C2—C1119.99 (16)C14—C13—C12119.61 (18)
C3—C2—H2120.0C14—C13—H13120.2
C1—C2—H2120.0C12—C13—H13120.2
C4—C3—C2120.49 (16)C13—C14—C15120.65 (18)
C4—C3—H3119.8C13—C14—H14119.7
C2—C3—H3119.8C15—C14—H14119.7
C3—C4—C5119.45 (16)C14—C15—C16119.94 (19)
C3—C4—H4120.3C14—C15—H15120.0
C5—C4—H4120.3C16—C15—H15120.0
C6—C5—C4121.39 (16)O2—C16—C15124.24 (16)
C6—C5—H5119.3O2—C16—C11115.64 (13)
C4—C5—H5119.3C15—C16—C11120.12 (16)
C5—C6—C1118.35 (14)O2—C17—C18114.82 (14)
C5—C6—C7121.23 (14)O2—C17—H17A108.6
C1—C6—C7120.36 (13)C18—C17—H17A108.6
O1—C7—C6110.43 (12)O2—C17—H17B108.6
O1—C7—C8105.22 (12)C18—C17—H17B108.6
C6—C7—C8114.96 (12)H17A—C17—H17B107.5
O1—C7—H7108.7C17—C18—C19116.37 (15)
C6—C7—H7108.7C17—C18—H18A108.2
C8—C7—H7108.7C19—C18—H18A108.2
N1—C8—C11110.64 (12)C17—C18—H18B108.2
N1—C8—C7101.88 (12)C19—C18—H18B108.2
C11—C8—C7115.52 (12)H18A—C18—H18B107.3
N1—C8—H8109.5C20—C19—C18115.66 (16)
C11—C8—H8109.5C20—C19—H19A108.4
C7—C8—H8109.5C18—C19—H19A108.4
O1—C9—N1104.16 (14)C20—C19—H19B108.4
O1—C9—H9A110.9C18—C19—H19B108.4
N1—C9—H9A110.9H19A—C19—H19B107.4
O1—C9—H9B110.9O3—C20—C19115.15 (14)
N1—C9—H9B110.9O3—C20—H20A108.5
H9A—C9—H9B108.9C19—C20—H20A108.5
N1—C10—H10A109.5O3—C20—H20B108.5
N1—C10—H10B109.5C19—C20—H20B108.5
H10A—C10—H10B109.5H20A—C20—H20B107.5
N1—C10—H10C109.5C9—N1—C10114.09 (16)
H10A—C10—H10C109.5C9—N1—C8103.75 (13)
H10B—C10—H10C109.5C10—N1—C8112.89 (15)
C12—C11—C16118.61 (15)C9—O1—C7106.60 (12)
C12—C11—C8120.11 (15)C16—O2—C17120.20 (13)
C16—C11—C8121.28 (14)C1—O3—C20118.54 (13)
O3—C1—C2—C3176.77 (15)C12—C13—C14—C150.2 (3)
C6—C1—C2—C30.9 (2)C13—C14—C15—C160.4 (3)
C1—C2—C3—C40.4 (3)C14—C15—C16—O2178.93 (16)
C2—C3—C4—C50.4 (3)C14—C15—C16—C110.2 (3)
C3—C4—C5—C60.7 (3)C12—C11—C16—O2179.29 (14)
C4—C5—C6—C10.2 (2)C8—C11—C16—O20.2 (2)
C4—C5—C6—C7176.75 (15)C12—C11—C16—C150.1 (2)
O3—C1—C6—C5177.30 (13)C8—C11—C16—C15179.04 (15)
C2—C1—C6—C50.6 (2)O2—C17—C18—C1954.9 (2)
O3—C1—C6—C70.3 (2)C17—C18—C19—C2090.5 (2)
C2—C1—C6—C7177.57 (14)C18—C19—C20—O383.15 (19)
C5—C6—C7—O15.6 (2)O1—C9—N1—C10167.06 (15)
C1—C6—C7—O1171.33 (13)O1—C9—N1—C843.82 (17)
C5—C6—C7—C8113.29 (16)C11—C8—N1—C9154.70 (14)
C1—C6—C7—C869.83 (18)C7—C8—N1—C931.35 (16)
O1—C7—C8—N18.90 (15)C11—C8—N1—C1081.28 (18)
C6—C7—C8—N1130.61 (13)C7—C8—N1—C10155.38 (15)
O1—C7—C8—C11128.87 (13)N1—C9—O1—C738.20 (17)
C6—C7—C8—C11109.42 (15)C6—C7—O1—C9107.21 (15)
N1—C8—C11—C1245.81 (19)C8—C7—O1—C917.41 (16)
C7—C8—C11—C1269.25 (18)C15—C16—O2—C179.1 (2)
N1—C8—C11—C16133.28 (15)C11—C16—O2—C17171.70 (14)
C7—C8—C11—C16111.66 (15)C18—C17—O2—C1670.1 (2)
C16—C11—C12—C130.2 (2)C2—C1—O3—C200.2 (2)
C8—C11—C12—C13178.90 (16)C6—C1—O3—C20177.96 (13)
C11—C12—C13—C140.1 (3)C19—C20—O3—C177.49 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.372.735 (2)103
C8—H8···O20.982.322.767 (2)107
C14—H14···O1i0.932.563.396 (2)150
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H23NO3
Mr325.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.5193 (7), 13.0996 (8), 13.6000 (9)
β (°) 96.704 (3)
V3)1684.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
33618, 3864, 2937
Rint0.053
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.146, 1.02
No. of reflections3864
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.372.735 (2)103
C8—H8···O20.982.322.767 (2)107
C14—H14···O1i0.932.563.396 (2)150
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

BB thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLongeon, A., Guyot, M. & Vacelet, J. (1990). Experentia, 46, 548–550.  CrossRef CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPoornachandran, M. & Raghunathan, R. (2008). Tetrahedron, 64, 6461–6474.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhelligan, D. K. & Bolm, C. (2006). J. Org. Chem. 71, 4609–4618.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds