metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m193-m194

Benzene-1,3-di­ammonium bis­­(pyridine-2,6-di­carboxyl­ato)nickelate(II) penta­hydrate

aDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: s.sadatkashani@gmail.com

(Received 5 December 2010; accepted 26 December 2010; online 15 January 2011)

In the title compound, (C6H10N2)[Ni(C7H3NO4)2]·5H2O, the NiII ion is six-coordinated by two N and four O atoms from two pyridine-2,6-dicarboxyl­ate ligands in a distorted octa­hedral fashion. The crystal packing is stabilized by inter­molecular O—H⋯O and N—H⋯O and weak C—H⋯O hydrogen bonds and ππ inter­actions [centroid–centroid distances = 3.4669 (19) and 3.764 (2) Å].

Related literature

For background to proton-transfer compounds, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]). For related structures, see: Aghabozorg et al. (2009[Aghabozorg, H., Sadr-khanlou, E., Shokrollahi, A., Ghaedi, M. & Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 55-70.]); Beatty et al. (2002[Beatty, A. M., Granger, K. E. & Simpson, A. E. (2002). Chem. Eur. J. 8, 3254-3259.]); Dobrzycki & Woźniak (2008[Dobrzycki, L. & Woźniak, K. (2008). CrystEngComm, 10, 577-589.]); Attar Gharamaleki et al. (2009[Attar Gharamaleki, J., Aghabozorg, H., Derikvand, Z. & Yousefi, M. (2009). Acta Cryst. E65, m824-m825.]); Imaz et al. (2007[Imaz, I., Thillet, A. & Sutter, J. P. (2007). Cryst. Growth Des. 7, 1753-1761.]); MacDon­ald et al. (2000[MacDonald, J. C., Dorrestein, P., Pilley, M. M., Foote, M. M., Lundburg, J. L., Henning, R. W., Schultz, A. J. & Manson, J. L. (2000). J. Am. Chem. Soc. 122, 11692-11702.], 2004[MacDonald, J. C., Luo, T.-J. M. & Palmore, G. T. R. (2004). Cryst. Growth Des. 4, 1203-1209.]); Sharif et al. (2007[Sharif, M. A., Aghajani, Z. & Aghabozorg, H. (2007). Anal. Sci. 23, x147-x148.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H10N2)[Ni(C7H3NO4)2]·5H2O

  • Mr = 589.14

  • Monoclinic, P 21 /n

  • a = 7.5331 (15) Å

  • b = 18.085 (4) Å

  • c = 18.578 (4) Å

  • β = 100.90 (3)°

  • V = 2485.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 298 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-RED and X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.855, Tmax = 0.920

  • 18439 measured reflections

  • 6687 independent reflections

  • 3608 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.086

  • S = 0.92

  • 6687 reflections

  • 407 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O2i 0.93 2.48 3.118 (4) 126
C3—H3⋯O7ii 0.93 2.56 3.284 (4) 135
O13—H13B⋯O9iii 0.82 (5) 2.14 (5) 2.945 (6) 166 (5)
O13—H13A⋯O6iv 0.76 (4) 2.05 (4) 2.776 (5) 158 (6)
O12—H12B⋯O13v 0.79 (4) 2.02 (4) 2.808 (5) 176 (8)
O12—H12A⋯O3vi 0.89 (6) 1.95 (6) 2.838 (4) 174 (5)
O11—H11B⋯O9 0.75 (3) 2.08 (3) 2.829 (4) 173 (5)
O11—H11A⋯O7 0.79 (4) 2.03 (4) 2.798 (4) 163 (4)
O10—H10B⋯O2 0.97 (5) 1.80 (5) 2.750 (4) 168 (5)
O10—H10A⋯O12vii 0.79 (3) 2.20 (5) 2.880 (5) 146 (6)
O9—H9B⋯O4ii 0.85 (5) 2.07 (5) 2.918 (4) 172 (5)
O9—H9A⋯O10 0.86 (5) 1.91 (5) 2.772 (5) 176 (4)
N4—H4C⋯O6viii 0.97 (4) 1.78 (4) 2.730 (4) 167 (3)
N4—H4B⋯O4vi 0.82 (3) 2.05 (4) 2.854 (4) 168 (3)
N4—H4A⋯O11 0.91 (4) 1.94 (4) 2.842 (4) 173 (3)
N3—H3C⋯O1 0.91 (5) 1.82 (5) 2.702 (4) 164 (4)
N3—H3B⋯O8vii 0.93 (5) 1.85 (5) 2.773 (4) 173 (4)
N3—H3A⋯O12vii 0.91 (4) 2.07 (4) 2.899 (5) 152 (4)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+2; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+2, -y+2, -z+1; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) x+1, y, z; (viii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyridine-2,6-dicarboxylic acid (pydcH2) was commonly used as an acid in proton transfer systems (Aghabozorg et al. 2008). It has been reported that several proton transfer systems containing the anionic [Ni(pydc)2]2- moiety and different cationic parts (Aghabozorg et al. 2009; Attar Gharamaleki et al. 2009; MacDonald et al. 2000; MacDonald et al. 2004; Sharif et al. 2007). In addition, the formation of mono (Beatty et al. 2002) and diprotonated benzene-1,3-diamine (Dobrzycki & Woźniak 2008; Imaz et al. 2007) have been observed previously.

In the title compound, (bdaH2)[Ni(pydc)2].5H2O, the anionic part is comprised of a NiII ion which is six-coordinated by two pyridyl nitrogen and four oxygen atoms from pydc ligands. The Ni(II) ion has a distorted octahedral geometry. (Fig. 1). Bond lengths for Ni—O and Ni—N and angles (Table 1) are in normal ranges (Aghabozorg et al. 2009; Attar Gharamaleki et al. 2009; Sharif et al. 2007). Crystal packing is stabilized by intermolecular O—H···O, N—H···O and weak C—H···O intermolecular hydrogen bonds which formed between [Ni(pydc)2]2-, (bdaH2)2+ and water molecules (Fig. 2 & Table 2). There are also π-π interactions between pyridine rings of pydc and between benzene ring of (bdaH2)2+ and pyridine ring of pydc molecule by distances Cg5···Cg5ix and Cg6···Cg7 of 3.4669 (19) and 3.764 (2) Å, respectively. [Cg5, Cg6 and Cg7 are centroids of N1/C1—C6, N2/C8—C12 and C15—C20 rings, respectively. Symmetry code: (ix) 1 - x,2 - y,2 - z]. Intermolecular π-π interactions are shown in Fig. 3.

Related literature top

For background to proton-transfer compounds, see: Aghabozorg et al. (2008). For related structures, see: Aghabozorg et al. (2009); Beatty et al. (2002); Dobrzycki & Woźniak (2008); Attar Gharamaleki et al. (2009); Imaz et al. (2007); MacDonald et al. (2000, 2004); Sharif et al. (2007).

Experimental top

A solution of pyridine-2,6-dicarboxylic acid (pydcH2) (162 mg, 0.9 mmol) in 15 ml water was added to a solution of benzene-1,3-diamine (bda) (108 mg, 0.6 mmol) in 12 ml water and stirred for half an hour. Then a solution of NiCl2.6H2O (7 mg, 0.7 mmol) in 5 ml water was added to the solution of pydcH2 and bda. The resulted solution was stirred for 2 hrs and green crystals of the title compound were obtained after one week which were suitable for X-ray analysis (m.p 200°C).

Refinement top

The hydrogen atoms of the water molecules and of the diammonium groups were found in a difference Fourier map and refined isotropically. The O—H bonds to H10A, H11B, H12B and H13A were refined with a distance restraint of 0.82 (4) Å. The C—H protons were positioned geometrically and refined as riding atoms with C–H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a-axis. The intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds are shown as blue dashed lines.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed down the a-axis showing intermolecular π-π interactions (dashed lines). Hydrogen atoms and water molecules have been omitted for clarity.
Benzene-1,3-diammonium bis(pyridine-2,6-dicarboxylato)nickelate(II) pentahydrate top
Crystal data top
(C6H10N2)[Ni(C7H3NO4)2]·5H2OF(000) = 1224.0
Mr = 589.14Dx = 1.574 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6687 reflections
a = 7.5331 (15) Åθ = 2.2–29.2°
b = 18.085 (4) ŵ = 0.86 mm1
c = 18.578 (4) ÅT = 298 K
β = 100.90 (3)°Needle, green
V = 2485.3 (9) Å30.2 × 0.15 × 0.1 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
6687 independent reflections
Radiation source: fine-focus sealed tube3608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 2.2°
rotation method scansh = 109
Absorption correction: numerical
[shape of crystal determined optically (X-RED and X-SHAPE (Stoe & Cie, 2005)]
k = 2424
Tmin = 0.855, Tmax = 0.920l = 2525
18439 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0238P)2]
where P = (Fo2 + 2Fc2)/3
6687 reflections(Δ/σ)max = 0.001
407 parametersΔρmax = 0.39 e Å3
4 restraintsΔρmin = 0.36 e Å3
Crystal data top
(C6H10N2)[Ni(C7H3NO4)2]·5H2OV = 2485.3 (9) Å3
Mr = 589.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5331 (15) ŵ = 0.86 mm1
b = 18.085 (4) ÅT = 298 K
c = 18.578 (4) Å0.2 × 0.15 × 0.1 mm
β = 100.90 (3)°
Data collection top
Stoe IPDS II
diffractometer
6687 independent reflections
Absorption correction: numerical
[shape of crystal determined optically (X-RED and X-SHAPE (Stoe & Cie, 2005)]
3608 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.920Rint = 0.090
18439 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0544 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.39 e Å3
6687 reflectionsΔρmin = 0.36 e Å3
407 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O120.0352 (4)0.65115 (16)0.82305 (17)0.0522 (8)
Ni10.64385 (6)0.98344 (2)0.81233 (2)0.02316 (10)
N10.6858 (3)1.00256 (12)0.91843 (12)0.0203 (5)
N20.6146 (3)0.96578 (13)0.70636 (12)0.0225 (6)
O70.4041 (3)0.91734 (12)0.79023 (11)0.0312 (5)
O30.4988 (3)1.08346 (11)0.81671 (11)0.0305 (5)
O50.8722 (3)1.03845 (12)0.78742 (11)0.0368 (6)
C110.7284 (5)0.97699 (19)0.59762 (16)0.0354 (8)
H110.81660.99440.57300.042*
C120.7401 (4)0.99113 (17)0.67087 (15)0.0262 (7)
O10.8002 (3)0.89096 (11)0.85564 (11)0.0315 (5)
C10.7845 (4)0.95527 (15)0.96399 (15)0.0200 (6)
C50.6176 (4)1.06446 (15)0.94246 (15)0.0227 (7)
N30.9677 (4)0.80203 (19)0.77250 (17)0.0290 (6)
C30.7580 (4)1.03320 (17)1.06483 (16)0.0277 (7)
H30.78271.04371.11470.033*
C40.6531 (4)1.08166 (17)1.01596 (16)0.0275 (7)
H40.60781.12491.03280.033*
C20.8252 (4)0.96944 (16)1.03883 (15)0.0272 (7)
H20.89600.93681.07070.033*
C80.4727 (4)0.92723 (16)0.67186 (16)0.0255 (7)
C150.8119 (4)0.77521 (16)0.71966 (16)0.0241 (7)
C70.5013 (4)1.10803 (16)0.88110 (17)0.0256 (7)
C200.6666 (4)0.74641 (17)0.74619 (17)0.0261 (7)
H200.66650.74540.79620.031*
C160.8142 (4)0.77784 (17)0.64577 (17)0.0289 (7)
H160.91190.79820.62870.035*
O40.4185 (3)1.16332 (11)0.89702 (12)0.0322 (5)
O20.9292 (4)0.83930 (13)0.96180 (12)0.0431 (6)
O80.2157 (3)0.86339 (14)0.69685 (13)0.0467 (7)
O61.0038 (3)1.06724 (13)0.69308 (13)0.0468 (7)
C190.5220 (4)0.71920 (16)0.69634 (16)0.0238 (7)
N40.3701 (4)0.68770 (17)0.72430 (17)0.0275 (6)
C180.5215 (4)0.72028 (17)0.62201 (17)0.0303 (8)
H180.42350.70150.58900.036*
C60.8438 (4)0.88880 (17)0.92559 (16)0.0266 (7)
C140.8847 (4)1.03584 (17)0.72077 (17)0.0311 (8)
C170.6668 (5)0.74933 (19)0.59727 (17)0.0369 (8)
H170.66690.75000.54720.044*
C90.4516 (5)0.91218 (18)0.59783 (17)0.0334 (8)
H90.35130.88630.57340.040*
C100.5841 (5)0.93673 (19)0.56106 (18)0.0394 (9)
H100.57560.92600.51160.047*
C130.3517 (4)0.90100 (17)0.72284 (16)0.0271 (7)
O110.3389 (4)0.77842 (17)0.84618 (15)0.0402 (7)
O90.5261 (5)0.72860 (19)0.98420 (18)0.0583 (9)
O100.8429 (5)0.6926 (2)0.93695 (19)0.0649 (9)
O130.8277 (5)0.9051 (2)0.4247 (2)0.0646 (9)
H11A0.360 (6)0.820 (2)0.839 (2)0.057 (15)*
H11B0.381 (6)0.765 (2)0.8838 (19)0.062 (15)*
H12B0.114 (8)0.633 (4)0.852 (3)0.15 (3)*
H13A0.879 (7)0.923 (3)0.398 (3)0.11 (3)*
H12A0.025 (7)0.627 (3)0.781 (3)0.103 (19)*
H9B0.552 (7)0.761 (3)1.018 (3)0.09 (2)*
H9A0.628 (7)0.718 (2)0.972 (2)0.067 (17)*
H10A0.857 (8)0.670 (3)0.902 (2)0.10 (2)*
H13B0.894 (7)0.873 (3)0.446 (3)0.08 (2)*
H10B0.882 (7)0.744 (3)0.940 (3)0.095 (18)*
H3A1.023 (6)0.763 (2)0.797 (2)0.063 (14)*
H3B1.051 (6)0.826 (2)0.750 (2)0.056 (13)*
H3C0.932 (6)0.834 (2)0.805 (2)0.061 (13)*
H4C0.398 (5)0.641 (2)0.750 (2)0.054 (12)*
H4A0.351 (5)0.716 (2)0.763 (2)0.045 (11)*
H4B0.279 (5)0.6851 (18)0.6925 (19)0.034 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O120.064 (2)0.0460 (17)0.0440 (17)0.0030 (15)0.0021 (16)0.0136 (14)
Ni10.0261 (2)0.02501 (18)0.01821 (16)0.0019 (2)0.00388 (14)0.00170 (18)
N10.0188 (12)0.0206 (14)0.0222 (12)0.0019 (9)0.0056 (10)0.0015 (9)
N20.0244 (13)0.0238 (14)0.0202 (12)0.0022 (10)0.0065 (10)0.0012 (10)
O70.0347 (13)0.0370 (13)0.0238 (11)0.0078 (10)0.0100 (10)0.0045 (9)
O30.0346 (13)0.0301 (12)0.0247 (11)0.0043 (10)0.0004 (10)0.0004 (9)
O50.0391 (14)0.0434 (14)0.0279 (11)0.0156 (11)0.0059 (10)0.0076 (10)
C110.047 (2)0.0370 (18)0.0253 (15)0.0073 (18)0.0145 (14)0.0003 (15)
C120.0315 (16)0.0238 (16)0.0247 (14)0.0044 (14)0.0087 (12)0.0014 (13)
O10.0398 (14)0.0310 (12)0.0236 (11)0.0110 (10)0.0055 (10)0.0036 (9)
C10.0137 (14)0.0242 (15)0.0232 (14)0.0027 (12)0.0065 (12)0.0009 (12)
C50.0205 (15)0.0215 (15)0.0259 (15)0.0013 (12)0.0037 (13)0.0000 (12)
N30.0201 (15)0.0389 (18)0.0281 (15)0.0029 (14)0.0049 (13)0.0087 (14)
C30.0271 (16)0.0371 (19)0.0194 (14)0.0066 (14)0.0055 (13)0.0057 (12)
C40.0247 (16)0.0303 (17)0.0298 (16)0.0002 (13)0.0108 (13)0.0110 (13)
C20.0287 (16)0.0288 (18)0.0222 (14)0.0009 (13)0.0003 (13)0.0027 (12)
C80.0308 (18)0.0221 (15)0.0228 (15)0.0016 (13)0.0033 (13)0.0001 (12)
C150.0191 (15)0.0245 (16)0.0275 (16)0.0021 (13)0.0013 (13)0.0072 (13)
C70.0231 (16)0.0222 (16)0.0300 (17)0.0034 (13)0.0012 (13)0.0005 (13)
C200.0230 (16)0.0331 (17)0.0223 (15)0.0011 (14)0.0045 (13)0.0028 (13)
C160.0272 (17)0.0323 (18)0.0291 (17)0.0044 (14)0.0102 (14)0.0026 (14)
O40.0273 (12)0.0288 (12)0.0397 (13)0.0071 (10)0.0046 (10)0.0025 (10)
O20.0580 (17)0.0336 (13)0.0354 (13)0.0184 (12)0.0028 (12)0.0041 (10)
O80.0359 (15)0.0651 (17)0.0383 (14)0.0234 (13)0.0050 (12)0.0055 (12)
O60.0472 (16)0.0525 (16)0.0451 (15)0.0244 (13)0.0199 (12)0.0063 (12)
C190.0195 (15)0.0224 (15)0.0298 (16)0.0021 (12)0.0055 (13)0.0021 (13)
N40.0202 (15)0.0293 (16)0.0323 (16)0.0033 (12)0.0029 (13)0.0012 (13)
C180.0294 (18)0.0313 (18)0.0282 (16)0.0047 (14)0.0001 (14)0.0062 (13)
C60.0266 (17)0.0269 (17)0.0266 (16)0.0008 (14)0.0056 (14)0.0010 (13)
C140.0299 (18)0.0325 (19)0.0337 (17)0.0066 (14)0.0132 (14)0.0037 (14)
C170.042 (2)0.047 (2)0.0215 (16)0.0046 (17)0.0054 (16)0.0021 (15)
C90.036 (2)0.0371 (19)0.0248 (16)0.0068 (15)0.0012 (15)0.0032 (14)
C100.054 (2)0.044 (2)0.0226 (17)0.0075 (18)0.0128 (16)0.0024 (15)
C130.0239 (17)0.0287 (17)0.0299 (17)0.0004 (14)0.0082 (14)0.0003 (13)
O110.0474 (17)0.0362 (16)0.0357 (16)0.0017 (13)0.0051 (13)0.0008 (13)
O90.059 (2)0.068 (2)0.0464 (19)0.0053 (18)0.0066 (17)0.0100 (16)
O100.077 (2)0.058 (2)0.063 (2)0.0039 (18)0.0247 (18)0.0084 (18)
O130.060 (2)0.082 (3)0.059 (2)0.001 (2)0.0275 (19)0.0045 (19)
Geometric parameters (Å, º) top
O12—H12B0.79 (4)C2—H20.9300
O12—H12A0.89 (6)C8—C91.381 (4)
Ni1—N21.965 (2)C8—C131.510 (5)
Ni1—N11.967 (2)C15—C161.377 (4)
Ni1—O52.113 (2)C15—C201.384 (4)
Ni1—O12.115 (2)C7—O41.244 (4)
Ni1—O32.123 (2)C20—C191.380 (4)
Ni1—O72.140 (2)C20—H200.9300
N1—C11.328 (3)C16—C171.390 (4)
N1—C51.343 (4)C16—H160.9300
N2—C121.332 (4)O2—C61.226 (3)
N2—C81.334 (4)O8—C131.248 (4)
O7—C131.274 (3)O6—C141.251 (4)
O3—C71.273 (4)C19—C181.381 (4)
O5—C141.260 (4)C19—N41.459 (4)
C11—C121.371 (4)N4—H4C0.97 (4)
C11—C101.376 (5)N4—H4A0.91 (4)
C11—H110.9300N4—H4B0.82 (3)
C12—C141.522 (4)C18—C171.370 (5)
O1—C61.279 (3)C18—H180.9300
C1—C21.390 (4)C17—H170.9300
C1—C61.508 (4)C9—C101.385 (5)
C5—C41.376 (4)C9—H90.9300
C5—C71.520 (4)C10—H100.9300
N3—C151.463 (4)O11—H11A0.79 (4)
N3—H3A0.91 (4)O11—H11B0.75 (3)
N3—H3B0.93 (5)O9—H9B0.85 (5)
N3—H3C0.91 (5)O9—H9A0.86 (5)
C3—C21.383 (4)O10—H10A0.79 (3)
C3—C41.395 (4)O10—H10B0.97 (5)
C3—H30.9300O13—H13A0.76 (4)
C4—H40.9300O13—H13B0.82 (5)
H12B—O12—H12A109 (6)C3—C2—H2120.7
N2—Ni1—N1177.13 (11)C1—C2—H2120.7
N2—Ni1—O578.39 (10)N2—C8—C9120.8 (3)
N1—Ni1—O598.84 (9)N2—C8—C13112.7 (3)
N2—Ni1—O1101.62 (9)C9—C8—C13126.4 (3)
N1—Ni1—O177.61 (9)C16—C15—C20121.9 (3)
O5—Ni1—O192.17 (9)C16—C15—N3119.8 (3)
N2—Ni1—O3102.47 (9)C20—C15—N3118.3 (3)
N1—Ni1—O378.34 (9)O4—C7—O3125.8 (3)
O5—Ni1—O393.06 (9)O4—C7—C5118.9 (3)
O1—Ni1—O3155.91 (8)O3—C7—C5115.3 (3)
N2—Ni1—O777.66 (10)C19—C20—C15118.2 (3)
N1—Ni1—O7105.08 (9)C19—C20—H20120.9
O5—Ni1—O7156.01 (8)C15—C20—H20120.9
O1—Ni1—O791.16 (9)C15—C16—C17118.3 (3)
O3—Ni1—O793.54 (9)C15—C16—H16120.8
C1—N1—C5121.9 (2)C17—C16—H16120.8
C1—N1—Ni1119.34 (19)C20—C19—C18121.2 (3)
C5—N1—Ni1118.74 (18)C20—C19—N4118.2 (3)
C12—N2—C8121.4 (3)C18—C19—N4120.5 (3)
C12—N2—Ni1118.97 (19)C19—N4—H4C114 (2)
C8—N2—Ni1119.6 (2)C19—N4—H4A108 (2)
C13—O7—Ni1114.3 (2)H4C—N4—H4A99 (3)
C7—O3—Ni1114.67 (18)C19—N4—H4B112 (3)
C14—O5—Ni1114.38 (19)H4C—N4—H4B112 (3)
C12—C11—C10119.0 (3)H4A—N4—H4B111 (3)
C12—C11—H11120.5C17—C18—C19119.3 (3)
C10—C11—H11120.5C17—C18—H18120.3
N2—C12—C11120.6 (3)C19—C18—H18120.3
N2—C12—C14112.0 (2)O2—C6—O1125.9 (3)
C11—C12—C14127.4 (3)O2—C6—C1119.6 (3)
C6—O1—Ni1115.35 (19)O1—C6—C1114.5 (3)
N1—C1—C2120.7 (3)O6—C14—O5125.4 (3)
N1—C1—C6113.1 (2)O6—C14—C12118.5 (3)
C2—C1—C6126.2 (3)O5—C14—C12116.1 (3)
N1—C5—C4120.3 (3)C18—C17—C16121.1 (3)
N1—C5—C7112.7 (2)C18—C17—H17119.5
C4—C5—C7127.1 (3)C16—C17—H17119.5
C15—N3—H3A108 (3)C8—C9—C10118.0 (3)
C15—N3—H3B112 (2)C8—C9—H9121.0
H3A—N3—H3B108 (4)C10—C9—H9121.0
C15—N3—H3C111 (3)C11—C10—C9120.1 (3)
H3A—N3—H3C109 (4)C11—C10—H10119.9
H3B—N3—H3C109 (4)C9—C10—H10119.9
C2—C3—C4119.8 (3)O8—C13—O7125.8 (3)
C2—C3—H3120.1O8—C13—C8118.5 (3)
C4—C3—H3120.1O7—C13—C8115.6 (3)
C5—C4—C3118.9 (3)H11A—O11—H11B113 (4)
C5—C4—H4120.6H9B—O9—H9A105 (5)
C3—C4—H4120.6H10A—O10—H10B117 (6)
C3—C2—C1118.5 (3)H13A—O13—H13B106 (6)
N2—Ni1—N1—C174 (2)Ni1—N1—C5—C4176.3 (2)
O5—Ni1—N1—C189.1 (2)C1—N1—C5—C7177.0 (3)
O1—Ni1—N1—C11.2 (2)Ni1—N1—C5—C74.9 (3)
O3—Ni1—N1—C1179.6 (2)N1—C5—C4—C31.0 (5)
O7—Ni1—N1—C189.0 (2)C7—C5—C4—C3177.5 (3)
N2—Ni1—N1—C5104 (2)C2—C3—C4—C50.4 (5)
O5—Ni1—N1—C589.0 (2)C4—C3—C2—C10.4 (5)
O1—Ni1—N1—C5179.3 (2)N1—C1—C2—C31.1 (4)
O3—Ni1—N1—C52.3 (2)C6—C1—C2—C3179.5 (3)
O7—Ni1—N1—C592.9 (2)C12—N2—C8—C90.2 (4)
N1—Ni1—N2—C1214 (2)Ni1—N2—C8—C9178.1 (2)
O5—Ni1—N2—C122.1 (2)C12—N2—C8—C13177.5 (3)
O1—Ni1—N2—C1287.8 (2)Ni1—N2—C8—C130.8 (3)
O3—Ni1—N2—C1292.7 (2)Ni1—O3—C7—O4176.1 (3)
O7—Ni1—N2—C12176.4 (2)Ni1—O3—C7—C54.0 (3)
N1—Ni1—N2—C8164.8 (19)N1—C5—C7—O4174.2 (3)
O5—Ni1—N2—C8179.6 (2)C4—C5—C7—O44.4 (5)
O1—Ni1—N2—C890.5 (2)N1—C5—C7—O35.9 (4)
O3—Ni1—N2—C889.0 (2)C4—C5—C7—O3175.5 (3)
O7—Ni1—N2—C81.9 (2)C16—C15—C20—C190.6 (5)
N2—Ni1—O7—C132.9 (2)N3—C15—C20—C19178.2 (3)
N1—Ni1—O7—C13178.0 (2)C20—C15—C16—C171.2 (5)
O5—Ni1—O7—C136.6 (3)N3—C15—C16—C17177.6 (3)
O1—Ni1—O7—C13104.5 (2)C15—C20—C19—C180.2 (4)
O3—Ni1—O7—C1399.1 (2)C15—C20—C19—N4179.0 (3)
N2—Ni1—O3—C7178.4 (2)C20—C19—C18—C170.4 (5)
N1—Ni1—O3—C71.2 (2)N4—C19—C18—C17179.2 (3)
O5—Ni1—O3—C799.6 (2)Ni1—O1—C6—O2177.8 (3)
O1—Ni1—O3—C72.7 (4)Ni1—O1—C6—C13.4 (3)
O7—Ni1—O3—C7103.5 (2)N1—C1—C6—O2176.8 (3)
N2—Ni1—O5—C140.6 (2)C2—C1—C6—O23.7 (5)
N1—Ni1—O5—C14179.8 (2)N1—C1—C6—O14.4 (4)
O1—Ni1—O5—C14102.0 (2)C2—C1—C6—O1175.1 (3)
O3—Ni1—O5—C14101.6 (2)Ni1—O5—C14—O6176.6 (3)
O7—Ni1—O5—C144.2 (4)Ni1—O5—C14—C122.7 (3)
C8—N2—C12—C111.2 (4)N2—C12—C14—O6175.0 (3)
Ni1—N2—C12—C11177.1 (2)C11—C12—C14—O63.9 (5)
C8—N2—C12—C14177.8 (3)N2—C12—C14—O54.3 (4)
Ni1—N2—C12—C143.9 (3)C11—C12—C14—O5176.7 (3)
C10—C11—C12—N20.6 (5)C19—C18—C17—C160.2 (5)
C10—C11—C12—C14178.3 (3)C15—C16—C17—C180.9 (5)
N2—Ni1—O1—C6178.6 (2)N2—C8—C9—C101.5 (5)
N1—Ni1—O1—C61.5 (2)C13—C8—C9—C10175.4 (3)
O5—Ni1—O1—C6100.0 (2)C12—C11—C10—C91.1 (5)
O3—Ni1—O1—C62.4 (4)C8—C9—C10—C112.1 (5)
O7—Ni1—O1—C6103.7 (2)Ni1—O7—C13—O8179.7 (3)
C5—N1—C1—C21.8 (4)Ni1—O7—C13—C83.3 (3)
Ni1—N1—C1—C2176.3 (2)N2—C8—C13—O8179.0 (3)
C5—N1—C1—C6178.8 (3)C9—C8—C13—O81.9 (5)
Ni1—N1—C1—C63.2 (3)N2—C8—C13—O71.8 (4)
C1—N1—C5—C41.7 (4)C9—C8—C13—O7175.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.483.118 (4)126
C3—H3···O7ii0.932.563.284 (4)135
O13—H13B···O9iii0.82 (5)2.14 (5)2.945 (6)166 (5)
O13—H13A···O6iv0.76 (4)2.05 (4)2.776 (5)158 (6)
O12—H12B···O13v0.79 (4)2.02 (4)2.808 (5)176 (8)
O12—H12A···O3vi0.89 (6)1.95 (6)2.838 (4)174 (5)
O11—H11B···O90.75 (3)2.08 (3)2.829 (4)173 (5)
O11—H11A···O70.79 (4)2.03 (4)2.798 (4)163 (4)
O10—H10B···O20.97 (5)1.80 (5)2.750 (4)168 (5)
O10—H10A···O12vii0.79 (3)2.20 (5)2.880 (5)146 (6)
O9—H9B···O4ii0.85 (5)2.07 (5)2.918 (4)172 (5)
O9—H9A···O100.86 (5)1.91 (5)2.772 (5)176 (4)
N4—H4C···O6viii0.97 (4)1.78 (4)2.730 (4)167 (3)
N4—H4B···O4vi0.82 (3)2.05 (4)2.854 (4)168 (3)
N4—H4A···O110.91 (4)1.94 (4)2.842 (4)173 (3)
N3—H3C···O10.91 (5)1.82 (5)2.702 (4)164 (4)
N3—H3B···O8vii0.93 (5)1.85 (5)2.773 (4)173 (4)
N3—H3A···O12vii0.91 (4)2.07 (4)2.899 (5)152 (4)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y+2, z+2; (iii) x+1/2, y+3/2, z1/2; (iv) x+2, y+2, z+1; (v) x1/2, y+3/2, z+1/2; (vi) x+1/2, y1/2, z+3/2; (vii) x+1, y, z; (viii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(C6H10N2)[Ni(C7H3NO4)2]·5H2O
Mr589.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.5331 (15), 18.085 (4), 18.578 (4)
β (°) 100.90 (3)
V3)2485.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.2 × 0.15 × 0.1
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
[shape of crystal determined optically (X-RED and X-SHAPE (Stoe & Cie, 2005)]
Tmin, Tmax0.855, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
18439, 6687, 3608
Rint0.090
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.086, 0.92
No. of reflections6687
No. of parameters407
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.36

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.483.118 (4)125.5
C3—H3···O7ii0.932.563.284 (4)135.4
O13—H13B···O9iii0.82 (5)2.14 (5)2.945 (6)166 (5)
O13—H13A···O6iv0.76 (4)2.05 (4)2.776 (5)158 (6)
O12—H12B···O13v0.79 (4)2.02 (4)2.808 (5)176 (8)
O12—H12A···O3vi0.89 (6)1.95 (6)2.838 (4)174 (5)
O11—H11B···O90.75 (3)2.08 (3)2.829 (4)173 (5)
O11—H11A···O70.79 (4)2.03 (4)2.798 (4)163 (4)
O10—H10B···O20.97 (5)1.80 (5)2.750 (4)168 (5)
O10—H10A···O12vii0.79 (3)2.20 (5)2.880 (5)146 (6)
O9—H9B···O4ii0.85 (5)2.07 (5)2.918 (4)172 (5)
O9—H9A···O100.86 (5)1.91 (5)2.772 (5)176 (4)
N4—H4C···O6viii0.97 (4)1.78 (4)2.730 (4)167 (3)
N4—H4B···O4vi0.82 (3)2.05 (4)2.854 (4)168 (3)
N4—H4A···O110.91 (4)1.94 (4)2.842 (4)173 (3)
N3—H3C···O10.91 (5)1.82 (5)2.702 (4)164 (4)
N3—H3B···O8vii0.93 (5)1.85 (5)2.773 (4)173 (4)
N3—H3A···O12vii0.91 (4)2.07 (4)2.899 (5)152 (4)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y+2, z+2; (iii) x+1/2, y+3/2, z1/2; (iv) x+2, y+2, z+1; (v) x1/2, y+3/2, z+1/2; (vi) x+1/2, y1/2, z+3/2; (vii) x+1, y, z; (viii) x+3/2, y1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the Islamic Azad University, North Branch, for financial support of this work.

References

First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Sadr-khanlou, E., Shokrollahi, A., Ghaedi, M. & Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 55–70.  CrossRef CAS Google Scholar
First citationAttar Gharamaleki, J., Aghabozorg, H., Derikvand, Z. & Yousefi, M. (2009). Acta Cryst. E65, m824–m825.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBeatty, A. M., Granger, K. E. & Simpson, A. E. (2002). Chem. Eur. J. 8, 3254–3259.  CrossRef PubMed CAS Google Scholar
First citationDobrzycki, L. & Woźniak, K. (2008). CrystEngComm, 10, 577–589.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationImaz, I., Thillet, A. & Sutter, J. P. (2007). Cryst. Growth Des. 7, 1753–1761.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacDonald, J. C., Dorrestein, P., Pilley, M. M., Foote, M. M., Lundburg, J. L., Henning, R. W., Schultz, A. J. & Manson, J. L. (2000). J. Am. Chem. Soc. 122, 11692–11702.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacDonald, J. C., Luo, T.-J. M. & Palmore, G. T. R. (2004). Cryst. Growth Des. 4, 1203–1209.  Web of Science CSD CrossRef CAS Google Scholar
First citationSharif, M. A., Aghajani, Z. & Aghabozorg, H. (2007). Anal. Sci. 23, x147–x148.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m193-m194
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds