organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-(+)-Dimeth­yl[4-oxido-2-oxo-1-(1-phenyl­eth­yl)-1,2,5,6-tetra­hydro­pyridin-3-yl]sulfonium

aCentro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 72570, Puebla, Pue., Mexico
*Correspondence e-mail: angel.mendoza.m@gmail.com

(Received 14 December 2010; accepted 16 December 2010; online 8 January 2011)

In the title zwitterionic compound, C15H19NO2S, the six-membered heterocycle adopts a sofa conformation. The negative charge is delocalized along the carbonyl and enolate system on the ring and the positive charge is localized on the S atom. Two inter­molecular C—H⋯O inter­actions help to establish the packing.

Related literature

For background to the synthesis of chiral non-racemic zwitterionic 4-alk­oxy-3-sulfonium ylide pyridine-2-ones, see: Zang et al. (2008[Zang, S. L., Huang, Z. S., Li, Y. M., Chan, A. S. C. & Gu, L. Q. (2008). Tetrahedron, 64, 4403-4407.]); Kappe et al. (1983[Kappe, T., Korbuuly, G. & Pongratz, E. (1983). Monatsh. Chem. 114, 303-315.]); Palillero et al. (2009[Palillero, A., Terán, J. L., Gnecco, D., Juárez, J. R., Orea, M. L. & Castro, A. (2009). Tetrahedron Lett. 50, 4208-4211.]). For the biological activity of related structures, see: Basco et al. (1994[Basco, L. K., Mitaku, S., Skaltsounis, A. L., Ravelomanantsoa, N., Tillequin, F., Koch, M. & Le Bras, J. (1994). J. Antimicrob. Agents Chemother. 38, 1169-1171.]); Koruzňjak et al., 2003[Koruzňjak, J. D., Grdiša, M., Slade, N., Zamola, B., Pavelic, K. & Karminski-Zamola, G. (2003). J. Med. Chem. 46, 4516-4524.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C15H19NO2S

  • Mr = 277.37

  • Orthorhombic, P 21 21 21

  • a = 5.9860 (17) Å

  • b = 7.4050 (14) Å

  • c = 31.589 (5) Å

  • V = 1400.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.5 × 0.4 × 0.2 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.728, Tmax = 0.846

  • 3016 measured reflections

  • 2683 independent reflections

  • 1928 reflections with I > 2σ(I)

  • Rint = 0.045

  • 3 standard reflections every 97 reflections intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.153

  • S = 1.03

  • 2683 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 532 Friedel pairs

  • Flack parameter: −0.01 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7C⋯O2i 0.96 2.36 3.315 (6) 172
C15—H15A⋯O1ii 0.96 2.38 3.167 (5) 138
Symmetry codes: (i) x-1, y-1, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The synthesis of chiral non racemic zwitterionic 4-alkoxy-3-sulfonium ylide pyridine-2-ones is an original area of interest in organic chemistry (Zang et al., 2008; Kappe et al., 1983) because they are useful for the synthesis of piperidine-2,4-dione and pyridine-2-one (Palillero et al., 2009) compounds and because of their interesting biological properties (Basco et al., 1994; Koruzňjak et al., 2003).

The title compound I, features a zwitterionic molecule. The chiral centre shows an R configuration with [α]D= +70.5. The six member ring N1/C1/C2/C3/C4/C5 shows an sofa conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.465 (4) Å, θ2 = 119.7 (5)°, ϕ2 = 103.2 (6)°, q2 = 0.404 (4) Å and q3 = -0.231 (4) Å. The bond distances of N1—C1, N1—C5, C5—C4 and C4—C3 show typical values, so that C2—C3 distance shows a single double bond (1.415 (5) Å), while C1—C2 (1.455 (5) Å) distance is shorter than common sp3—sp3 bonds, furthermore C3—O2 (1.244 (5) Å) and C1—O1 (1.250 (4) Å) distances are longer than related enolates and amide groups respectively these values suggest that negative charge is delocalized over O1/C1/C2/C3/O2 system and in the sulfonium group is located the positive charge in the zwitterion. Crystal packing is stabilized by two weak intermolecular C —H···O interactions.

Related literature top

For background to the synthesis of chiral non-racemic zwitterionic 4-alkoxy-3-sulfonium ylide pyridine-2-ones, see: Zang et al. (2008); Kappe et al. (1983); Palillero et al. (2009). For the biological activity of related structures, see: Basco et al. (1994); Koruzňjak et al., 2003). For ring conformation analysis, see: Cremer & Pople (1975).

Experimental top

The title compound, was obtained by an intramolecular cyclization reaction of (1'R)-(+)-{[(2-methoxycarbonyl-ethyl)-(1'-phenyl-ethyl)-carbamoyl]-methyl}-dimethyl-sulfonium; bromide (1 mmol), which was dissolved in CH3CN (10 mL), treated with KOH (1.2 mmol) and stirred for two hours at room temperature. The resulting mixture was concentrated in vacuum and dissolved in ethyl acetate, filtered and concentrated giving the desired compound in 95%. Crystals were obtained from an ethyl acetate/diethylether solution; m.p. 139–140°C, [α]D= +70.5 (c 1.1, MeOH). IR (KBr) 1656 cm-1. 1H NMR (400 MHz, CDCl3) δ (p.p.m., J Hz): 1.51 (d, J = 7.2, 3H, Me), 2.32 (m, 2H), 2.90 (m, 1H), 2.98 (s, 3H, SMe), 3.00 (s, 3H, SMe), 3.16 (m, 1H), 5.94 (q, J =7.2, 1H), 7.27–7.40 (m, 5H). 13C NMR (100 MHz, CDCl3) δ p.p.m. 15.4, 26.0, 26.3, 36.3, 37.6, 48.9, 74.3, 126.5–141.0, 166.2, 187.5. HRMS (FAB): Calcd for C15H19NO2S: 277.1124. Found: 277.1103.

Refinement top

H atoms linked to C atoms were placed in geometrical idealized positions and refined as riding on their parent atoms, with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2 Ueq(C) or Ueq(H) = 1.5 Ueq(C) for methyl groups.

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: XSCANS (Siemens, 1994); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids for non-H atoms.
(R)-(+)-Dimethyl[4-oxido-2-oxo-1-(1-phenylethyl)-1,2,5,6- tetrahydropyridin-3-yl]sulfonium top
Crystal data top
C15H19NO2SF(000) = 592
Mr = 277.37Dx = 1.316 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 46 reflections
a = 5.9860 (17) Åθ = 21.3–35.1°
b = 7.4050 (14) ŵ = 0.23 mm1
c = 31.589 (5) ÅT = 293 K
V = 1400.2 (5) Å3Prism, colorless
Z = 40.5 × 0.4 × 0.2 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.045
Graphite monochromatorθmax = 29.0°, θmin = 2.6°
2θ/ω scansh = 18
Absorption correction: ψ scan
(North et al., 1968)
k = 110
Tmin = 0.728, Tmax = 0.846l = 431
3016 measured reflections3 standard reflections every 97 reflections
2683 independent reflections intensity decay: 3%
1928 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0631P)2 + 1.1965P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2683 reflectionsΔρmax = 0.63 e Å3
172 parametersΔρmin = 0.39 e Å3
0 restraintsAbsolute structure: Flack (1983), 532 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (16)
Crystal data top
C15H19NO2SV = 1400.2 (5) Å3
Mr = 277.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.9860 (17) ŵ = 0.23 mm1
b = 7.4050 (14) ÅT = 293 K
c = 31.589 (5) Å0.5 × 0.4 × 0.2 mm
Data collection top
Siemens P4
diffractometer
1928 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.045
Tmin = 0.728, Tmax = 0.8463 standard reflections every 97 reflections
3016 measured reflections intensity decay: 3%
2683 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.153Δρmax = 0.63 e Å3
S = 1.03Δρmin = 0.39 e Å3
2683 reflectionsAbsolute structure: Flack (1983), 532 Friedel pairs
172 parametersAbsolute structure parameter: 0.01 (16)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.10027 (19)0.87732 (14)0.03372 (3)0.0323 (2)
O10.8859 (6)0.5383 (4)0.05505 (8)0.0393 (7)
N10.7630 (6)0.6122 (4)0.12114 (10)0.0300 (7)
O21.0851 (7)1.1013 (4)0.11356 (10)0.0511 (9)
C90.8558 (7)0.3759 (6)0.19114 (12)0.0351 (9)
H90.97230.44340.17980.042*
C10.8724 (7)0.6511 (5)0.08437 (10)0.0278 (8)
C60.6341 (8)0.4423 (5)0.12418 (12)0.0345 (10)
H60.70110.35720.10410.041*
C40.8971 (9)0.8843 (6)0.15731 (11)0.0373 (9)
H4A1.01240.81990.17270.045*
H4B0.85010.98630.17440.045*
C30.9911 (8)0.9518 (6)0.11576 (12)0.0340 (9)
C80.6557 (7)0.3579 (5)0.16847 (12)0.0305 (9)
C100.8816 (9)0.2937 (6)0.23044 (13)0.0404 (10)
H101.01430.30770.24540.049*
C151.3821 (8)0.9447 (7)0.04512 (13)0.0427 (11)
H15A1.45860.97110.01910.064*
H15B1.45780.84870.05960.064*
H15C1.38051.05050.06270.064*
C20.9708 (7)0.8304 (5)0.08140 (11)0.0285 (9)
C50.7006 (8)0.7604 (6)0.14990 (12)0.0345 (10)
H5A0.65070.71080.17670.041*
H5B0.5780.82860.13770.041*
C130.4867 (8)0.2558 (6)0.18589 (14)0.0396 (10)
H130.35230.24260.17140.048*
C120.5156 (9)0.1720 (6)0.22507 (14)0.0445 (11)
H120.4010.10210.23630.053*
C110.7107 (9)0.1916 (6)0.24725 (14)0.0443 (12)
H110.72780.13630.27350.053*
C140.9890 (9)1.0887 (7)0.01517 (15)0.0544 (13)
H14A1.05691.11930.01140.082*
H14B1.02051.18170.03550.082*
H14C0.83041.0780.01150.082*
C70.3927 (9)0.4733 (7)0.10987 (16)0.0524 (13)
H7A0.39220.52520.0820.079*
H7B0.31990.55390.12930.079*
H7C0.31470.360.10940.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0354 (5)0.0314 (4)0.0300 (4)0.0059 (5)0.0034 (5)0.0035 (4)
O10.056 (2)0.0317 (14)0.0304 (13)0.0091 (19)0.0042 (15)0.0028 (11)
N10.0319 (17)0.0246 (15)0.0334 (15)0.0086 (18)0.0047 (14)0.0014 (14)
O20.066 (2)0.0325 (15)0.0543 (17)0.023 (2)0.0150 (19)0.0100 (13)
C90.034 (2)0.0334 (19)0.0379 (19)0.002 (2)0.0054 (17)0.0015 (18)
C10.030 (2)0.0288 (18)0.0245 (15)0.003 (2)0.0033 (16)0.0029 (14)
C60.040 (3)0.0282 (18)0.0352 (19)0.010 (2)0.0001 (19)0.0041 (16)
C40.052 (2)0.0315 (18)0.0287 (17)0.007 (3)0.009 (2)0.0067 (16)
C30.037 (2)0.0305 (19)0.0348 (19)0.003 (2)0.0052 (19)0.0037 (17)
C80.036 (2)0.0214 (17)0.0341 (18)0.0030 (19)0.0052 (17)0.0042 (15)
C100.042 (2)0.041 (2)0.039 (2)0.006 (3)0.001 (2)0.0008 (18)
C150.031 (2)0.055 (3)0.042 (2)0.006 (3)0.008 (2)0.001 (2)
C20.033 (2)0.0234 (17)0.0292 (17)0.0035 (18)0.0036 (16)0.0020 (14)
C50.042 (2)0.030 (2)0.0321 (19)0.002 (2)0.0077 (19)0.0005 (16)
C130.034 (2)0.037 (2)0.048 (2)0.003 (2)0.001 (2)0.0091 (19)
C120.046 (3)0.040 (2)0.048 (3)0.006 (3)0.012 (2)0.013 (2)
C110.057 (3)0.041 (2)0.035 (2)0.013 (3)0.009 (2)0.0050 (19)
C140.051 (3)0.057 (3)0.055 (3)0.004 (3)0.004 (2)0.026 (2)
C70.042 (3)0.057 (3)0.058 (3)0.016 (3)0.015 (3)0.019 (2)
Geometric parameters (Å, º) top
S1—C21.729 (4)C8—C131.378 (6)
S1—C151.796 (5)C10—C111.379 (7)
S1—C141.799 (5)C10—H100.93
O1—C11.250 (4)C15—H15A0.96
N1—C11.364 (5)C15—H15B0.96
N1—C51.473 (5)C15—H15C0.96
N1—C61.479 (5)C5—H5A0.97
O2—C31.244 (5)C5—H5B0.97
C9—C101.391 (6)C13—C121.395 (6)
C9—C81.402 (6)C13—H130.93
C9—H90.93C12—C111.369 (7)
C1—C21.455 (5)C12—H120.93
C6—C71.531 (7)C11—H110.93
C6—C81.538 (5)C14—H14A0.96
C6—H60.98C14—H14B0.96
C4—C51.510 (6)C14—H14C0.96
C4—C31.513 (5)C7—H7A0.96
C4—H4A0.97C7—H7B0.96
C4—H4B0.97C7—H7C0.96
C3—C21.415 (5)
C2—S1—C15107.6 (2)H15A—C15—H15B109.5
C2—S1—C14107.0 (2)S1—C15—H15C109.5
C15—S1—C1499.9 (2)H15A—C15—H15C109.5
C1—N1—C5119.4 (3)H15B—C15—H15C109.5
C1—N1—C6119.0 (3)C3—C2—C1124.4 (3)
C5—N1—C6117.5 (3)C3—C2—S1120.1 (3)
C10—C9—C8120.6 (4)C1—C2—S1114.9 (3)
C10—C9—H9119.7N1—C5—C4110.5 (3)
C8—C9—H9119.7N1—C5—H5A109.5
O1—C1—N1121.4 (3)C4—C5—H5A109.5
O1—C1—C2122.4 (3)N1—C5—H5B109.5
N1—C1—C2116.2 (3)C4—C5—H5B109.5
N1—C6—C7110.2 (4)H5A—C5—H5B108.1
N1—C6—C8111.2 (3)C8—C13—C12120.5 (4)
C7—C6—C8114.1 (4)C8—C13—H13119.8
N1—C6—H6107C12—C13—H13119.8
C7—C6—H6107C11—C12—C13120.9 (4)
C8—C6—H6107C11—C12—H12119.6
C5—C4—C3110.8 (3)C13—C12—H12119.6
C5—C4—H4A109.5C12—C11—C10119.6 (4)
C3—C4—H4A109.5C12—C11—H11120.2
C5—C4—H4B109.5C10—C11—H11120.2
C3—C4—H4B109.5S1—C14—H14A109.5
H4A—C4—H4B108.1S1—C14—H14B109.5
O2—C3—C2124.2 (4)H14A—C14—H14B109.5
O2—C3—C4120.7 (4)S1—C14—H14C109.5
C2—C3—C4115.1 (3)H14A—C14—H14C109.5
C13—C8—C9118.4 (4)H14B—C14—H14C109.5
C13—C8—C6121.6 (4)C6—C7—H7A109.5
C9—C8—C6119.9 (4)C6—C7—H7B109.5
C11—C10—C9120.1 (5)H7A—C7—H7B109.5
C11—C10—H10120C6—C7—H7C109.5
C9—C10—H10120H7A—C7—H7C109.5
S1—C15—H15A109.5H7B—C7—H7C109.5
S1—C15—H15B109.5
C5—N1—C1—O1164.3 (4)O2—C3—C2—S15.4 (7)
C6—N1—C1—O17.7 (6)C4—C3—C2—S1172.1 (3)
C5—N1—C1—C215.5 (5)O1—C1—C2—C3169.5 (4)
C6—N1—C1—C2172.0 (3)N1—C1—C2—C310.7 (6)
C1—N1—C6—C790.2 (5)O1—C1—C2—S11.8 (5)
C5—N1—C6—C766.8 (5)N1—C1—C2—S1178.0 (3)
C1—N1—C6—C8142.2 (4)C15—S1—C2—C346.9 (4)
C5—N1—C6—C860.8 (5)C14—S1—C2—C359.6 (4)
C5—C4—C3—O2151.0 (4)C15—S1—C2—C1124.8 (3)
C5—C4—C3—C231.4 (6)C14—S1—C2—C1128.7 (3)
C10—C9—C8—C130.6 (6)C1—N1—C5—C448.4 (5)
C10—C9—C8—C6177.2 (4)C6—N1—C5—C4154.7 (3)
N1—C6—C8—C13149.8 (4)C3—C4—C5—N154.5 (5)
C7—C6—C8—C1324.4 (6)C9—C8—C13—C120.3 (6)
N1—C6—C8—C933.6 (5)C6—C8—C13—C12176.3 (4)
C7—C6—C8—C9159.1 (4)C8—C13—C12—C110.9 (7)
C8—C9—C10—C110.8 (6)C13—C12—C11—C100.7 (7)
O2—C3—C2—C1176.3 (4)C9—C10—C11—C120.2 (7)
C4—C3—C2—C11.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···O2i0.962.363.315 (6)172
C15—H15A···O1ii0.962.383.167 (5)138
Symmetry codes: (i) x1, y1, z; (ii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC15H19NO2S
Mr277.37
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.9860 (17), 7.4050 (14), 31.589 (5)
V3)1400.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.5 × 0.4 × 0.2
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.728, 0.846
No. of measured, independent and
observed [I > 2σ(I)] reflections
3016, 2683, 1928
Rint0.045
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.153, 1.03
No. of reflections2683
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.39
Absolute structureFlack (1983), 532 Friedel pairs
Absolute structure parameter0.01 (16)

Computer programs: XSCANS (Siemens, 1994), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···O2i0.962.363.315 (6)172
C15—H15A···O1ii0.962.383.167 (5)138
Symmetry codes: (i) x1, y1, z; (ii) x+1/2, y+3/2, z.
 

Acknowledgements

We are grateful to CONACyT (Project 83185) for financial support. PGG also thanks CONACyT for a scholarship (169011). Special thanks go to Dr Marcos Flores (USAI-FQ-UNAM) for useful comments.

References

First citationBasco, L. K., Mitaku, S., Skaltsounis, A. L., Ravelomanantsoa, N., Tillequin, F., Koch, M. & Le Bras, J. (1994). J. Antimicrob. Agents Chemother. 38, 1169–1171.  CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKappe, T., Korbuuly, G. & Pongratz, E. (1983). Monatsh. Chem. 114, 303–315.  CrossRef CAS Web of Science Google Scholar
First citationKoruzňjak, J. D., Grdiša, M., Slade, N., Zamola, B., Pavelic, K. & Karminski-Zamola, G. (2003). J. Med. Chem. 46, 4516–4524.  PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPalillero, A., Terán, J. L., Gnecco, D., Juárez, J. R., Orea, M. L. & Castro, A. (2009). Tetrahedron Lett. 50, 4208–4211.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZang, S. L., Huang, Z. S., Li, Y. M., Chan, A. S. C. & Gu, L. Q. (2008). Tetrahedron, 64, 4403–4407.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds